
PhD Thesis

Cache Design Strategies for
Efficient Adaptive Line Placement

Dyer Rolán Garcı́a

2012

Computer Architecture Group

Universidade da Coruña, Spain

Computer Architecture Group

Universidade da Coruña, Spain

PhD Thesis

Cache Design Strategies for

Efficient Adaptive Line Placement

Dyer Rolán Garćıa

April 2012

PhD Advisors:

Basilio B. Fraguela Rodŕıguez

Ramón Doallo Biempica

Dr. Basilio B. Fraguela Rodŕıguez

Titular de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

Dr. Ramón Doallo Biempica

Catedrático de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Cache Design Strategies for Efficient Adaptive Line Place-

ment” ha sido realizada por D. Dyer Rolán Garćıa bajo nuestra dirección en el De-

partamento de Electrónica y Sistemas de la Universidade da Coruña y concluye la

Tesis Doctoral que presenta para optar al grado de Doctor en Ingenieŕıa Informática

con la Mención de Doctor Internacional.

En A Coruña, a 27 de Marzo de 2012

Fdo.: Basilio B. Fraguela Rodŕıguez

Director de la Tesis Doctoral

Fdo.: Ramón Doallo Biempica

Director de la Tesis Doctoral

Vo Bo: Juan Touriño Domı́nguez

Director del Dpto. de Electrónica y Sistemas

The Dissertation Committee for Dyer Rolán Garćıa certifies that this is the

approved version of the following dissertation:

Cache Design Strategies for Efficient Adaptive Line

Placement

Committee:

President,

Member,

Member,

Member,

Secretary,

Resumen

Introducción

Las memorias caché, o simplemente cachés, representan un papel crucial en el

rendimiento de las computadoras salvando la diferencia de velocidad que existe entre

los procesadores y la memoria principal. La gestión de memorias caché ha adquirido

aún más relevancia debido a la aparición de los procesadores multinúcleo (CMPs),

que suponen requisitos de ancho de banda superiores, mayores conjuntos de trabajo

de aplicaciones emergentes y que además requieren una distribución eficiente de los

recursos caché entre todos los núcleos de procesamiento.

Esta Tesis se centra en analizar algunos de los problemas que se encuentran

habitualmente en las cachés modernas y propone soluciones efectivas y económicas

para mejorar su rendimiento. La mayoŕıa de los diseños propuestos en esta Tesis son

capaces de reducir la tasa de fallos basándose en los diferentes niveles de demanda

de cada conjunto caché. De este modo, las ĺıneas caché se ubican en bloques in-

frautilizados de otros conjuntos caché si es probable que vuelvan a ser referenciadas

y su conjunto nativo está experimentando problemas de capacidad. Cuando esto

no es suficiente, esta Tesis propone modificar de un modo coordinado la poĺıtica

de inserción de estos conjuntos caché. Por tanto, nuestras propuestas retienen la

mayor parte útil del conjunto de trabajo a la vez que descartan datos temporales

tan pronto como sea posible. Estas ideas, inicialmente aplicadas en cachés de últi-

mo nivel, en inglés Last-Level Caches (LLCs), de monoprocesadores, son adaptadas

satisfactoriamente en esta Tesis a cachés de primer nivel y sistemas multinúcleo. En

cuanto a las cachés de primer nivel, proponemos un diseño novedoso que permite

la distribución de recursos caché entre instrucciones y datos dependiendo de sus

vii

viii

necesidades particulares. A continuación, en sistemas multinúcleo, nuestros diseños

son en un primer momento mejorados mediante la inclusión de soporte para tratar

cada hilo que comparte recursos en una caché compartida de un modo particular

para, a continuación, proponer una poĺıtica de inserción espećıficamente diseñada

para este entorno. Finalmente, exploramos la compartición de recursos en CMPs

con LLCs privadas mediante el desplazamiento de ĺıneas entre las distintas cachés

que constituyen el último nivel de la jerarqúıa. Este último diseño incluye además

varios puntos novedosos como la inclusión de un estado neutral en el mecanismo de

desplazamiento que impide que un conjunto caché tome parte en el mismo si esto

pudiese llegar a ser perjudicial, el uso de distintas granularidades para la gestión de

la caché o la aplicación coordinada de la poĺıtica de inserción más conveniente con

los mecanismos previos. A lo largo de todo este proceso hemos usado una métrica

sencilla y efectiva para determinar el estado, o nivel de saturación, de los conjuntos

caché llamada Set Saturation Level (SSL). Finalmente, cabe destacar que nuestros

diseños se han mostrado muy competitivos con respecto a otras propuestas recientes,

incluso a menudo superándolas, a pesar de suponer costes de almacenamiento y con-

sumo de enerǵıa casi insignificantes.

Metodoloǵıa

El desarrollo de esta Tesis sigue las ĺıneas de metodoloǵıas clásicas; incluyendo

planificación, diseño, análisis de costes, evaluación y viabilidad de las implementa-

ciones propuestas. El principal objetivo de esta Tesis es enriquecer el diseño moderno

de memorias caché mediante la propuesta de nuevas poĺıticas para monoprocesadores

y su posterior adaptación a procesadores multinúcleo. Veremos que si bien los diseños

para los primeros son directamente aplicables a los segundos, estos diseños deben

adaptarse si queremos alcanzar el mejor nivel de prestaciones en los procesadores

multinúcleo.

En primer lugar, se desarrolló un estudio cuidadoso del estado del arte en el

campo de las memorias caché, inicialmente en el último nivel de la jerarqúıa. Como

resultado, se detectaron y analizaron comportamientos perjudiciales y debilidades en

diseños previos y se propusieron soluciones eficientes. En segundo lugar, se realizó la

configuración de un entorno adecuado para la evaluación de las soluciones propues-

ix

tas. A continuación, se depuraron y ajustaron los diseños propuestos para obtener un

rendimiento óptimo con un coste adicional poco significativo. Estos diseños previos,

que se evaluaron exitosamente en entornos monoprocesador, fueron sucesivamente

adaptados a entornos con procesadores multinúcleo siguiendo las mismas fases.

Finalmente, todos estos esfuerzos han contribuido a lograr el objetivo principal

de mejorar el rendimiento de las memorias caché manteniendo el mismo grado de

complejidad que en el funcionamiento caché tradicional, bajo consumo de potencia y

costes de almacenamiento adicionales mı́nimos. De hecho estos diseños han superado

a las técnicas más recientes en este campo, tanto para entornos monoprocesador

como para procesadores multinúcleo.

Conclusiones

A fin de neutralizar la diferencia de velocidad entre el procesador y la memo-

ria principal, los procesadores modernos cuentan con grandes cachés de último ni-

vel (LLC). Sin embargo, los diseños tradicionales, originalmente desarrollados para

pequeñas cachés de primer nivel, son ineficientes para cachés mayores y LLCs com-

partidas en procesadores multinúcleo. La importancia de la gestión de la caché se

ha vuelto más cŕıtica debido al aumento de los requisitos de ancho de banda de

los CMPs, el incremento de los conjuntos de trabajo de aplicaciones emergentes,

y el menor espacio de caché dedicado a cada procesador debido al aumento del

número de procesadores por chip. Esta Tesis, “Cache Design Strategies for Efficient

Adaptive Line Placement”, analiza algunos de los problemas que aparecen al ges-

tionar grandes cachés y los comportamientos perjudiciales que experimentan para

aśı proponer soluciones efectivas y aumentar su rendimiento. De hecho, esta Tesis de-

muestra que cambios sencillos y con un coste adicional mı́nimo pueden incrementar

substancialmente el rendimiento de estas cachés. Una caracteŕıstica común a todos

los diseños propuestos en esta Tesis es que analizan y aplican poĺıticas de grano

fino para mejorar el rendimiento sin que ello implique un coste de almacenamiento

elevado ni grandes modificaciones en el funcionamiento habitual de la caché.

Esta Tesis demuestra que los efectos perjudiciales derivados de una de las inefi-

ciencias más comunes en las memorias caché, la no uniformidad de las referencias a

x

memoria sobre los distintos conjuntos caché, puede reducirse mediante el desplaza-

miento de ĺıneas desde conjuntos que requieren más espacio hacia otros que pueden

proporcionarlo mediante el establecimiento de asociaciones entre ellos. La Set Bal-

ancing Cache (SBC) [60] asocia estas dos clases de conjuntos con el fin de equilibrar

la carga de datos entre ellos. Para determinar el estado de cada conjunto la SBC

utiliza una métrica sencilla y efectiva denominada Set Saturation Level (SSL), que

mide hasta qué punto es capaz un conjunto dado de la caché de retener su conjunto

de trabajo particular. Este valor se calcula para cada conjunto gracias a un contador

con aritmética de saturación que se incrementa con cada fallo caché que se produce

en el conjunto y se reduce con cada acierto. Esta métrica ha demostrado ser capaz de

establecer el rol más adecuado de cada conjunto dentro de una asociación. Un diseño

estático inicial (SSBC), el cual permite únicamente desplazamientos entre parejas de

conjuntos preestablecidas, logró una reducción media en la tasa de fallos de 9.2 %,

o 14 % si se calcula en términos de media geométrica. Esta reducción resultó en una

mejora media en el IPC entre 2.7 % y 3.7 % dependiendo de la configuración usada.

Además, se propone una estructura sencilla y económica, llamada Destination Set

Selector (DSS), capaz de proporcionar el conjunto libre dentro de la caché más con-

veniente para recibir ĺıneas ante una solicitud de asociación. Una versión dinámica

mejorada de la SBC (DSBC), la cual asocia conjuntos caché altamente saturados

con aquellos menos saturados gracias al DSS, obtuvo una reducción media en la tasa

de fallos de 12.8 %, 19 % computado como la media geométrica, consiguiendo una

mejora en el IPC de entre 3.5 % y 5.25 % dependiendo de la jerarqúıa de memoria

considerada. Finalmente, los distintos diseños de la SBC demostraron consistente-

mente ser mejores que sucesivos incrementos en la asociatividad, tanto en términos

de área requerida como rendimiento, además de suponer costes de almacenamiento

mı́nimos; menos de un 0.6 % con respecto a la configuración base.

Esta Tesis confirma además que otro de los problemas más habituales en las

memorias caché, el thrashing, puede aliviarse mediante la aplicación de una poĺıtica

de inserción capaz de descartar datos temporales lo antes posible a la vez que

mantiene la sección con más localidad del conjunto de trabajo en la caché. Este

tipo de poĺıtica puede combinarse con la DSBC propuesta en esta Tesis para reducir

la presión sobre los conjuntos caché cuando el desplazamiento de ĺıneas entre los

mismos no es suficiente. Inicialmente se analizan las razones que llevan a un com-

portamiento no óptimo de la combinación entre la DSBC y una poĺıtica de inserción

xi

espećıficamente diseñada para atacar problemas de capacidad como es la Dynamic

Insertion Policy (DIP) [53] en una caché. En base a ello, se propone de un modo

razonado un diseño integrado de ambas poĺıticas que permite su cooperación efecti-

va: la Bimodal Set Balancing Cache (BSBC) [61]. Este diseño extendido trata con

fallos de conflicto y de capacidad mediante el uso del Set Saturation Level como

único árbitro de control de ambos comportamientos. Por tanto, esta Tesis demues-

tra además la utilidad del SSL para detectar problemas de capacidad globales en la

caché aśı como desequilibrios entre conjuntos. De este modo, la BSBC implica sólo

un 0.6 % de coste de almacenamiento adicional con respecto a la caché base. Experi-

mentos usando benchmarks con caracteŕısticas variadas muestran que la aplicación

conjunta de la DSBC y DIP en una caché puede resultar un diseño poco afortu-

nado si no se coordina adecuadamente, o que, por el contrario, puede proporcionar

los mejores resultados cuando se integran apropiadamente en nuestro diseño BSBC.

Por ejemplo, en una caché de segundo nivel de 2MB y 8 v́ıas, la combinación sin co-

ordinación de ambas propuestas, DIP+DSBC, obtiene una reducción relativa en la

tasa de fallos de 8.3 %, mientras que la DSBC y DIP de un modo aislado la reducen

en un 12 % y un 10 % respectivamente. Con la BSBC la reducción asciende hasta el

16 %. Como resultado, la BSBC consigue las mayores mejoras en términos de IPC,

4.8 % para la misma configuración, en comparación con el 3 % que proporciona la

combinación sin coordinación DSBC+DIP. El resto de poĺıticas probadas; DSBC,

DIP y la probabilistic escape LIFO, obtienen resultados intermedios. Por tanto, esta

Tesis muestra que la coordinación de distintas poĺıticas para tratar distintos proble-

mas puede gestionarse con sencillas y económicas métricas y proporcionar beneficios

mucho mayores que la aplicación independiente de dichas poĺıticas. Adicionalmente,

hemos demostrado que la BSBC es directamente aplicable a una caché compartida,

donde se ha desenvuelto favorablemente, logrando una reducción media del 10 %

en la tasa de fallos y una mejora en el IPC del 3 %, superando incluso a técnicas

espećıficamente diseñadas para rendir en este tipo de entorno como PIPP [84]. Tam-

bién se ha evaluado la DSBC en una caché compartida, reduciendo la tasa de fallos

en un 7.8 % y logrando una mejora en la productividad de hasta un 10 %. A pesar

de estos resultados positivos, técnicas que incluyen soporte para tratar a cada hilo

de un modo independiente, como TADIP [27], han obtenido mejores resultados a

medida que se incrementa el número de procesadores que comparten los recursos.

Esto sugiere la importancia de dar un tratamiento particular a cada flujo de acceso

xii

independiente en la caché.

A continuación esta Tesis muestra que la idea de dar tratamientos particulares a

distintos flujos de acceso de acuerdo a su comportamiento individual puede aplicarse

satisfactoriamente a cachés de primer nivel mediante el ajuste dinámico de los recur-

sos destinados a instrucciones y datos, los dos principales flujos de acceso que existen

a este nivel de la jerarqúıa, dependiendo de su demanda particular. Proponemos la

Virtually Split Cache (VSC), el primer diseño que es consciente de la distinta lo-

calidad que tienen las instrucciones con respecto a los datos y que reserva recursos,

espećıficamente bancos de memoria, para ambos tipos de información dependiendo

de la demanda de cada uno. Hemos propuesto dos diseños alternativos para determi-

nar los recursos que demandan tanto instrucciones como datos. El primer diseño, la

Shadow Tag VSC, usa etiquetas extra para decidir si asignar un banco de memoria

adicional para instrucciones, o datos, aumenta el rendimiento. El segundo diseño,

la Global Selector VSC, usa un contador común con aritmética de saturación para

que instrucciones y datos se batan en duelo por los recursos. La Shadow Tag VSC

logró un 3.7 % de mejora en el IPC, una reducción media en la tasa de fallos del

13 % y una reducción en el consumo de potencia de la jerarqúıa de memoria del

10 %, con respecto a un diseño caché separado para instrucciones y datos. La Global

Selector VSC obtuvo un 3.2 % de mejora en el IPC y una reducción media en la tasa

de fallos del 11 %, necesitando sólo 4 bits de almacenamiento adicional, mientras

que redujo el consumo de potencia en un 8 %. Además, ambos diseños demostraron

un buen desempeño en entornos multinúcleo. Aśı, la Shadow Tag VSC y la Global

Selector VSC mejoraron una configuración base con 4 procesadores en términos de

productividad en un 4.5 % y un 3.7 % de media, respectivamente.

Más adelante esta Tesis se centra en LLCs compartidas, donde pueden encon-

trarse también los comportamientos analizados previamente. La Thread-Aware Bi-

modal Set Balancing Cache (TABSBC) mide el nivel de presión que cada aplicación

ejerce en cada conjunto de la caché utilizando el Set Saturation Level. Este diseño

incluye una nueva poĺıtica de inserción, llamada BIP-C, espećıficamente diseñada

para reducir problemas de capacidad en cachés compartidas. Esta poĺıtica supone

una mejora considerable con respecto a BIP [53] en estas cachés, puesto que protege

a las ĺıneas de ser desalojadas debido a accesos de otros procesadores. Cuando la

TABSBC estima que una aplicación está experimentando un mal comportamiento

xiii

caché, trata en un primer momento de desplazar las ĺıneas de la aplicación proble-

mática hacia conjuntos caché con espacio libre aplicando técnicas basadas en la Set

Balancing Cache. Cuando esto no es posible o suficiente, recurre a BIP-C para la

aplicación y el conjunto caché en cuestión. La TABSBC proporciona de un modo

sensato y coordinado un mecanismo capaz de aplicar sus poĺıticas subyacentes con-

siderando los distintos hilos que comparten los recursos. A pesar de su naturaleza

de grano fino su coste de almacenamiento es muy razonable, sobre un 1 % o inclu-

so menos en configuraciones representativas. Una extensa experimentación usando

una amplia gama de benchmarks indica que la TABSBC consigue consistentemente

los mejores resultados en comparación con propuestas recientes. Esto se debe a dos

caracteŕısticas principales que la distinguen de otras propuestas. La primera es la

capacidad de aplicar poĺıticas de grano fino en contraposición a las poĺıticas globa-

les que usan otras técnicas. La segunda es la coordinación de mecanismos capaces

de reducir fallos de conflicto y de capacidad. Este último detalle es ignorado por

otras propuestas espećıficamente diseñadas para cachés compartidas. Por estas mis-

mas razones, la TABSBC sigue manteniendo sus buenos resultados a medida que se

aumenta el número de procesadores que comparten la caché.

Finalmente, esta Tesis reafirma el hecho de que un modo habitual de incrementar

el rendimiento en CMPs con LLCs privadas es proporcionar un mecanismo que ha-

bilite la compartición de recursos mediante el desplazamiento de ĺıneas. Proponemos

el Adaptive Set-Granular Cooperative Caching (ASCC) [62], un diseño capaz de de-

terminar el estado de cada conjunto caché y aplicar las poĺıticas más adecuadas

a cada uno, en comparación con otros diseños que aplican poĺıticas globalmente.

Este diseño realiza desplazamientos entre conjuntos de distintas cachés y aplica la

poĺıtica de inserción más conveniente a cada conjunto si los desplazamientos no son

suficientes para reducir los fallos de capacidad, apoyándose en el SSL. Proponemos

una nueva poĺıtica de inserción, SABIP, espećıficamente diseñada para abordar pro-

blemas de capacidad en entornos donde se realizan desplazamientos entre cachés.

Además, introducimos un estado neutral para conjuntos individuales dentro del

mecanismo de desplazamientos, de forma que éstos no participan ni como emisores

ni como receptores de ĺıneas en los mismos. Los beneficios de mantener partes de

la caché en este estado, es decir, sin tomar parte en el mecanismo de desplazamien-

tos, han demostrado ser cuantiosos. ASCC logró una mejora en el rendimiento del

6.4 % y del 5.7 % ejecutando 2 y 4 aplicaciones, respectivamente, lo que se tradujo

xiv

en una reducción de la latencia media de memoria del 18 % y 21 %. Su coste de

almacenamiento ha sido estimado en un 0.17 % con respecto a la configuración base.

Además, esta Tesis propone la idea de ajustar dinámicamente la granularidad a la

cual se determina el estado de la caché y se aplican las distintas poĺıticas dependien-

do de su comportamiento. El Adaptive Variable-Granularity Cooperative Caching

(AVGCC) es el primer diseño capaz de adaptar la granularidad dependiendo del

comportamiento de la caché para aplicar las poĺıticas del ASCC. En un sistema con

4 procesadores, ejecutando cargas multiprogramadas, AVGCC consiguió una mejora

en el rendimiento del 7.8 % con respecto al sistema base. Además, superó con creces

el rendimiento de otros diseños suponiendo un coste de almacenamiento adicional

mı́nimo; menos de un 0.2 %. También es importante destacar la reducción en la laten-

cia media a memoria, 27 %, y en el consumo de potencia obtenido; menor en un 29 %

al de una configuración tradicional. Cabe destacar también que se obtuvieron resul-

tados similares utilizando cargas multihilo. Finalmente, esta Tesis demuestra que

mejorar un diseño dotándolo de soporte para calidad de servicio, en inglés Quali-

ty of Service, no siempre implica una pérdida en el rendimiento medio. Un diseño

extendido del AVGCC, denominado QoS-Aware AVGCC, obtuvo una mejora en el

rendimiento de un 8.1 % a pesar de suponer un coste de almacenamiento adicional

casi insignificante; 0.35 %.

Contribuciones

Las principales contribuciones de esta Tesis son:

1. Una nueva métrica sencilla y con un coste reducido, llamada Set Saturation

Level o SSL, capaz de medir el grado en el que un conjunto de la caché es capaz

de alojar su conjunto de trabajo particular y aśı detectar tanto desequilibrios

entre conjuntos como problemas globales de capacidad.

2. Un novedoso diseño caché, llamado Set Balancing Cache o SBC, capaz de

reducir fallos de conflicto mediante la creación de asociaciones entre conjuntos

y de controlar el desplazamiento de ĺıneas entre los mismos. Este diseño ha

sido evaluado con éxito, superando a las técnicas más recientes en su campo.

xv

Simulaciones exhaustivas han probado la capacidad de este diseño en distintos

entornos además de su versatilidad.

3. Una combinación coordinada de diseños capaz de reducir fallos de conflicto

y de capacidad al mismo tiempo. La Bimodal Set Balancing Cache o BSBC,

la cual extiende las capacidades de la SBC para reducir fallos de conflicto

incluyendo una poĺıtica de inserción espećıficamente diseñada para reducir

fallos de capacidad, ha sido implementada y evaluada exitosamente.

4. Una nueva técnica para equilibrar la cantidad de espacio destinada a instruc-

ciones y datos en cachés de primer nivel: la Virtually Split Cache o VSC. Esta

técnica combina la capacidad de compartición de recursos de aproximaciones

unificadas con el alto ancho de banda y el paralelismo que proporciona una

configuración separada.

5. Un nuevo entorno, la Thread-Aware Bimodal Set Balancing Cache o TABSBC,

dotado de soporte para tener en cuenta el comportamiento de los distintos

hilos que comparten recursos y que coordina de un modo razonado estrategias

orientadas a reducir fallos de conflicto y de capacidad para cachés compartidas

en procesadores multinúcleo.

6. Finalmente, esta Tesis introduce un nuevo esquema de cachés cooperativas

para jerarqúıas de memoria privadas en CMP: el Adaptive Set-Granular Co-

operative Caching o ASCC. Esta técnica combina un mecanismo de desplaza-

miento de ĺıneas con la aplicación de una poĺıtica de inserción espećıficamente

diseñada para tratar con problemas de capacidad utilizando el SSL para con-

trolar ambos comportamientos. Se propone también un nuevo estado para

los conjuntos en el mecanismo de desplazamiento de ĺıneas, el estado neutral,

que impide que un conjunto pueda participar en los desplazamientos si esto

puede resultar perjudicial. Además, se extiende esta técnica para dotarla de un

mecanismo capaz de establecer la granularidad más adecuada a la cual se apli-

can las distintas poĺıticas caché: el Adaptive Variable-Granularity Cooperative

Caching o AVGCC.

Publicaciones derivadas de la Tesis

Revistas

D. Rolán, B. B. Fraguela, and R. Doallo. Set Saturation Level-Based Cache

Management. In IEEE Transactions on Architecture and Code Optimization,

2012 (En revisión).

D. Rolán, B. B. Fraguela, and R. Doallo. Virtually Split Cache: An Effi-

cient Mechanism to Distribute Instructions and Data in First-Level Caches.

In IEEE Transactions on Architecture and Code Optimization, 2012 (En re-

visión).

Conferencias internacionales

D. Rolán, B. B. Fraguela, and R. Doallo. Adaptive line placement with the

Set Balancing Cache. In Proceedings of the 42nd IEEE/ACM International

Symposium on Microarchitecture (MICRO 2009), pages 529–540, Diciembre

2009.

D. Rolán, B. B. Fraguela, and R. Doallo. Reducing capacity and conflict

misses using set saturation levels. In Proceedings of the 17th International

Conference on High Performance Computing (HiPC 2010), Diciembre 2010.

D. Rolán, B. B. Fraguela, and R. Doallo. Adaptive Set-Granular Coopera-

xvii

xviii

tive Caching. In Proceedings of the 18th International Symposium on High

Performance Computer Architecture (HPCA 2012), pages 213–224, Febrero

2012.

Conferencias nacionales

D. Rolán, B. B. Fraguela, and R. Doallo. Caché con Reequilibrio de Conjuntos.

In Actas de las XX Jornadas de Paralelismo, pages 253–258, Septiembre 2009.

A Adolfo Rolán Barja, meu avó,

para o que sempre serei máis ca un “enxeñeiro”.

Acknowledgments

It is embarrassing to admit that this Thesis 1 starts as lax as its cover page

states. Although it lists my name as the single author, it is fair to say that the

content and ideas in the following pages arose from the effort of many people, and

to them, without exception, I owe my thanks.

My advisors gave me the opportunity and the confidence I needed to undertake

this task and did their best to teach me how to get involved in research these past

several years. Thanks to Ramón, also for guiding this work with all his experi-

ence, and Basilio, whose ability to see problems right through solutions is simply

commendable.

Next and foremost, there is no word or sentence good enough to give thanks

to my loving parents, who long before the University taught me how to fulfill any

single wish by means of willpower, persistence and a bit of talent; and to the rest of

my family, especially to my siblings. Their unflagging advocacy and optimism have

sustained me all along these years.

Many thanks to all the people who belong to the close circle that surrounds the

GAC group (specially the Lab 0.2 guys and Guille, who has provided me with the

LATEX template for this Thesis, among other things). They have graciously shared

their time and thoughts with me either in dinner parties, coffee breaks and trips.

I am also unspeakably thankful to those people who have warmly welcome me

wherever I have been through these years, especially Jose Renau and the guys from

the MASC group and their close friends (Ehsan, Elnaz, Amir, Rigo...) in California,

and Marcelo and the CArD group staff back in Edinburgh.

I do not want to forget those people who enabled me to stop thinking about this

work, even just for a while. Thanks to my school of languages classmates (especially

1This work was supported by the Xunta de Galicia under projects INCITE08PXIB105161PR
and “Consolidación e Estructuración de Unidades de Investigación Competitivas” 3/2006 and
2010/06 and the MICINN, cofunded by the Fondo Social Europeo, under grants with references
TIN2007-67536-C03-0 and TIN2010-16735. The author is also member of the HiPEAC network.

xxii

Héctor and Ali) and teachers, friends all, and to my outdoor and indoor soccer

mates. Their support and friendship have been invaluable.

Last but not least, thanks to you, Raquel, for many times of steadfast friendship

and affection. Let me humbly dedicate these ending lines to you in an attempt to

begin another wonderful journey ;)

Dyer.

“Research is to see what everybody else has seen,

and to think what nobody else has thought”

Albert Szent-Gyorgyi

Abstract

Efficient memory hierarchy design is critical due to the large difference between

the speed of the processors and the memory. In this context, cache memories play a

crucial role bridging this gap. Cache management has become even more significant

due to the appearance of chip multiprocessors (CMPs), which imply larger memory

bandwidth requirements and greater working sets of many emerging applications,

and which also need a fair and efficient distribution of cache resources between the

cores in a single chip.

This dissertation aims to analyze some of the problems commonly found in mod-

ern caches and to propose cost-effective solutions to improve their performance.

Most of the approaches proposed in this Thesis reduce cache miss rates by taking

advantage of the different levels of demand cache sets may experience. This way,

lines are placed in underutilized cache blocks of other cache sets if they are likely to

be reused in the near future and there is no enough space in their native cache set.

When this does not suffice, this dissertation proposes to modify in a coordinated

way the insertion policies of oversubscribed sets. Hence, our proposals retain the

most useful part of the working set in the cache while discarding temporary data as

soon as possible. These ideas, initially developed in the context of last-level caches

(LLCs) in single core systems, are successfully adapted in this Thesis to first-level

caches and multicore systems. Regarding first-level caches, a novel design that al-

lows to dynamically allocate banks to the instruction or the data cache depending

on their degree of pressure is presented. As for multicore systems, our designs are

firstly provided with thread-awareness in shared caches in order to give a particular

treatment to each stream of requests depending on its owner. Finally, we explore the

sharing of resources by means of the spilling of lines among private LLCs in CMPs

using several innovative features such as a neutral state, which prevents caches from

taking part in the spilling mechanism if this could be harmful, variable granularities

xxvi

for the management of the caches, or the coordinated management of the cache

insertion policy. Throughout this process we have used a simple and cost-effective

metric to track the state of each cache set called Set Saturation Level (SSL). Finally,

it is worthy to point out that our approaches are very competitive and often out-

perform many of the most recent techniques in the field, despite they imply really

small storage and power consumption overheads.

Contents

1. Introduction 1

1.1. Cache Memories: Basics . 2

1.2. Related Work . 4

1.2.1. Related Work in Single Core Environments 5

1.2.1.1. Reducing Conflict Misses 5

1.2.1.2. Reducing Capacity Misses 7

1.2.2. Related Work in Multicore Platforms 8

1.2.2.1. Cache Memory Hierarchies with Shared Levels 8

1.2.2.2. Cache Memory Hierarchies with Private Levels . . . 9

1.3. The Problem . 10

1.4. Thesis Statement . 14

1.5. Contributions . 14

1.6. Overview of the Contents . 15

2. Set Balancing Cache 17

2.1. Introduction . 17

2.2. Background and Motivation . 18

xxvii

xxviii CONTENTS

2.3. Static Set Balancing Cache . 20

2.3.1. Association algorithm . 21

2.3.2. Displacement algorithm . 22

2.3.3. Search algorithm . 23

2.3.4. Discussion . 24

2.4. Dynamic Set Balancing Cache . 25

2.4.1. Association algorithm . 26

2.4.2. Displacement algorithm . 28

2.4.3. Search algorithm . 28

2.4.4. Disassociation algorithm . 29

2.4.5. Discussion . 29

2.5. Simulation environment . 30

2.6. Experimental evaluation . 33

2.6.1. Average memory latency and power consumption 36

2.7. Cost . 37

2.8. Analysis . 41

2.8.1. Impact of varying cache parameters 41

2.8.2. Victim cache comparison . 42

2.8.3. SBC behavior . 43

2.8.4. Destination Set Selector efficiency 44

2.9. Summary . 45

3. Bimodal Set Balancing Cache 47

3.1. Introduction . 47

CONTENTS xxix

3.2. Background and Motivation . 48

3.3. Bimodal Set Balancing Cache . 51

3.4. Simulation environment . 54

3.5. Experimental evaluation . 54

3.5.1. Average memory latency and power consumption 60

3.6. Cost . 60

3.7. Analysis . 62

3.7.1. Impact of varying cache parameters 62

3.7.2. BSBC behavior . 63

3.7.3. Multicore experiments . 65

3.8. Summary . 69

4. Virtually Split Cache 71

4.1. Introduction . 71

4.2. Background and Motivation . 72

4.3. Virtually Split Cache . 75

4.3.1. Shadow Tag VSC . 77

4.3.2. Global Selector VSC . 78

4.4. Simulation environment . 79

4.5. Experimental evaluation . 80

4.5.1. Average memory latency and power consumption 82

4.6. Cost . 83

4.7. Analysis . 84

4.7.1. VSC behavior . 84

xxx CONTENTS

4.7.2. Multicore experiments . 85

4.8. Summary . 87

5. Thread-Aware Bimodal Set Balancing Cache 89

5.1. Introduction . 89

5.2. Background and Motivation . 90

5.3. Thread-Aware Bimodal Set Balancing Cache 92

5.3.1. Unbalances among sets: Conflict Misses 92

5.3.2. Lack of space in the cache: Capacity Misses 93

5.3.3. BIP-C . 95

5.3.4. Computing Set Saturation Levels 96

5.3.5. Interaction between the Insertion and the Placement Policy . 97

5.3.6. Contribution of each policy to TABSBC performance 100

5.4. Simulation environment . 102

5.4.1. Metrics . 102

5.5. Experimental evaluation . 103

5.5.1. Average memory latency and power consumption 107

5.6. Cost . 107

5.7. Analysis . 109

5.7.1. Scalability analysis . 109

5.7.2. Interaction with Prefetching 112

5.8. Summary . 112

6. Adaptive Set-Granular Cooperative Caching 115

6.1. Introduction . 115

CONTENTS xxxi

6.2. Background and Motivation . 116

6.3. Adaptive Set-Granular Cooperative Caching 120

6.3.1. Spilling-Aware BIP . 122

6.3.2. Design breakdown . 123

6.4. Adaptive Variable-Granularity Cooperative Caching 125

6.4.1. Hardware description . 127

6.5. Simulation environment . 128

6.6. Experimental evaluation . 129

6.6.1. Average memory latency and power consumption 134

6.7. QoS-Aware AVGCC . 134

6.8. Cost . 137

6.8.1. Limiting the maximum number of counters 139

6.9. Analysis . 139

6.9.1. Impact of varying cache parameters 139

6.9.2. Multithreaded experiments . 140

6.9.3. Interaction with Prefetching 141

6.9.4. AVGCC behavior . 142

6.10. Summary . 142

7. Conclusions and Future Work 145

7.1. Conclusions . 145

7.2. Future Work . 150

A. Appendix 153

A.1. SBC additional experiments . 153

xxxii CONTENTS

A.1.1. Master-Slave SBC . 153

A.1.2. DSBC with Extra Tags . 154

A.2. TABSBC additional experiments . 155

A.2.1. TABSBC using the RRIP replacement policy 155

References 159

List of Tables

2.1. Baseline configuration . 32

2.2. Benchmarks characterization . 32

2.3. Storage cost of SBC . 40

2.4. Area overhead of SBC . 40

2.5. Cost-benefit analysis of SBC as a function of the cache size 42

2.6. Cost-benefit analysis of SBC as a function of the line size 42

2.7. Cost-benefit analysis of SBC as a function of the associativity 42

3.1. Extended benchmarks . 55

3.2. Storage cost of BSBC . 62

3.3. Cost-benefit analysis of BSBC as a function of the cache size. 63

3.4. Cost-benefit analysis of BSBC as a function of the line size. 63

3.5. Cost-benefit analysis of BSBC as a function of the associativity. 63

3.6. Multiprogrammed workloads characterization (2MB 8-ways shared

cache) . 66

4.1. Modern baseline configuration . 81

4.2. Benchmarks characterization in both instruction and data first-level

caches . 81

xxxiii

xxxiv LIST OF TABLES

4.3. Storage cost of VSC . 83

5.1. Multiprogrammed workloads characterization (4MB 16-ways shared

LLC) . 103

5.2. Storage cost of TABSBC . 109

5.3. Performance of TABSBC varying the cache size 110

5.4. Performance and miss rate reduction running four cores in a shared

LLC working under different policies 111

6.1. Study of ASCC varying its granularity 125

6.2. Architecture of the CMP with private LLCs. 128

6.3. Benchmarks characterization. 128

6.4. ASCC, AVGCC and QoS-Aware AVGCC storage cost 138

6.5. Study limiting the maximum number of counters in AVGCC 138

6.6. Cost-benefit analysis of AVGCC as a function of the cache size. . . . 140

6.7. Cost-benefit analysis of AVGCC as the associativity varies. 140

6.8. Cost-benefit analysis of AVGCC varying the line size. 140

A.1. IPC improvement of the Master-Slave SBC over the two-level baseline

configuration. 154

A.2. IPC improvement of the Master-Slave SBC over the three-level base-

line configuration. 154

A.3. IPC improvement of DSBC with Extra Tags over the two-level base-

line configuration. 156

A.4. IPC improvement of DSBC with Extra Tags over the three-level base-

line configuration. 156

A.5. Performance improvement of TABSBC with RRIP running two cores. 157

LIST OF TABLES xxxv

A.6. Miss rate reduction of TABSBC with RRIP running two cores. 157

A.7. Performance improvement of TABSBC with RRIP running four cores. 157

A.8. Miss rate reduction of TABSBC with RRIP running four cores. . . . 157

List of Figures

1.1. Shared vs. private cache configuration 4

2.1. Set Saturation Level analysis of four benchmarks 20

2.2. Example of operation of SSBC . 24

2.3. Example of operation of DSBC . 30

2.4. Set Saturation Level analysis of the 471.omnetpp benchmark 31

2.5. Distribution of the accesses using SBC 34

2.6. SBC performance analysis . 34

2.7. Performance of SBC compared with recent proposals 36

2.8. Average access time reduction using SBC 38

2.9. Power analysis of SBC using two levels of cache 38

2.10. Power analysis of SBC using three levels of cache 39

2.11. Performance of SBC compared with victim caches 43

2.12. Analysis of the Destination Set Selector efficiency 45

3.1. Comparison between DIP and Local DIP 53

3.2. IPC improvement of BSBC in the two-level configuration 56

3.3. IPC improvement of BSBC in the three-level configuration 56

xxxvii

xxxviii LIST OF FIGURES

3.4. Breakdown of the accesses in BSBC 57

3.5. Performance comparison of BSBC with recent proposals 59

3.6. Miss rate reduction comparison of BSBC with recent proposals 60

3.7. Power analysis of BSBC using two levels of cache 61

3.8. Power analysis of BSBC using three levels of cache 61

3.9. Breakdown of the new insertions in DIP and BSBC 65

3.10. Throughput improvement of BSBC running 2 cores 68

3.11. Miss rate reduction of BSBC running 2 cores 68

3.12. Weighted speedup and fairness of BSBC running 2 cores 68

3.13. Throughput improvement of BSBC running 4 cores 69

4.1. Analysis of SPEC benchmarks varying the number of ways allocated

for both instruction and data first-level caches 74

4.2. Way j in the tag-store of the Virtually Split Cache. 76

4.3. Virtually Split Cache general structure. 76

4.4. Shadow Tag VSC. 79

4.5. Global Selector VSC. 79

4.6. IPC improvement of VSC . 81

4.7. Miss rate reduction of VSC . 81

4.8. Average memory latency reduction of VSC 82

4.9. Power consumption reduction of VSC 83

4.10. Distribution of the number of banks allocated for instructions and

data using Shadow Tag VSC. 85

4.11. Performance improvement of VSC running 2 cores 86

4.12. Performance improvement of VSC running 4 cores 86

LIST OF FIGURES xxxix

5.1. Set Saturation Level analysis in a shared LLC 94

5.2. Example of operation of different insertion policies in a shared LLC . 95

5.3. Performance of different insertion policies in a shared LLC 96

5.4. TABSBC operation algorithm . 99

5.5. Contribution of each policy to TABSBC performance 101

5.6. Throughput improvement running two cores in a shared LLC 105

5.7. Weighted speedup and fairness improvement running two cores in a

shared LLC . 105

5.8. Miss rate reduction running two cores in a shared LLC 106

5.9. Power consumption reduction running two cores in a shared LLC . . 107

5.10. Power consumption reduction running four cores in a shared LLC . . 108

5.11. Storage overhead of TABSBC as a function of the number of cores . . 110

5.12. Performance running four cores in a shared LLC 111

6.1. Analysis of SPEC benchmarks varying the number of ways allocated . 118

6.2. Study of the sets as they allocate more ways 119

6.3. Example of operation of different insertion policies 123

6.4. Performance of global and local policies 124

6.5. Performance of policies with different states for the sets 124

6.6. Different levels of granularity. 126

6.7. Performance analysis running two applications 130

6.8. Fairness analysis running two applications 130

6.9. Performance and fairness analysis running four applications 131

6.10. Percentage of throughput improvement for ECC, DSR, DSR+DIP,

ASCC and AVGCC running two applications over the baseline. 132

xl LIST OF FIGURES

6.11. Percentage of throughput improvement for ECC, DSR, DSR+DIP,

ASCC and AVGCC running four applications over the baseline. . . . 132

6.12. Average memory latency study using 2 cores 133

6.13. Average memory latency study using 4 cores 133

6.14. Power consumption of ASCC and AVGCC using 2 cores 135

6.15. Power consumption of ASCC and AVGCC using 4 cores 135

6.16. QoS-Aware AVGCC performance using 2 and 4 cores 136

6.17. Multithreaded experiments . 141

Chapter 1

Introduction

For many years, the memory hierarchy has been one of the main system perfor-

mance bottlenecks. The lower the accesses are satisfied in this hierarchy, the more

cycles and units of energy are consumed. Therefore, the efficiency of the memory

hierarchy strongly depends on satisfying memory requests from the on-chip caches.

This continues to be valid nowadays. In fact, the recent appearance of chip multi-

processors (CMPs) implies more pressure on the memory hierarchy and the number

of cores that must be served is expected to increase rapidly, becoming thus even

more important to avoid off-chip misses. Future last-level caches (LLCs) are ex-

pected to be larger and to occupy greater portions of the die area, which potentially

means higher latencies and power consumption, depending on the distance trav-

eled. Also, caches, and LLCs in particular, may be configured either as private to a

thread or shared by multiple threads. As a result, forthcoming cache design strate-

gies must undertake new challenges in order to adapt to multicore platforms and

parallel workloads of many emerging applications. This way, cache policies should

now take into account in their design the interaction among threads as well as larger

and non-uniform latencies and energy for data transfers inside the system.

This chapter covers the different cache organizations and configurations up to the

present along with cache memory basics, followed by a brief description of the most

representative work related to the exploration of new cache management policies.

The problem this Thesis deals with and the statement it proposes are discussed

next. Finally, the main contributions of this dissertation and a brief outline of the

1

2 Chapter 1. Introduction

contents found in it conclude this chapter.

1.1. Cache Memories: Basics

The concept of CPU cache was firstly introduced in the mid sixties [80], as a way

of bridging the gap between processor and main memory speeds. Cache memories

can be organized as direct-mapped, set-associative or fully-associative, depending

on how many places one line can be mapped to, and their operation is endorsed

by the principle of locality of references. This principle advocates that recently

referenced data or instructions are likely to be referenced again in the near future,

principle of temporal locality, and the same happens with the items located in nearby

memory locations, principle of spatial locality. Smith [66] defined the concept of

cache memory evaluating its performance as a function of its basic parameters: cache

size, associativity and line size. Hill [20] classified cache misses into the traditional

3C model: compulsory or cold misses, those corresponding to the number of cache

lines in the working set, conflict misses, which appear when the cache organization

is not fully-associative, and, finally, capacity misses, which occur when the number

of lines in the working set is greater than the number of lines that the cache can

accommodate. Cache resources are typically adjusted following the replacement

policy. The replacement process involves the following three primary policies:

Victim Selection Policy: This policy selects a victim line to be evicted in

order to make room for the line requested in a cache miss.

Insertion Policy: It decides which is the eviction priority within a set that

is assigned to the new line inserted due to a cache miss.

Promotion Policy: This policy decides how the eviction priority should be

modified when a hit occurs.

Current caches usually apply the Least Recently Used (LRU) replacement policy,

or some kind of variation [68]. This policy requires the maintenance of a recency

stack for each set to indicate the ordering of the last access to each block in that

set, while it inserts new lines and always promotes the last accessed line to the Most

1.1 Cache Memories: Basics 3

Recently Used (MRU) position, which is the one with the highest priority in the

cache, i.e., the less likely to be evicted.

Moreover, cache memories can accommodate instructions, data or both, in which

case they are known as unified caches. Instructions are mainly read-only, while data

can be read or written, thus, caches must support these two essential operations.

Caches can apply two different write policies, namely write-trough, if every single

write operation in the upper levels is propagated to the lower ones, or write-back,

if this is done only when a dirty line is evicted. Another important feature of the

cache memory hierarchy is the inclusivity of its levels. Those memory hierarchies

that are inclusive force every lower level in the hierarchy to accommodate all lines

in the upper ones, while exclusive ones are not that restrictive in order to increase

the effective capacity of the total memory hierarchy. The inclusivity of each level

impacts its main underlying policies, namely write and replacement policies, as well

as the coherence protocol.

Cache memories can also be classified according to other characteristics. For

example, depending on their access time they can belong to one of two main groups,

namely Uniform Cache Access (UCA) or Non-Uniform Cache Access (NUCA). Until

relatively recently, processors used to include only cache structures able to feed

them with data in a fixed time regardless of the line being accessed. That is, the

access latency of these caches was fixed to guarantee the longest possible delay for

any line. This way, the issue logic is simplified, especially in the first level of the

cache memory hierarchy since the processor schedules instructions based on its hit

latency. Nevertheless, as caches become larger and are composed of many more

banks, it is not sensible to force every cache access to incur the delay penalty of

accessing the furthest bank in the cache. By applying some modifications to the

traditional structures, such as allowing variable access times, cache memories can

support non-uniform accesses [40]. Actually, many of the cache organizations that

will be discussed further in this chapter are examples of NUCA architectures.

Also, CMPs have caches that can be configured as either shared among several

cores or private to each one of them. Figure 1.1 shows both a private (a) and a

shared (b) configuration for the L2 cache in a 4-core CMP. First-level caches are not

usually shared, since every single core needs to access them almost in every cycle.

Selecting either a private or a shared LLC is one of the open dilemmas in computer

4 Chapter 1. Introduction

L2
CACHE

CORE

I$ D$

L2
CACHE

CORE

I$ D$

L2
CACHE

CORE

I$ D$

L2
CACHE

CORE

I$ D$

Simple Network

To Memory

CORE
I$ D$

L2
CACHE

CORE
I$ D$

L2
CACHE

CORE
I$ D$

L2
CACHE

CORE
I$ D$

L2
CACHE

High Bandwidth Network

(a) Private Last-Level Caches. (b) Shared Last-Level Cache.

Figure 1.1: Shared vs. private cache configuration

architecture. Private configurations provide isolation among applications, simpler

optimizations and lower average latencies than shared approaches, whereas they

mean low effective capacity both locally to each core, since their size is fixed at design

time, and globally to the whole system, due to data replication. On the other hand,

shared configurations automatically distribute resources and provide higher effective

capacity than private approaches, but they suffer due to the interaction between

threads and need high average latencies. Also, private configurations rely on more

complex coherence protocols while shared LLCs may require huge interconnection

networks.

1.2. Related Work

At the inception of cache memories, Belady evaluated an ideal cache scheme [5]

in order to minimize the number of cache misses. Although this proposal is not

feasible nowadays, as it relies on future knowledge of the stream of references, the

study showed that there was room for improvement over the traditional cache design.

Since then, many proposals have appeared in order to increase cache performance in

both single and multicore environments. This section describes some of this work.

The bibliography that is more strongly connected with the techniques proposed

1.2 Related Work 5

in this Thesis, and the problems they deal with, will be reviewed in more detail in

the corresponding chapters.

1.2.1. Related Work in Single Core Environments

Research efforts were first addressed to increase performance in first-level caches,

which are usually small-sized, have low degrees of associativity and determine the cy-

cle time of the processor. These works focused on adding expensive hardware struc-

tures, like prefetchers [14][32][50] to reduce compulsory misses, on experimenting

with different cache organizations [2][6], on improving cache management [16][29][44]

or on exploiting memory level parallelism [41]. As the cache size, associativity and

number of levels in the memory hierarchy increased, efforts were aimed at reducing

the number of cache misses by applying simpler cache policies, which usually sought

to keep more accurately as much as possible of the working set in the cache. The

idea underlying most proposals to improve the capability of the caches to keep the

working set is to increase the number of possible places where a memory block can

be placed with respect to the standard design, that is, increasing its effective ca-

pacity. The most representative related work that focuses on reducing conflict and

capacity misses is described next.

1.2.1.1. Reducing Conflict Misses

The non-uniformity that memory references exhibit in general purpose appli-

cations creates an unbalanced demand across the cache sets, resulting in conflict

misses. The impossibility for some cache sets to hold their working set has been

addressed by victim caches [34], which simply store the latest lines evicted from the

cache. This idea has been later refined with heuristics to decide which lines to store

in the victim cache. For example, [22] takes its decisions based on reload intervals,

while [3] considers the frequency with which each line appears in the miss stream.

Alternative indexing functions [38][65] that succeed at achieving a more uniform

distribution of the references across the cache have been suggested.

In general, the smaller the associativity of the cache, the greater the imbalance in

the demand on the individual sets of the cache. Thus it was in the context of direct-

6 Chapter 1. Introduction

mapped caches where the first approaches of this kind appeared. Pseudo-associative

caches belong to this family of proposals. Initially they provided the possibility

of placing the blocks in a second associated cache line, providing a performance

similar to that of 2-way caches [2][6], but they were also generalized to provide

larger associativities [87].

The adaptive group-associative cache (AGAC) [51] tries to detect underutilized

cache frames in direct-mapped caches in order to retain in them some of the lines

that are to be replaced. AGAC records the location of each line that has been

displaced from its direct-mapped position in a table, which is accessed in parallel

with the tag-storage.

The Indirect Index Cache (IIC) [18] seeks maximum flexibility in the placement

of memory blocks in the cache. Its tag-store entries keep pointers so that any tag-

entry can be associated to any data-entry.

The NuRAPID cache [10] provides a flexible placement of the data-entries in the

data array in order to reduce average access latency, allowing the most recently used

lines to be in the fastest subarrays in the cache.

The B-Cache [86] tries to reduce conflict misses balancing the accesses to the

sets of first-level direct-mapped caches by increasing the decoder length and incor-

porating programmable decoders and a replacement policy to the design.

The V-Way cache [55] adapts to the non-uniform distribution of the accesses on

the cache sets by allowing different cache sets to have a different number of lines

according to their demand.

More recently, Scavenger [3] has been proposed, which is exclusively oriented

to last-level caches and partitions the cache in two halves. One half is a standard

cache, while the other half is a large victim file organized as a direct-mapped hash

table with chaining, in order to provide full associativity. This approach also tackles

capacity misses to some extent, as it learns to retain the most frequently missing

blocks.

The Z-Cache [64] decouples the notion of ways and associativity. Ways represent

the number of tags that must be searched when looking for a cache line, while

associativity is referred as the number of blocks that could be evicted to make room

1.2 Related Work 7

for an incoming line. The Z-Cache keeps the number of ways small, but it has a

large associativity. It is based on a skewed-associative cache design [65], where each

way of the cache uses a different indexing (hashing) function.

1.2.1.2. Reducing Capacity Misses

The proposals we have just discussed emphasize the flexibility of placement of

lines in the cache to improve miss rates or access time. Other researchers have

focused on the modification of the replacement policy in order to keep the most

useful lines in the set where they belong. For example, several adaptive insertion

policies were proposed in [53], the Dynamic Insertion Policy (DIP) being the great-

est exponent. This technique uses set dueling, which devotes a few cache sets to

track the behavior of two insertion policies, namely the traditional MRU one and

the Bimodal Insertion Policy (BIP), and dynamically chooses the best one for the

rest of the sets. The BIP policy inserts the new lines most of the times in the LRU

position and only with a low probability in the MRU one in order to discard tem-

porary data and retain the most useful part of the working set in the cache. Other

techniques change the replacement policy taking into account not only recency, as

the traditional LRU policy does, but also frequency [45] or considering the impact

in performance of a certain cost parameter [29][72], like the latency needed to access

remote or local blocks in a NUCA architecture.

Pseudo-LIFO replacement policies [9] evict blocks from the upper part of a fill

stack, i.e., among the most recently inserted lines of the set. This contributes to

retain a large fraction of the working set in the cache.

More recently, DRRIP [28] chooses the most appropriate Re-Reference Interval

Prediction (RRIP) insertion policy for each application based on set dueling. It uses

multiple bits per line to track priorities at a fine granularity. A low value implies

that the line is expected to be re-referenced in the near future, and a high value

means that the line is likely to be accessed in the distant future.

In STEM [85] each set in the tag array is augmented with partial (hashed) tags

of recently evicted blocks. Saturating counters keep track of hits in these victim

tags and determine if the set should spill or receive blocks.

8 Chapter 1. Introduction

Furthermore, techniques which improve cache management by bypassing lines

which are not likely to be referenced if they are installed in the cache [16][30][31][39][77]

or by evicting earlier those lines that are predicted to be dead or that have less lo-

cality [35][39][81], have successfully proved to reduce capacity misses.

1.2.2. Related Work in Multicore Platforms

The increasing number of cores per chip has led to huge power consumptions,

which has translated into processors clocked at lower frequencies in order to save

energy. Despite that, the difference between memory and processor speeds has not

disappeared. This fact, along with the higher pressure that multicore processors

place on the memory system, makes it even more important to explore new cache

design strategies to minimize accesses to the lower levels of the memory hierarchy.

This way, novel approaches, many of which are not suitable for the traditional

multiprocessors, have been proposed to exploit the new capabilities of CMPs, focused

on the memory hierarchy. Many of them have adapted techniques originally designed

to work in single core environments to the shared and private levels in the cache

memory hierarchy of multicore systems. By using private Last-Level Caches (LLCs),

a system is able to provide the applications with isolation, low latency and minimum

bandwidth while easier design extensions are also allowed. Shared configurations

provide the system with the ability to share resources, adapting dynamically their

allocation depending on the demand of each core. It is also worthy to emphasize that

many processors may employ combinations of private and shared caches in different

levels of the memory hierarchy.

1.2.2.1. Cache Memory Hierarchies with Shared Levels

There have been many software [17][25] and hardware [8][12][54] proposals to

optimize the behavior of shared caches by partitioning their resources among the

applications that share them. Moreover, Zhang and Asanovic [88] propose a simple

mechanism to implement block replication without incurring much overhead for

coherence among replicas in the shared cache.

Adaptive Set Pinning (ASP) [70] reduces misses thanks to the ownership of each

1.2 Related Work 9

cache set by a processor, which is the only one that can insert new lines in it, the

other processors having to resort to a small processor owned private (POP) cache

partition.

Other approaches focus on adapting policies designed for private caches in single

core environments to shared caches. The Thread-Aware Dynamic Insertion Policy

(TADIP) [27] extends to shared caches the insertion policies introduced in [53] to

deal with capacity misses in private caches. TADIP can apply these policies in

isolation to each independent thread according to the benefit it can get from them,

measured by means of set dueling. The thread-aware TA-DRRIP [28] also chooses

the most appropriate Re-Reference Interval Prediction (RRIP) insertion policy for

each application based on set dueling. The Pseudo-LIFO policies [9] have also been

successfully evaluated in shared caches.

Furthermore, there are approaches like Promotion/Insertion Pseudo-Partitioning

(PIPP) [84], which combines pseudo-partitioning with new insertion and promotion

policies.

1.2.2.2. Cache Memory Hierarchies with Private Levels

Many of the approaches that have appeared in the past years for CMPs focused

on providing private levels with shared capacity. Some techniques use partitioning

in order to limit the amount of space for private and shared data while others try

to make a better usage of resources by spilling lines between caches, even existing

mixed approaches like the Elastic Cooperative Caching (ECC) [19]. ECC splits sets

in two different regions, a private one, to allocate lines evicted from the upper level,

and a shared region, to hold lines spilled by neighbor caches.

Regarding the designs that only rely on spills, Cooperative Caching (CC) [7]

spills lines to other caches instead of directly evicting them to main memory if they

are the only copy in the chip. Dynamic Spill-Receive [52] (DSR) labels each cache

as either spiller or receiver depending on a global counter per cache used by its set

dueling mechanism. This global counter is updated by all the caches in order to

determine whether the spillings are going to hurt receiver caches or not.

The Adaptive Placement Policy (APP) [63] scheme learns from the past cache

10 Chapter 1. Introduction

behavior to make a better decision on whether to place a newly fetched block in

order to convert many of the remote cache hits into local ones.

As for the partitioning-oriented approaches, Adaptive Selective Replication [4]

dynamically analyzes the workload behavior and adapts the degree of replication

on a per block basis to match the application requirements. In Cooperative Cache

Partitioning [8] resources are partitioned both in terms of time, giving different pri-

orities of execution to different partitions, and space, setting the size of the different

partitions depending on the application requirements.

Recently, the MorphCache [71] allows reconfiguration to form larger caches. De-

pending on an analysis of the working set requirements, slices of the lower levels of

the cache memory hierarchy are either merged to form a larger shared cache slice

or previously merged slices are split into smaller private slices. Thus, each cache

slice may either be a private cache or it may be a part of a larger cache. Merging is

triggered when there is unbalance in the usage of adjacent slices or if highly-utilized

slices are dealing with the same shared data.

1.3. The Problem

Cache memories play an essential role in the performance of single core systems

by bridging the gap between processor speed and main memory latency. Modern

processors include several cache levels with larger sizes and latencies the lower they

are located in the hierarchy. Their role is to retain the current working set closer

to the processor with different access costs depending on the level of locality of the

data. First-level caches are strongly restricted by their access time requirements

but current processors are able to hide most of their latency using out-of order

execution as well as miss overlapping techniques. On the other hand, the last levels

of the cache memory hierarchy are not so restricted by their access time, as the

processor does not schedule instructions based on this. Rather, their design focuses

on retaining the working set of the applications, the locality in these lower levels

being filtered by the upper levels. The main reason behind the emphasis on the

adaptation to the locality of the applications in these levels is that as requests travel

down in the memory hierarchy they require a greater number of cycles to be satisfied,

1.3 The Problem 11

so it becomes more difficult to hide the latency of last-level caches. In multicore

systems the importance of caches is even larger due to the growing number of cores

that share the bandwidth that the main memory can provide. In an attempt to

make a more efficient usage of their caches, the memory hierarchies of many chip

multiprocessors have LLCs shared by several cores. As a result, these LLCs can hold

both data private to each thread running in each core, as well as data shared among

several threads. Despite these emerging configurations, modern designs keep using

traditional policies to manage large and shared last-level caches, which often leads

to suboptimal behaviors that degrade the overall performance. For this reason, the

improvement of such designs in order to avoid their inefficiencies and to better adapt

them to these emerging architectures is an active area of research.

One of the most commonly observed behaviors is that memory references are

often not uniformly distributed across the sets of a set-associative cache, the most

common design nowadays [55]. As a result, at a given point during the execution

of a program there are usually sets whose working set is larger than their number

of lines (the associativity of the cache), while the situation in other sets is exactly

the opposite. The outcome of this is that some sets exhibit large local miss ratios

because they do not have the number of lines they need [26], while other sets achieve

good local miss ratios at the expense of a poor usage of their lines, because some or

many of them are actually not needed to keep the working set. Cache performance

can be substantially improved by associating these two kinds of sets in order to

balance their working sets. This dissertation poses a new cache design, called Set

Balancing Cache (SBC), aimed to reduce the number of conflict misses by displacing

lines from oversubscribed sets to underutilized ones.

In order to perform associations, the level to which a set is able to hold its

particular working set must be measured. The hardware overhead for tracking the

behavior of all sets using extra tags can be prohibitively expensive. Large and shared

caches typically have thousands of sets. This Thesis proposes a metric, named Set

Saturation Level (SSL), based on saturation counters instead. This dissertation

shows how this metric is able to track the behavior of a given set by leveraging the

principles of locality while it enables cost-effective cache optimizations.

Another problem commonly found in cache memories is thrashing, which occurs

when a stream of temporary references evicts lines with more locality from the cache,

12 Chapter 1. Introduction

keeping useless data and increasing the number of capacity misses. Some proposals

have appeared in the last years specifically oriented to reduce capacity misses. A

very good example is [53], which targets memory-intensive workloads with working

sets that do not fit in the cache for which the traditional LRU replacement policy

is counterproductive. It introduces a new insertion policy specifically designed to

deal with thrashing. In this dissertation the Bimodal Set Balancing Cache (BSBC),

a coordinated strategy to reduce both capacity and conflict misses by changing the

placement and insertion policies of the cache, is presented. This strategy uses the Set

Saturation Level to control both policies and their operation. As the SSL tracks the

behavior of an individual set in terms of its ability to hold its particular working set,

considering all SSLs in the cache provides an idea of the capacity the whole cache is

able to endure. This Thesis evaluates the goodness of the SSL not only as indicator of

unbalances between sets but also as a measure to detect global problems of capacity

in the cache. It also shows that the combination of several techniques, which were

devised to deal with different problems, without coordination can be harmful for the

overall performance. Furthermore, experiments in multicore environments highlight

the importance of treating different access streams, like those generated by several

threads sharing resources, in a different way in response to their specific behaviors.

The idea of applying different policies or limiting the allocation of resources to

the different access streams that a cache may experience is adaptable to first-level

traditional caches, where the two main streams are those due to instructions and

data. In this context, a key point of design commonly accepted nowadays is to split

first-level caches for both instructions and data instead of unifying them in a single

cache. Although that approach eases the pipeline design and requires less complex-

ity than a unified approach it also reduces the global hit rate. This Thesis proposes

a new technique, called Virtually Split Cache (VSC), which decides the amount

of space devoted to instructions and data with the purpose of optimizing perfor-

mance in first-level set-associative caches by dynamically adjusting the allocation of

resources depending on their particular demand.

The two previously mentioned sources of inefficiency, the non-uniform distribu-

tion of the memory accesses across the cache sets and thrashing, are also found in

the shared caches of CMPs. These caches also have different access streams due to

several threads that share the cache resources. This dissertation shows that standard

1.3 The Problem 13

management strategies for private caches, which are by nature thread-oblivious, of-

ten lead to suboptimal behaviors when applied to shared caches. A new design for

shared LLCs in multicore processors, called Thread-Aware Bimodal Set Balancing

Cache (TABSBC), based in the SBC insights to deal with conflict misses, with a

thread-aware mechanism as well as an insertion policy specifically oriented to reduce

the effects of thrashing, is also presented and evaluated.

Later, this dissertation provides a framework that adapts the knowledge gathered

in the previous steps of the Thesis to a common CMP with a private cache memory

hierarchy for each core. Choosing either a private or a shared configuration for

the last-level cache (LLC) is one of the key points of the design in CMPs. When

the LLC is shared among all the cores, it requires high bandwidth because every

single request by any upper cache needs to access the interconnection network.

Shared LLCs are usually distributed in tiles owned by different cores and, thus,

needing different latencies depending on where the requested line is found. As

the number of cores and cache banks increases, it becomes more difficult to hide

wire delays. Even worse, harmful applications can hurt the performance of other

concurrently executing applications. On the other hand, in private configurations,

each core is assigned a static portion of the LLC, which provides lower latency,

better scalability, isolation and makes the optimization of particular parameters,

like power consumption, easier, at the cost of depriving the system of the ability

of sharing underutilized resources. CMPs provide room for improving performance

by managing the allocation of resources to the multiple different applications that

can be executed concurrently, as some of them can be short of cache resources while

others can offer underutilized space. Therefore, it is interesting to track the global

availability of resources and select the best policies to allocate them appropriately.

Several proposals have been presented in order to share resources in private con-

figurations by displacing or spilling lines from one cache to another [7][52]. This

Thesis proposes Adaptive Set-Granular Cooperative Caching (ASCC), which mea-

sures the degree of stress of each set and performs spills between spiller and potential

receiver sets, while it tackles capacity problems as well. Also, it adds a neutral state

to prevent sets from being either spillers or receivers when it could be harmful.

Furthermore, for some workloads, decisions work better when they are taken

globally, after tracking the state of the whole cache and applying policies uniformly,

14 Chapter 1. Introduction

while in other situations finer granularities, for example at a set level, provide the

best results. This Thesis shows the importance of applying different granularities

and introduces the Adaptive Variable-Granularity Cooperative Caching (AVGCC),

which dynamically adjusts the granularity for applying the ASCC policies.

Finally, it is worthy to emphasize that every single approach proposed in this

Thesis implies simple and feasible changes in the traditional cache memory operation

as well as negligible storage and power consumption overheads.

1.4. Thesis Statement

There is room for improvement in traditional cache designs in order to better

adapt to the particular characteristics of the different access streams that cache

memories may experience in both single and multicore environments, either for

private or shared configurations. Simple and cost-effective changes to cache man-

agement can substantially improve their performance.

1.5. Contributions

The main contributions of this Thesis are:

1. A simple and cost-effective metric, the Set Saturation Level or SSL, which

measures the degree to which a set is able to hold its particular working set,

has been proposed. It proved to be successful at detecting unbalances between

sets as well as global capacity problems.

2. A novel structure for cache memories aimed to reduce cache misses by manag-

ing associations among sets and controlling the displacement of lines between

them has been designed: the Set Balancing Cache or SBC. This design was

successfully evaluated, outperforming the most recent designs in the field. Sim-

ulation results have shown the goodness of our approach and its versatility in

the different environments tested.

1.6 Overview of the Contents 15

3. This Thesis shows that cache performance can be notably improved by tackling

conflict and capacity misses at the same time. The Bimodal Set Balancing

Cache or BSBC, which extends the SBC capabilities to reduce conflict misses

with an insertion policy specifically designed to deal with capacity misses, has

been successfully evaluated.

4. A new technique aimed to balance the amount of space devoted to instructions

and data for optimizing performance in first level set-associative caches: the

Virtually Split Cache or VSC. This technique combines the sharing of resources

typical of unified approaches with the high bandwidth and parallelism that

split configurations provide.

5. A new framework, the Thread-Aware Bimodal Set Balancing Cache or TAB-

SBC, that coordinates in a sensible way strategies to reduce conflict and ca-

pacity misses by means of a thread-aware mechanism designed for the shared

caches of chip multiprocessors (CMPs).

6. Finally, this Thesis introduces a new cooperative caching alternative in CMPs

with a private cache memory hierarchy for each core: the Adaptive Set-Granular

Cooperative Caching or ASCC. This design combines a spilling mechanism

with and insertion policy specifically designed to tackle capacity problems,

both policies being controlled by the SSL metric. A neutral state to prevent

sets from taking part in the spilling mechanism when it may not be beneficial

is also proposed. Furthermore, an extended design, the Adaptive Variable-

Granularity Cooperative Caching or AVGCC, able to use the most suitable

granularity to track the state of the cache and apply the best policies is pro-

posed.

1.6. Overview of the Contents

The Thesis is organized into seven chapters, this one included, whose contents

are summarized next.

Each one of the following five chapters is organized as follows: they include,

firstly, a brief introduction section to detail the background and motivation of each

16 Chapter 1. Introduction

approach, secondly, the description of each implementation and its corresponding

evaluation and, finally, a summary with the main ideas and results obtained.

Chapter 2 motivates and introduces the basics of the Set Balancing Cache (SBC)

as well as the Set Saturation Level (SSL) metric. In this chapter the SBC perfor-

mance and the SSL goodness are thoroughly evaluated in a single core environment.

Chapter 3 extends the SBC with support against thrashing by providing it with a

suitable insertion policy specifically designed to reduce capacity misses. This design,

called Bimodal Set Balancing Cache (BSBC), is evaluated in both private and shared

caches, concluding that it performs well on both although it is outperformed in

shared caches by techniques equipped with thread-aware mechanisms.

Chapter 4 adapts the concept of recognizing the different access streams gener-

ated by simultaneous running threads in shared caches to first-level traditional ones,

where the two main streams are due to instructions and data. This chapter intro-

duces the Virtually Split Cache (VSC), which is able to dynamically adjust cache

resources devoted to instructions and data depending on their particular demand.

Chapter 5 provides a coordinated mechanism with thread-aware support for

shared caches without implying performance losses: the Thread-Aware Bimodal

Set Balancing Cache (TABSBC).

Chapter 6 discusses a new cooperative caching implementation for chip mul-

tiprocessors with private last-level caches, the Adaptive Set-Granular Cooperative

Caching (ASCC), and an extended design able to apply the best granularity with

which the cache state should be tracked depending on the running application, the

Adaptive Variable-Granularity Cooperative Caching (AVGCC).

Finally, Chapter 7, is devoted to the main conclusions of the Thesis and directions

for future work.

Chapter 2

Set Balancing Cache

2.1. Introduction

Memory references are often not uniformly distributed across the sets of a set-

associative cache, the most common design nowadays [55]. As a result, at a given

point during the execution of a program there are usually sets whose working set is

larger than their number of lines (the associativity of the cache), while the situation

in other sets is exactly the opposite. The outcome of this is that some sets exhibit

large local miss ratios because they do not have the number of lines they need

[26], while other sets achieve relative good local miss ratios at the expense of a

poor usage of their lines, because some or many of them are actually not needed

to keep the working set. An intuitive answer to this problem is to increase the

associativity of the cache. Multiplying by n the associativity is equivalent to merging

n sets in a single one, joining not only all their lines, but also their corresponding

working sets. This allows to balance smaller working sets with larger ones, making

available previous underutilized lines for the latter, which results in smaller miss

rates. Unfortunately, increments in associativity impact negatively access latency

and power consumption (e.g. more tags have to be read and compared in each

access) as well as cache area, besides increasing the cost and complexity of the

replacement algorithm. Worse, progressive increments in the associativity provide

diminishing returns in miss rate reduction, as in general, the larger (and fewer) the

sets are, the more similar or balanced their working sets tend to be. This way, only

17

18 Chapter 2. Set Balancing Cache

restricted levels of associativity are found in current caches.

This chapter proposes an approach to associate cache sets whose working set

does not seem to fit in them with sets whose working set fits, enabling the former to

make use of the underutilized lines of the latter. Namely, this cache design, called Set

Balancing Cache or SBC, shifts lines from sets with high local miss rates to sets with

underutilized lines where they can be found later. This process is done by setting

the role of sets in the associations relying in a new cost-effective metric called Set

Saturation Level or SSL, which measures the degree to which a set is able to hold its

working set by means of a saturation counter per set. Notice that while an increase

in associativity equates to merging sets in an indiscriminate way, our approach only

exploits jointly the resources of several sets when it seems to be beneficial. Also,

increases in associativity cannot choose which sets to merge, while the SBC can be

implemented using either a static policy, which also preestablishes which sets can

be associated, or a dynamic one that allows to associate a set with any other one.

Thus, as we will see in the evaluation, the SBC achieves better performance than

equivalent increases in associativity while not bringing their inconveniences.

2.2. Background and Motivation

There have been several proposals to improve the architecture of caches to deal

with the problem of the non-uniform distribution of memory accesses across the

cache sets. For example, alternative indexing functions have been suggested [38][64][65],

but they do not attempt to identify underutilized lines or working sets that cannot

be retained successfully in the cache. The idea underlying most proposals to improve

the capability of the caches to keep the working set is the increase, with respect to

the standard design, of the number of available places where a memory block can

be placed. While most of them have been already introduced in Section 1.2.1.1, we

will discuss here the most related ones to our SBC, which will be further described

in the next section.

Pseudo-associative caches [2][6][87] perform searches line by line. This way, they

have search structures at the line level. Besides they do not provide mechanisms

to inhibit line displacements: whenever a cache line is occupied by a memory block

2.3 Static Set Balancing Cache 19

mapped to it and a second memory block of this kind is requested, there is an

automatic displacement to an associated cache line. Finally, all pseudo-associative

caches swap cache lines under non-first hits in order to place them back in their

major location according to the default mapping algorithm of the cache, so that

successive searches will find them in the first search.

The V-Way cache [55] duplicates the number of sets and tag-store entries, keeping

the same associativity and number of data lines. Data lines are assigned dynami-

cally to sets depending on the access pattern of the sets and a global replacement

algorithm on the data lines. Namely, the V-Way cache reassigns the less reused data

lines to sets with empty tag-store entries that suffer a miss, which is the origin of the

variability of the set sizes. When a set reaches its maximum size, it stops growing

and replacements take place under a typical replacement algorithm such as LRU.

The structure to allow any data line to be assigned to any tag-entry requires the

storage for forward and reverse pointers between the tag-store and the data-store

entries, besides the reuse counters used by the global replacement algorithm.

Scavenger [3] is exclusively oriented to last-level caches and partitions the cache

in two halves. One half is a standard cache, while the other half is a large victim

file (VF). The VF tries to retain the blocks that miss more often in the conven-

tional cache, which are identified by a skewed bloom filter based on the frequency

of appearance of each block in the sequence of misses. If a block evicted from the

standard cache is predicted by the filter to have more misses than the block with the

smaller priority in the VF, this latter block is replaced by the one evicted from the

standard cache. This policy requires a priority queue that maintains the priorities

of all the VF blocks. Accesses take place in parallel in both halves of the cache.

When a block is found in the VF, it is moved to the standard cache.

As we see, there is no previous work on tracking the individual state of each cache

set in order to detect unbalances in their demand with cost-effective metrics and,

with this information, performing displacements of lines between complementary

sets by setting associations when this could be beneficial.

20 Chapter 2. Set Balancing Cache

0 50 100 150 200
0

20

40

60

80

100

Gobmk

(%
)

0 20 40 60
0

20

40

60

80

100

Sjeng

Accesses

0 50 100 150 200
0

20

40

60

80

100

Omnetpp

0 100 200 300 400
0

20

40

60

80

100

Astar

High saturation

Medium saturation

Low saturation

Figure 2.1: Distribution of the sets with a high saturation level(black), medium saturation
level(gray) and low saturation level(white) in 445.gobmk, 458.sjeng, 471.omnetpp and
473.astar. Samples each 5 ∗ 105K accesses.

2.3. Static Set Balancing Cache

We seek to reduce the pressure on the cache sets that are unable to hold all the

lines in their working set, by displacing some of those lines to sets that seem to

have underutilized lines. These latter sets are those whose working set fits well in

them, giving place to small local miss rates. This idea requires in the first place a

mechanism to measure the degree to which a cache set is able to hold its working

set. This is the saturation level of the set and it is measured by means of a counter

with saturating arithmetic that is modified each time the set is accessed. If the

access results in a miss, the counter is increased, otherwise it is decreased. We will

refer to this counter as saturation counter.

The fact that different sets can experience very different levels of demand has

already been discussed in the bibliography [51][55]. This fact, which is the base for

our proposal, can be illustrated with the saturation counters. Figure 2.1 classifies

the sets in a 8-way 2MB cache with lines of 64 bytes during the execution of four

benchmarks from the SPEC CPU2006 suite. The classification is a function of their

saturation level as measured by saturation counters whose maximum value is 15 in

this case. The levels of saturation considered are low (the counter is between 0 and

5), medium (between 6 and 10) and high (between 11 and 15). We can see how

there are some sets that are little saturated, while others are very saturated, and

both percentages vary over time. These sets of opposite kinds could be associated,

2.3 Static Set Balancing Cache 21

moving lines from highly saturated sets to little saturated ones in order to balance

their saturation level and avoid misses.

Our approach is based on the idea of performing associations between cache sets

with complementary saturation levels in order to make the most of cache resources.

This also gives place to make second searches, or in general up to n-th searches if n

sets are associated, whenever a line is not found in the set indicated by the cache

indexing function and this set is known to have shifted lines to other set(s). As

a result, the operation of the Set Balancing Cache involves, besides the saturation

counters explained, an association algorithm, which decides which set(s) are to be

associated in the displacements, a displacement algorithm which decides when to

displace lines to an associated set, and finally, modifications to the standard cache

search algorithm. We now explain them in turn.

2.3.1. Association algorithm

This algorithm determines to which sets can displace lines a given one. Although

the number of sets involved could be any, and it could change over time, we have

started studying the simplest approach, in which each cache set is statically asso-

ciated to another specific set in the cache. That is the reason why this first design

of our proposal is called static SBC (SSBC). This design minimizes the additional

hardware involved as well as the changes required in the search algorithm of the

cache. We have decided the associated set to be the farthest set of the considered

one in the cache, that is, the one whose index is obtained complementing the most

significant bit of the index of the considered set. This decision is justified by the

principle of spatial locality, as if a given set is highly saturated, it is probable its

neighbors are in a similar situation. A consequence of this decision is that given

two sets X and Y associated by this algorithm, sometimes lines will be displaced

from X to Y, and vice versa, depending on the state of their saturation counters.

Notice also that when the associativity of a cache design is multiplied by 2, this is

equivalent to merging in a single set the same two sets that our policy associates,

i.e., those that differ in the most significant bit of the index.

22 Chapter 2. Set Balancing Cache

2.3.2. Displacement algorithm

A first issue to decide is when to perform displacements. In order to minimize

the changes in the operation of the cache and take advantage of line evictions that

take place in a natural way in the sets, we have chosen to perform the displacements

when a line is evicted from a highly saturated set. Since the replacement algorithm

we consider for the cache sets is LRU, as it is the most extended one, this means

that the LRU line will not be sent to the lower level of the memory hierarchy; rather

it will be actually displaced to another set.

It is intuitive that displacements should take place from sets with a high satura-

tion level to little saturated sets. Three parameters must be selected for this policy:

a concrete range for the saturation counter, from which value of the counter we con-

sider that displacements should take place, and under which value we consider a set

to be little saturated, and therefore a good candidate to receive displaced lines. It

has been experimentally observed that a good upper limit for a saturation counter

in a cache with associativity K is 2K − 1, thus the saturation counters used in this

Thesis work in the range 0 to 2K − 1.

Regarding the triggering of the displacement of lines from a set, when its satu-

ration counter has a value under its maximum it means that there have been hits in

the set recently, thus it is possible its working set fits in it. Only when the counter

adopts its maximum value will have most recent accesses (and particularly the most

recent one) resulted in misses and it is safer to presume that the set is under pressure.

Thus our SBC only tries to displace lines from sets whose saturation counter adopts

its maximum value, which is another decision taken based on our experiments.

Finally, although it is the association algorithm’s responsibility to choose which

is the set that receives the lines in a displacement, it is clear that displacing lines

to such set if/when its saturation counter is high can be counterproductive, since

that indicates the lack of underutilized lines. In fact we could end up saturating

a set that was working fine when trying to solve the problem of excess of load on

another set. Thus a second condition required to perform a displacement is that the

saturation counter of the receiver is below a given limit called displacement limit.

It has been experimentally determined that the associativity K of the cache is a

good displacement limit for the counters in the range 0 to 2K− 1 used. Notice that

2.3 Static Set Balancing Cache 23

since displacements only take place as the result of line evictions, the access to the

associated set saturation counter needed to verify this second condition can be made

during the resolution of the miss that generates the eviction.

Regarding the local replacement algorithm of the set that receives the displaced

line, the line is inserted as the most recently used one (MRU). The rationale is that

since the displaced line comes from a stressed working set, while the working set of

the destination set fits well in it, this line needs more priority than the lines already

residing in the set. Besides this way n successive displacements from a set to another

one insert n different lines in the destination set. If the displaced line were inserted

as the least recently used one (LRU), each new displacement would evict the line

inserted in the previous one if there were no intermediate hits in the displaced lines.

Another advantage of this decision is that the sets apply the traditional insertion

policy for all the insertions, thereby minimizing the changes in the design of the

cache. It has been experimentally checked that the insertion in the MRU position

yields better results than in the LRU one.

2.3.3. Search algorithm

In the SBC a set may hold both memory lines that correspond to it according to

the standard mapping mechanism of the cache and lines that have been displaced

from its associated set. Thus the unambiguous identification of a line in a set requires

not only its tag, but also an additional displaced bit or d for short. This bit marks

whether the line is native to the set, when it is 0, or it has been displaced from

another set, when it is 1. Searches always begin examining the set associated by

default to the line, testing for tag equality and d = 0. If the line is not found there,

a second search is performed in the associated set, this time seeking tag equality

and d = 1. If the second search is successful, a secondary hit is obtained.

Our proposal avoids unnecessary second searches by means of an additional sec-

ond search (sc) bit per set that indicates whether its associated set may hold dis-

placed lines. This bit is set when a displacement takes place. Its deactivation takes

place when the associated set evicts a line, if the OR of its d bits changes from 1 to

0 as result of the eviction. Checking this condition and resetting the second search

bit of the associated set is done in parallel with the resolution of the miss that gen-

24 Chapter 2. Set Balancing Cache

REF1: 1111000

tag set

00101
01111

00000
10010

01101
10111

10010
00100

0
0

0
0

0
0

0
0

0

0

0

0

3

0

1

2

Tags d sc
sat

count

Displacement
10010 -> Set 2

REF2: 1001000

00101
01111

11110
00000

10010
01101

10010
00100

0
0

0
0

1
0

0
0

1

0

0

0

3

0

1

2

Tags d sc

00101
01111

11110
10010

10010
01101

10010
00100

0
0

0
0

1
0

0
0

1

0

0

0

3

0

0

2

Tags d sc

Second search
in Set 2

(MISS) (SECOND HIT)

Set 0

Set 1

Set 2

Set 3

sat
count

sat
count

tag set

Figure 2.2: Static SBC operation in a 2-way cache with 4 sets. The upper tag in each
set is the most recently used and the saturation counters operate in the range 0 to 3.

erates the eviction. Without this strategy to avoid unnecessary second searches, the

IPC for the static SBC (SSBC) would have been 0.6% and 1.0% smaller in the two-

level and the three-level cache configurations used in our evaluation in Section 2.6,

respectively.

Contrary to other cache designs that lead to sequential searches in the cache

[2][6] the SBC does not swap lines to return them to their original set when they

are found displaced in another set. This simplifies management and does not hurt

performance because our proposal, contrary to those ones, is oriented to non first-

level caches. Thus once a hit is obtained in a line, the line is moved to the upper

level of the memory hierarchy, where successive accesses can find it. Experiments

performing swapping of lines in the SBC to return displaced lines to their original

set under a hit proved that this policy had a negligible impact on performance.

2.3.4. Discussion

Figure 2.2 shows a simple example of the operation of a Set Balancing Cache

in a 2-way cache with 4 sets. The upper tag in each set is the one of the most

recently used line, and the saturation counters operate in the range 0 to 3. Line

addresses of 7 bits are used for simplicity, the lower two bits being the set index and

the upper 5 ones the tag. The first reference is mapped to set 0, where sc = 0, thus

no second search is needed and a miss occurs. Checking saturation counters results

2.4 Dynamic Set Balancing Cache 25

in a displacement of the line that must be evicted from set 0, here the one with

tag 10010, to set 2 (00 = 10), so it is actually the LRU line of set 2 the one that

is evicted from the cache. The second reference is mapped again to set 0, where it

misses. Since now its sc bit is 1, a second search is performed in set 2, where there

is a hit, since the tag is found with the displaced bit d = 1.

As Section 2.3.1 explains, a K-way SSBC associates exactly each pair of sets

of the cache that would have been merged in a single set in the 2K-way cache

with the same size and line size. Still, there are very important differences between

both caches. While the 2K-way cache unconditionally merges the sets and their

working sizes, in the SSBC the merging is conditioned by the behavior of the sets.

Namely, their resources are shared only when at least one of the sets suffers a stream

of accesses with so many misses that its saturation counter reaches the maximum

limit, while the other set shows to be large enough to hold its current working set,

which is signaled by a value of its saturation counter smaller than the displacement

limit. This smarter management of the sharing of resources in the cache leads to

better performance for the SSBC even when it leads to second accesses when lines

have been displaced from their original sets.

Finally, in principle, the tag and data arrays of an SBC can be accessed in

parallel. Still, we recommend and simulate a sequential access to these arrays for

two reasons. One is that the SBC is oriented to non-first level caches, where both

arrays are often accessed sequentially because in those caches the tag-array latency

is much shorter than the data-array one, and the sequential access is much more

energy-efficient than the parallel one [11][79]. The other is that since the SBC may

lead to second searches, the corresponding parallel data-array accesses would further

increase the waste of energy.

2.4. Dynamic Set Balancing Cache

The SSBC is very restrictive on associations. Each set only relies on another

prefixed set as potential partner to help keep its working set in the cache. It could

well happen that both sets were highly saturated while others are underutilized.

When a cache set is very saturated, it would be better to have the freedom to

26 Chapter 2. Set Balancing Cache

associate it to the more underutilized (i.e. with the smallest saturation value) non-

associated set in the cache. This is what the dynamic SBC (DSBC) proposes. We

now explain in turn the algorithms of this cache.

2.4.1. Association algorithm

The DSBC triggers the association of sets when the saturation counter of a set

that is not associated with another set reaches its maximum value, which is 2K − 1

in our experiments, where K is the associativity of the cache. When this happens,

the DSBC tries to associate it with the available set (i.e. not yet associated with

another one) with the smallest saturation level. An additional restriction is that

the association will only take place if this smallest saturation level found is smaller

than the displacement limit, described in Section 2.3.2. The reason is that it makes

no sense to consider as candidate for association a set whose saturation counter

indicates that lines from other sets should not be displaced to it.

In principle this policy would require hardware to compare the saturation coun-

ters of all the available sets in order to identify the smallest one. Instead we propose

a much simpler and cheaper design that yields almost the same results, which we

call Destination Set Selector (DSS). The DSS has a small table that tries to keep

the data related to the least saturated cache sets. Each entry consists of a valid bit,

which indicates whether the entry is valid, the index of the set the entry is associ-

ated to, and the saturation level of the set. Comparers combined with multiplexers

in a tree structure allow to keep updated a register min with the minimum satu-

ration level stored in the DSS (min.level), as well as the number of its DSS entry

(min.entry) and the index of the associated set (min.index). This register provides

the index of the best set available for an association when requested. Similarly, a

register max with the maximum saturation counter in the DSS (max.level) and the

number of the DSS entry (max.entry) is kept updated. The role of this register is to

help at detecting when sets not currently considered in the DSS should be tracked

by it, which happens when their saturation level is below max.level. It also indicates

where within the DSS a new entry should be inserted.

When the saturation counter of a free set (one that is not associated to another

set) is updated, the DSS is checked in case it needs to be updated. The index of this

2.4 Dynamic Set Balancing Cache 27

set is compared in parallel with the indices in the valid entries of the DSS. Under a

hit, the corresponding entry is updated with the new saturation level. If this value

becomes equal to the displacement limit, the entry is invalidated, since sets with a

saturation level larger or equal to this limit are not considered for association. If

the set index does not match any entry in the DSS and its saturation level is smaller

than max.level, this set index and its saturation value are stored in the DSS entry

pointed by max.entry; otherwise they are dismissed.

Any change or invalidation in the entries of the table of the DSS lead to the

update of the min and max registers. Invalidations take place when the saturation

value reaches the displacement limit or when the entry pointed by min is used for

an association. In this latter case the saturation value of the entry is also set to

the displacement limit. This ensures that all the invalid entries have the largest

saturation values in the DSS. Thus whenever there is at least an invalid entry,

max points to it and max.entry equals the displacement limit, which is the limit to

consider a set for association with a highly saturated set.

The operation of the DSS allows to provide the best candidate for association

to a highly saturated set most of the times. The main reason why it may fail to

do this is because all its entries may be invalidated in the moment the association

is requested. When this happens no association takes place. Obviously, the larger

the number of entries in the DSS, the smaller the probability this situation arises.

The efficiency of the DSS as a function of its number of entries will be analyzed in

Section 2.8.4.

The DSBC has a table with one entry per set called Association Table (AT) that

stores in the i-th entry AT (i).index, the index of the set associated with set i, and a

source/destination bit AT (i).s/d that indicates in case of being associated, whether

the set triggered the association because it became saturated (s/d = 1) or it was

chosen by the Destination Set Selector to be associated because of its low saturation

(s/d = 0). When a set is not associated, its entry stores its own index and s/d = 0.

28 Chapter 2. Set Balancing Cache

2.4.2. Displacement algorithm

Just as in the SSBC, displacements take place when lines are evicted from sets

whose saturation counter has its maximum value. In the DSBC, sets are not associ-

ated by default to any other specific set, thus another condition for the displacements

to take place is that the saturated set is associated to another set. Another impor-

tant difference with respect to the SSBC is that displacements are unidirectional,

that is, lines can only be displaced from the set that requested the association (the

one whose counter reached its maximum value), called source set, to the one that

was chosen by the Destination Set Selector to be associated to it, which we call

destination set. The rationale is that the destination set was chosen among all the

ones in the cache to receive lines from the source one because of its low level of

saturation. For the same reason, displacements do not depend on the level of satu-

ration of the destination set: once it is designated as destination set, it continues to

receive lines displaced from the source until the association is broken. If the same

policy as in the SSBC were applied, that is, if displacements only took place when

the destination set saturation counter were smaller than K, the average miss rate

in our experiments would have been on average 0.6% larger, and the resulting IPC

would have been 0.38% worse.

2.4.3. Search algorithm

Just as in the SSBC, there is a displaced bit d per line that indicates whether

is has been displaced from another set. The cache always begins a search looking

for a line with the desired tag and d = 0 in the set with the index i specified by

the memory address sought. Simultaneously the corresponding i-th entry in the

Association Table, AT (i) is read. Upon a hit, the LRU of the set (and the dirty bit

if needed) is modified. Otherwise, the access is known to have resulted in a miss if

AT (i).s/d = 0, as this means that either the set is not associated or this set is the

destination set of an association, which cannot displace lines to its associated set.

In any case the saturation counter is updated and if it has reached its maximum and

the set is not yet associated, a destination set can be requested from the Destination

Set Selector while the miss is resolved.

2.4 Dynamic Set Balancing Cache 29

If AT (i).s/d = 1 the destination set indicated by AT (i).index is searched for

an entry with the tag requested and d = 1. Here we can get a secondary hit or a

definitive miss. In both cases the set saturation counter will be updated, although

this will not influence the association. If there is a miss, the LRU line of the

destination set will be evicted, and the LRU line from the source set will be moved

to the destination set to replace it. This happens in parallel with the resolution of

the miss, whose line will be inserted in the source set.

Finally, as it was in the SSBC, DSBC does not swap lines to return them to their

original set when they are found displaced in another set.

2.4.4. Disassociation algorithm

The approach followed to break associations is very similar to the one used to

avoid unnecessary second searches in the SSBC. A disassociation can take place

upon a first search miss (i.e., a native miss) in a destination set i. If the OR of the d

bits of this set changes from 1 to 0 as result of the eviction triggered by the miss, the

association is broken. This can be calculated once the line to be evicted is decided,

as this condition is equivalent to requiring that the OR of the d bits of all the lines

but the one to evict is 0. This way, the detection of the disassociation and the

changes it involves take place in parallel with the eviction itself and the resolution

of the miss. The disassociation requires accessing the AT of the source set of the

association, as provided by AT (i).index, and clearing the association there. The

entry for the destination set is then also modified setting AT (i).index = i.

2.4.5. Discussion

Figure 2.3 shows an example of the DSBC operation with the same references

and a cache with the same parameters as in Figure 2.2. The first reference is mapped

to set 0, where a miss occurs. Since this set is not associated (AT (0).index = 0) but

its saturation counter has its maximum value, a destination set for an association

is requested. The figure assumes the Destination Set Selector provides set 3 as

candidate, proceeding then to evict the LRU line in set 3 to replace it with the LRU

line in set 0. When the missed line arrives from memory it is stored in the block

30 Chapter 2. Set Balancing Cache

REF1: 1111000

set

00101
01111

00000
10010

01101
10111

10010
00100

0
0

0
0

0
0

0
0

0

1

2

3

3

2

3

0

Tags d

AT
sat

count

Association (0-3)
and

displacement
10010 -> Set 3

REF2: 1001000

00101
01111

11110
00000

01101
10111

10010
10010

0
0

0
0

0
0

1
0

3

1

2

0

3

2

3

0

Tags d

00101
01111

11110
00000

01101
10111

10010
10010

0
0

0
0

0
0

1
0

3

1

2

0

3

2

3

0

Tags d

Second search
in set 3

(MISS) (SECOND HIT)

Set 0

Set 1

Set 2

Set 3

sat
count

sat
count

0

0

0

0

ind s/d ¯

1

0

0

0

AT

ind s/d ¯

1

0

0

0

AT

ind s/d ¯

tag settag

Figure 2.3: Dynamic SBC operation in a 2-way cache with 4 sets. The upper tag in
each set is the most recently used and the saturation counters operate in the range 0 to
3.

that has been made available in set 0. The second reference is mapped again to the

set 0 resulting in a miss. A second search is initiated in set AT (0).index = 3, where

it is found.

The greater flexibility of the DSBC allows it to apply a more aggressive dis-

placement policy, as Section 2.4.2 explains. Section 2.6 will show it also achieves

better results. Beyond performance measurements, graphical representations also

help explain the net effect of SBC on a cache. Figure 2.4 illustrates it showing the

distribution of the saturation level across the sets of the L2 cache of the two-level

cache configuration of Table 2.1 during part of the execution of the omnetpp bench-

mark of the SPEC CPU 2006 suite. The level is measured with a saturation counter

in the range 0 to 15. The baseline in Figure 2.4 (a) has a high ratio of highly (level 11

to 15) and lowly (level 0 to 5) saturated sets. The SSBC in Figure 2.4 (b) basically

turns highly-saturated sets into medium-saturated sets. The DSBC in Figure 2.4

(c) alleviates more highly-saturated sets without generating medium-saturated sets.

2.5. Simulation environment

To evaluate our approach we have used the SESC simulator [58] with two baseline

configurations, one with two on-chip cache levels and another one with three. Both

configurations, detailed in Table 2.1, are based on a four-issue CPU clocked at 4GHz

2.5 Simulation environment 31

100 150 200
0

10

20

30

40

50

60

70

(a)

100 150 200
0

10

20

30

40

50

60

70

(b)

100 150 200
0

10

20

30

40

50

60

70

(c)

Figure 2.4: Distribution of the sets with a high saturation level(black), medium saturation
level(gray) and low saturation level(white) during a portion of the execution of omnetpp
in the L2 cache of the two-level configuration. (a) Baseline (b) Static SBC (c) Dynamic
SBC. Samples each 5 ∗ 105K accesses.

with an hybrid branch predictor [49]. The tag check delay and the total round trip

access are provided for the L2 and L3 to help evaluate the cost of second searches

when the SBC is applied. Our three-level hierarchy is somewhat inspired in the Core

i7 [24], the L3 being proportionally smaller to account for the fact that only one core

is used in our experiments. Both configurations allow an aggressive parallelization

of misses, providing between 16 and 32 Miss Status Holding Registers per cache.

As in several existing processors [11][79], and works in the bibliography [10][18][55],

the accesses to non-first level caches access sequentially the tag and the data arrays.

This reduces the power dissipation of large cache arrays and limits the additional

delay of second searches to the tag check delay. We have used CACTI [21] to derive

the latency related to each component of the memory hierarchy.

We use 10 representative benchmarks of the SPEC CPU 2006 suite, both from

the INT and FP sets. They have been executed using the reference input set (ref),

during 10 billion instructions after the initialization. Table 2.2 characterizes them

providing the number of accesses to the L2 during the 1010 instructions simulated,

the miss rate in the L2 cache both in the two-level (2MB L2) and the three-level

(256kB) configurations, and whether they belong to the INT or FP set of the suite.

32 Chapter 2. Set Balancing Cache

Table 2.1: Architecture. In the table RT, TC and MSHR stand for round trip, tag
directory check and miss status holding registers, respectively.

Processor

Frequency 4GHz
Fetch/Issue 6/4
Inst. window size 80 int+mem, 40 FP
ROB entries 152
Integer/FP registers 104/80
Integer FU 3 ALU,Mult. and Div.
FP FU 2 ALU, Mult. and Div.

Common memory subsystem

L1 i-cache & d-cache 32kB/8-way/64B/LRU
L1 Cache ports 2 i/ 2 d
L1 Cache latency (cycles) 4 RT
L1 MSHRs 4 i / 32 d
System bus bandwidth 10GB/s
Memory latency 125ns

Two levels specific memory subsystem

L2(unified) cache 2MB/8-way/64B/LRU
L2 Cache ports 1
L2 Cache latency (cycles) 14 RT, 6 TC
L2 MSHR 32

Three levels specific memory subsystem

L2(unified) cache 256kB/8-way/64B/LRU
L3(unified) cache 2MB/16-way/64B/LRU
Cache ports 1 L2, 1 L3
L2 Cache latency (cycles) 11 RT, 4 TC
L3 Cache latency (cycles) 39 RT, 11 TC
MSHR 32 L2, 32 L3

Table 2.2: Benchmarks characterization. MR stands for miss rate.
Bench L2 Accesses 2MB L2 MR 256kB L2 MR Comp.
bzip2 125M 9% 41% INT
milc 255M 71% 75% FP

namd 63M 2% 5% FP
gobmk 77M 5% 10% INT
soplex 105M 8% 15% FP
hmmer 55M 10% 41% INT
sjeng 32M 26% 27% INT

libquantum 156M 74% 74% INT
omnetpp 100M 28% 91% INT

astar 192M 23% 48% INT

2.6 Experimental evaluation 33

It is a mix of benchmarks that vary largely both in number of accesses that reach

the caches under the first level and in miss ratios in the L2 cache.

2.6. Experimental evaluation

The SBC has been applied, for both the static and the dynamic version, in the

second level for the two-level configuration and in the two lower levels for the three-

level configuration. The dynamic SBC uses a Destination Set Selector (described in

Section 2.4.1) with four entries based on our experiments (in Section 2.8.4).

Figure 2.5 shows the ratio of accesses that result in a miss, a hit, and a secondary

hit in the L2 and L3 caches in the two memory hierarchies tested, using standard

caches, SSBC, and DSBC for each one of the benchmarks analyzed. The last group

of columns (mean), represents the arithmetic mean of the rates observed in each

cache. We can see that the SBCs basically keep the same ratio of first access hits as

a standard cache, and they turn a varying ratio of the misses into secondary hits.

When the baseline miss rate is small or there are few accesses, the SBCs seldom

perform displacements of lines and second searches happen also infrequently. Also,

the DSBC achieves better results than the SSBC, as expected.

Figures 2.6 (a) and 2.6 (b) show the performance improvement in terms of in-

structions per cycle (IPC) for each benchmark in the two-level and the three-level

configurations tested, respectively. The figures compare the baseline not only with

the SSBC and the DSBC, but also with the baseline system where the L2 and the

L3 have duplicated their associativity. This latter configuration is tested to show

the difference between associating two sets of K lines following the SBC strategy

and using sets of 2K lines. The bar labeled geomean is the geometric mean of the

individual IPC improvements seen by each benchmark.

In the two-level configuration the SBC always has a positive or, at worst, negli-

gible effect on performance. Two kinds of benchmarks get no benefit from the SBC:

those with a small miss rate, like 444.namd or 445.gobmk, in which our proposal

can do little to improve an already good cache behavior; and 458.sjeng, which has

34 Chapter 2. Set Balancing Cache

0

50

100

(a)

0

50

100

(b)

0

50

100

(c)

401.Bzip2 433.Milc 444.Namd 445.Gobmk 450.Soplex 456.Hmmer 458.Sjeng 462.Libquantum 471.Omnetpp 473.Astar mean

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

b
a
se

S
S

B
C

D
S

B
C

Misses

Hits

Second Hits

Figure 2.5: Miss, hit and secondary hit rates for the (a) L2 cache in the two-level
configuration, (b) L2 cache in the three-level configuration, and (c) L3 cache in the
three-level configuration.

0

5

10

15

%
 I

P
C

 i
m

p
ro

v
em

en
t

Baseline double-way

Static SBC

Dynamic SBC

4
0
1
.b

zi
p
2

4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

g
eo

m
ea

n

(a)

 0

5

10

15

%
 I

P
C

 i
m

p
ro

v
em

en
t

Baseline double-way

Static SBC

Dynamic SBC

4
0
1
.b

zi
p
2

4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

g
eo

m
ea

n

(b)

Figure 2.6: Percentage IPC improvement over the baseline in the two-level (and) and
the three-level configuration (b) duplicating the L2 and L3 associativity or using SBC in
both levels.

2.6 Experimental evaluation 35

very few accesses to the L2, just 3.2 each 1000 instructions, as Table 2.2 shows. The

small number of accesses reduces the influence of the L2 behavior in the IPC, and

more importantly it reduces the frequency of triggering of the SBC mechanisms.

In the three-level configuration the improvement is larger and applies to all the

benchmarks. The benchmarks that did not benefit from the SBC in the two-level

configuration benefit now for two reasons. One is the larger local miss ratios either

in the L2 or in the L3. The other is that in this 256 kB L2 cache (modeled after the

one in the Core i7) the accesses are spread on 8 times less sets than in the 2MB cache

of the two-level configuration. This increases the working set of each set, generating

more SBC-specific activity. The DSBC systematically outperforms the SSBC, which

in its turn achieves much better results than duplicating the associativity of the

caches. Since the SSBC associates exactly the two same sets that a duplication of

the associativity merges, these results outline the benefit of sharing resources among

sets under the control of a policy that triggers this sharing only when it is likely it

is going to be beneficial and disables it when the feedback is not good.

We compare next the performance of the SBC in terms of miss rate reduction

with the V-Way cache described in Section 2.2, which requires an additional 11%

storage and area overhead on the L2 cache of our two-level baseline configuration,

and the Dynamic Insertion Policy (DIP) [53], because its cost also scales well with

the cache size. DIP is a proposal to adapt dynamically the policy of insertion of new

lines in sets, alternating between marking the most recently inserted lines in a set

as most recently used lines (the traditional policy) or the least recently used ones,

the replacement policy being LRU. Notice that if the latter case, only if the block is

accessed again in the cache will it become the MRU in its set. Otherwise the next

miss will trigger its eviction. This system helps keep the most important part of the

working set in the cache when the size of this set is much larger than the cache. We

have not made performance comparisons with Scavenger because its large hardware

requirements would make the comparison very unfair. Scavenger requires more than

12% additional storage, in comparison with the 0.28% and 0.55% that SSBC and

DSBC have, as we will see in Section 2.7. Something similar happens with the area

required, estimated at more than 12% for Scavenger, while it is below 1% for the

SBC (Table 2.4).

Figure 2.7 compares the miss rates among SSBC, DSBC, V-Way cache and DIP

36 Chapter 2. Set Balancing Cache

0.00

0.50

1.00

1.50

L
2

 c
a

c
h

e
 m

is
se

s
r
e
la

ti
v

e
 t

o
 b

a
se

li
n

e
 c

a
c
h

e

 (
2

M
B

 8
−

w
 6

4
B

 l
in

e
 s

iz
e
)

Static SBC

Dynamic SBC

V−Way

DIP

4
0
1
.b

zi
p
2

4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

g
eo

m
ea

n

Figure 2.7: Comparison with recent proposals in terms of number of cache misses relative
to the L2 cache of our two-level configuration.

in the L2 cache for the two-level configuration used previously. Data shown are

relative to miss rate of the baseline configuration. DIP has been simulated with 32

dedicated sets and ε = 1/32 (see [53]). The last group of bars correspond to the

geometric mean of the ratios of reduction of the miss rate for the four policies. The

results vary between the 19% reduction for the dynamic SBC and the 12% reduction

for DIP, which is the simplest and cheapest alternative. The V-way cache achieves

a 15% reduction, slightly better than the 14% one of the static SBC. Benchmark

by benchmark, the V-way cache is the best one in three of them, DIP in one, and

the dynamic SBC in the other six ones. We must take into account that DIP and

the V-Way cache turn misses into hits, while the SBC turns them into secondary

hits, which suffer the delay of a second access to the tag array. On the other hand,

the duplication of tag-store entries, the addition of one pointer to each entry and

a MUX to choose the correct pointer increases the V-Way tag access time around

39%, while the SBC has very light structures (up to 17 bits per set plus one bit per

tag-store entry), thus having a negligible impact on access time.

2.6.1. Average memory latency and power consumption

As we just said in the paragraph above, hit and miss rates are not the best

characterization for SBCs because they involve second searches that make secondary

2.7 Cost 37

hits more expensive than first hits, and which delay the resolution of misses that

need the second search to be confirmed. The advantages of SBC are better measured

in Figure 2.8, which shows the average data access time improvement of the static

and dynamic SBC with respect to the baseline caches for each benchmark.

Despite the overhead of the second searches, the SBC almost never increases

the average access time of any benchmark. There is only a small 1% slowdown in

the L2 cache in the two-level configuration for 444.namd and 445.gobmk, because

their second searches contribute very little to reduce its already minimal miss rate.

Not surprisingly the greater flexibility of the DSBC allows it to choose better suited

cache sets for the displacements than the SSBC, leading to better average access

times. The average improvement (geometric mean) of the access time in the L2 of

our two-level configuration is 4% and 8% for the SSBC and the DSBC, respectively.

In the three-level configuration the average reduction is 3% and 6% for the L2, and

10% and 12% for the L3, for the SSBC and the DSBC, respectively. These results

translated into power consumption reductions of 9% and 11% for SSBC and DSBC in

the two-level baseline configuration, shown in Figure 2.9. Finally, Figure 2.10 shows

how SSBC and DSBC reduce the power consumption of the memory hierarchy in the

three-level configuration by 10% and 12% with respect to the baseline, respectively.

Note that these two last figures also show the impact of the accesses to each level

of the memory hierarchy in the total power consumption.

2.7. Cost

In this section we evaluate the cost of the SBC in terms of storage requirements,

area and energy, which has been estimated using CACTI [21].

The SBC requires additional hardware because of the need of a saturation counter

per set to monitor its behavior and additional bits in the directory to identify dis-

placed lines (d bit). The SSBC has an additional bit per set to know whether second

searches are required. The DSBC instead requires an Association Table with one

entry per set that stores a s/d bit to specify whether the set is the source or the

destination of the association, and the index of the set it is associated to. It also

requires a Destination Set Selector (DSS) to choose the best set for an association,

38 Chapter 2. Set Balancing Cache

0

20

40

60
(a)

0

10

20

30
(b)

stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn
0

20

40

60
(c)

4
0
1
.B

zi
p
2

4
3
3
.M

ilc

4
4
4
.N

a
m

d

4
4
5
.G

o
b
m

k

4
5
0
.S

o
p
le

x

4
5
6
.H

m
m

e
r

4
5
8
.S

je
n
g

4
6
2
.L

ib
q
u
a
n
tu

m

4
7
1
.O

m
n
e
tp

p

4
7
3
.A

st
a
r

g
e
o
m

e
a
n

%
 A

v
e

ra
g

e
 A

c
c
e
s
s
 T

im
e
 i
m

p
ro

v
e

m
e
n
t

Figure 2.8: Average access time reduction achieved by the static and the dynamic
SBC in the (a) L2 cache in the two-level configuration, (b) L2 cache in the three-level
configuration, and (c) L3 cache in the three-level configuration.

0

20

40

60

80

100

401.Bzip2 433.Milc 444.Namd 445.Gobmk 450.Soplex 426.Hmmer 458.Sjeng 462.Libquantum 471.Omnetpp 473.Astar mean

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

Main Memory Hits

L2 Hits

Figure 2.9: Average power consumption achieved by the SBC related to the baseline and
breakdown of the accesses in the two-level configuration.

2.7 Cost 39

0

20

40

60

80

100

401.Bzip2 433.Milc 444.Namd 445.Gobmk 450.Soplex 456.Hmmer 458.Sjeng 462.Libquantum 471.Omnetpp 473.Astar mean

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

S
S

B
C

D
S

B
C

Main Memory Hits

L3 Hits

L2 Hits

Figure 2.10: Average power consumption achieved by the SBC related to the baseline
and breakdown of the accesses in the three-level configuration.

a 4-entry DSS being used in our evaluation. Based on this, Table 2.3 calculates

the storage required for a baseline 8-way 2 MB cache with lines of 64B assuming

addresses of 42 bits. As we can see, the SSBC and the DSBC only have an over-

head of 0.31% and 0.58% respectively, compared to the baseline configuration. The

energy consumption overhead on average per access calculated by CACTI is less

than 1% for SBC and 79% for the baseline with double associativity, and the cor-

responding area overhead is shown in Table 2.4. We see that the SBC not only

offers more performance, but also requires less energy and area than duplicating the

associativity.

40 Chapter 2. Set Balancing Cache

Table 2.3: Baseline and SBC storage cost in a 2MB/8-way/64B/LRU cache. B stands
for bytes.

Base Static SBC Dynamic SBC

Tag-store entry:
State(v+dirty+LRU+[d]) 5 bits 6 bits 6 bits
Tag (42 − log2 sets − log2 ls) 24 bits 24 bits 24 bits
Size of tag-store entry 29 bits 30 bits 30 bits

Data-store entry:
Set size 512B 512B 512B

Additional structs per set:
Saturation Counters - 4 bits 4 bits
Second search bits - 1 bit -
Association Table - - 12+1 bits
Total of structs per set - 5 bit 17 bits

DSS (entries+registers) - - 10B

Tag-store entries 32768 32768 32768
Data-store entries 32768 32768 32768
Number of Sets 4096 4096 4096
Size of the tag-store 116kB 120kB 120kB
Size of the data-store 2MB 2MB 2MB
Size of additional structs - 2560B 8714B

Total 2164kB 2170kB (0.28%) 2176kB (0.55%)

Table 2.4: Baseline and SBC area. Percentages in the Total column are related to the
Baseline configuration.

Configuration Components Details Subto-
tal

Total

Baseline Data + Tag 2MB 8-way 64B line size + tag-store 12,57
mm2

12,57 mm2

Baseline with double
associativity

Data + Tag 2MB 16-way 64B line size + tag-store 14,52
mm2

14,52 mm2

(> 3%)
Data + Tag 2MB 8-way 64B line size + tag-store

(with additional d bit)
12,58
mm2

Static SBC
Counters 4096*4 bits 0,01

mm2
12,60 mm2

(< 1%)
Second

search bits
4096 bits < 0, 01

mm2

Data + Tag 2MB 8-way 64B line size + tag-store
(with additional d bit)

12,58
mm2

Counters 4096*4 bits 0,01
mm2

Dynamic SBC Association
Table

4096*12 bits 0,04
mm2

12,64 mm2

(< 1%)
DSS (entries

+ regs)
4*(1+12+4)+2*(2+4) bits < 0, 01

mm2

2.8 Analysis 41

2.8. Analysis

In this section we evaluate how the performance and cost of the SBC vary with

respect to the parameters of the cache. We also analyze how it compares to the

usage of a victim cache whose cost is comparable to the overhead of the SBC and

we study its internal behavior. Finally, we profile the DSS efficiency. All along this

section we will always use as baseline the 2MB/8-way/64B/LRU L2 cache of our

two-level configuration.

2.8.1. Impact of varying cache parameters

Table 2.5 shows the miss rate reduction achieved by the static and the dynamic

SBC as well as the storage overhead they involve as the cache size varies between

256kB and 4MB. Both kinds of SBC always reduce the average miss rate obtained,

but as the cache size increases the working set of some benchmarks fits better,

reducing the opportunities of improving it.

Table 2.6 studies the cost-benefit of both SBC proposals comparing the miss

rate reduction achieved by them versus the additional storage cost they incur as a

function of the line size in the baseline cache. The increase in the line size reduces

proportionally both the number of lines and sets, being the SBC cost mostly pro-

portional to the latter as we can see. The reduction of the number of sets and the

fact their lines keep more data also makes more probable the SSBC finds the static

pairs of sets it is able to associate are too saturated to trigger displacements. The

greater flexibility of the DSBC allows to overcome better this problem. This is why

the DSBC behaves better than the SSBC as the line size increases.

Table 2.7 makes the same study from the point of view of the associativity

considering values of 8, 16 and 32. The increase of associativity reduces the number

of sets, and thus the relative cost of the SBC, but increases the tag size. Miss

rates and their reduction stay very flat. Also, just as the experiments in Section 2.6

considering caches that duplicated the associativity, this table shows that making

shared usage of the lines of two sets under heuristics like the ones proposed by the

42 Chapter 2. Set Balancing Cache

Table 2.5: Cost-benefit analysis of the static and the dynamic SBC as a function of the
cache size.

Cache
size

Baseline
miss rate

SSBC
miss
rate

DSBC
miss
rate

SSBC miss
rate

reduction

DSBC miss
rate reduction

SSBC
storage

overhead

DSBC
storage

overhead

256KB 45.13% 40.81% 39.24% 9.6% 13.1% 0.26% 0.48%
512KB 39.07% 35.54% 34.47% 9.2% 11.8% 0.27% 0.50%
1MB 33% 30.84% 29.14% 6.55% 9.3% 0.28% 0.52%
2MB 25.6% 23.25% 22.3% 9.2% 12.8% 0.28% 0.55%
4MB 20.7% 19.6% 19.3% 5.4% 6.8% 0.29% 0.57%

Table 2.6: Cost-benefit analysis of the static and the dynamic SBC as a function of the
line size.

Line
size

Baseline
miss rate

SSBC
miss
rate

DSBC
miss
rate

SSBC miss
rate reduction

DSBC miss
rate reduction

SSBC
storage

overhead

DSBC
storage

overhead

64B 25.6% 23.25% 22.31% 9.2% 12.8% 0.28% 0.55%
128B 27.46% 25.6% 25% 6.5% 9% 0.15% 0.27%
256B 24.6% 23.2% 22.3% 5.7% 9.3% 0.07% 0.13%

Table 2.7: Cost-benefit analysis of the static and the dynamic SBC as a function of the
associativity.

Associativity Baseline
miss
rate

SSBC
miss
rate

DSBC
miss
rate

SSBC miss
rate

reduction

DSBC miss
rate

reduction

SSBC
storage

overhead

DSBC
storage

overhead

8-ways 25.6% 23.25% 22.31% 9.2% 12.8% 0.28% 0.55%
16-ways 25.1% 22.8% 21.88% 9.2% 12.83% 0.24% 0.36%
32-ways 24.6% 22.28% 21.43% 9.4% 12.88% 0.21% 0.27%

SBC is much more effective than organizing the cache lines in sets with twice or even

four times larger. This way, even the 8-way static and dynamic SBC have 5.5% and

9.31% less misses than the 32-way baseline, respectively.

2.8.2. Victim cache comparison

We compare here the SBC performance with that one of two victim caches in the

2MB/8-way/64B/LRU L2 cache of our two-level configuration baseline. Figure 2.11

(a) shows a comparison of the L2 cache miss rates among a static SBC, a dynamic

SBC, and the cache extended with a fully-associative victim cache [34] of either

8kB or 16kB of data store, relative to the L2 two-level baseline configuration. We

have chosen these sizes because as Table 2.3 shows, the storage overhead for the L2

2.8 Analysis 43

0.00

5.00

10.00

15.00

%
 I

P
C

 i
m

p
ro

v
em

en
t

Static SBC

Dynamic SBC

Victim cache 16K

Victim cache 8K

4
0
1
.b

zi
p
2

4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

g
eo

m
ea

n

(a)

0.00

0.50

1.00

1.50

L
2
 c

a
c
h

e
 m

is
se

s
r
e
la

ti
v
e
 t

o
 b

a
se

li
n

e
 c

a
c
h

e

 (
2
M

B
 8

-w
 6

4
B

 l
in

e
 s

iz
e
)

Static SBC

Dynamic SBC

Victim cache 8K

Victim cache 16K

4
0
1
.b

zi
p
2

4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

g
eo

m
ea

n

(b)

Figure 2.11: Comparison of the static SBC, the dynamic SBC, a victim cache of 8kB
and a victim cache of 16kB in terms of IPC (a) and miss rate (b) relative to the one in
the L2 in the two-level baseline configuration.

cache configuration considered is about 7kB for the static SBC and about 13 kB

for the dynamic SBC. Thus, the 8kB and the 16kB victim caches are larger than

the static and the dynamic SBC respectively. If their tag-store were considered too,

they would be even more expensive in comparison. We see how with less resources,

any SBC performs better than the largest victim cache. Figure 2.11 (b) makes the

same comparison based on the IPC.

2.8.3. SBC behavior

While comparisons in miss rate, average access time or IPC allow to assess

the effectiveness of the SBC with respect to other designs, measurements on its

internal behavior allow to understand better how it achieves these results. Thus, we

analyze here this behavior based on measurements in the L2 cache of our two-level

configuration. This way, the hit rate observed in the second searches, that is, the

ratio of second searches that result in a secondary hit, is on average 36.3% and

47.7% for the SSBC and DSBC, respectively. The SSBC is more conservative in

displacing lines than the DSBC because of its restriction on the associated set. As

a result, less lines are displaced, leading to a smaller second access hit ratio. In fact

the SSBC displaces an average of 1.7 lines per association (i.e. since the sc bit in

44 Chapter 2. Set Balancing Cache

an association is activated until it is reset), while the DSBC displaces an average

of 2.15 lines before the association is broken. On the other hand, the conservative

policy of the SSBC leads it to make safer decisions than the DSBC on which lines

it is interesting to displace to the associated sets, that is, the lines it displaces are

more likely to be referenced again. The result of this is that the average number of

secondary hits per line displaced is 3.64 in the SSBC, while it decreases to 3.29 in

the DSBC.

It is also interesting to examine the frequency of second searches, as they may

generate contention in the tag-array. On average only 10.3% and 10.2% of the ac-

cesses to the cache require second searches in the SSBC and the DSBC, respectively.

2.8.4. Destination Set Selector efficiency

A request for a destination set made to the Destination Set Selector (DSS) may

result in four outcomes. If the DSS provides a candidate, this cache set can (A)

actually have the smallest level of saturation among the available sets in the cache

or (B) not. The DSS will not provide a candidate if all its entries are invalid.

This may happen either because (C) there are actually no candidates in the cache

(all the sets are either associated or too saturated), or (D) there are candidates

in the cache, but not in the DSS. Figure 2.12 shows the evolution of the average

percentage of times each one of these four situations happens during the execution

of our benchmarks in the L2 cache of the two-level configuration as the number of

entries in the DSS varies from 2 to 128. The outcomes are labeled A, B, C and

D, following our explanation. We see that even with just two entries the DSS has

a quite good behavior, since outcomes A and C, in which the DSS works as well

as if it were tracking the behavior of all the sets, add up to 80%. With 4 entries

A+C behavior improves to 90%, and after that there is a slow slope until almost

100% of the outcomes are either A or C with 128. Based on this, a 4-entry DSS

has been chosen for all the evaluations of the SBC shown in the other sections and

chapters of this dissertation, as this number optimizes the balance between hardware

and power required and benefit achieved. In this graph we can also see that under

the conditions requested in the DSBC, around 35% of the association requests are

satisfied.

2.9 Summary 45

Number of entries in the selector

(%
)

2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80

90

100

A

B

C

D

Figure 2.12: Percentage of association requests made to the Destination Set Selector
(DSS) in the L2 cache of the two-level configuration that (A) are satisfied with a set with
the minimum level of saturation, (B) are satisfied with a set whose level of saturation
is not the minimum available, (C) are not satisfied because there are no candidate sets
in the cache, and (D) are not satisfied because none of the existing candidate sets is in
the DSS, depending on the number of entries in the DSS.

2.9. Summary

This chapter proposes the Set Balancing Cache (SBC), a new design aimed at

non-first level caches with a good cost-benefit relation. This cache associates sets

with a high demand with sets that have underutilized lines in order to balance the

load among both kinds of sets and, thus, to reduce the miss rate. The Set Saturation

Level, which measures the degree to which a set is able to hold its particular working

set, is introduced. This value, which indicates the degree of pressure on a set, is

provided by a counter per set called saturation counter which is increased under a

miss and decreased under a hit. The balance is materialized in the displacement

of lines from cache sets with a high level of saturation to sets that seem to be

underutilized, the displaced lines being found in the cache in subsequent searches.

Two designs have been presented: a static one, which only allows displacements

between preestablished pairs of sets, and a dynamic one that tries to associate each

highly saturated set with the least saturated cache set available. The selection of this

least saturated set is made by a very cheap hardware structure called Destination

46 Chapter 2. Set Balancing Cache

Set Selector (DSS), which yields near-optimal selections.

Experiments using representative benchmarks achieved an average reduction of

9.2% and 12.8% of the miss rate for the static and the dynamic SBC, respectively,

or 14% and 19% computed as the geometric mean.

This led to average IPC improvements between 2.7% and 5.25% depending on

the type of SBC and the memory hierarchy tested. Furthermore, the SBC designs

proved consistently to be better than increasing the associativity, both in terms of

area and performance.

Chapter 3

Bimodal Set Balancing Cache

3.1. Introduction

We have studied in the previous chapter the problem of the lack of uniformity

in the distribution of memory references among the sets of set-associative caches,

which is a fundamental source of conflict misses. The load balancing between sets

that SBC provides can reduce not only conflict misses, but also capacity misses.

The reason is that SBC tries to displace lines in the working set (i.e. live lines) to

take the place in the cache of lines that are not in use (dead lines), even when those

dead lines could have been accessed more recently. This avoids misses that would

even happen with full associativity. Still, SBC cannot help for example in situations

of thrashing, so it does not suffice to deal with all the capacity misses. Some recent

proposals seem more adequate to reduce this kind of misses. A very good example

is [53], which targets memory-intensive workloads with working sets that do not fit

in the cache for which the traditional LRU replacement policy is counterproductive.

In this chapter we introduce the Bimodal Set Balancing Cache or BSBC, a tech-

nique which extends the Set Balancing Cache (SBC), which can do little to improve

the performance when the working set of a workload is larger than the cache size,

by complementing with a policy particularly suitable to reduce capacity misses. If

the lack of lines to hold the working sets persists after the displacement of lines

from oversubscribed sets to underutilized ones performed by the SBC, the BSBC

47

48 Chapter 3. Bimodal Set Balancing Cache

applies a policy to address problems of capacity. Namely, the insertion policy of

highly saturated sets is changed to the Bimodal Insertion Policy (BIP) [53], which

often inserts lines in the LRU position instead of the MRU one. This avoids that

lines that are dead on arrival expel other lines from the cache as they descend in the

LRU stack. Furthermore, [53] also introduces the Dynamic Insertion Policy (DIP)

policy, which chooses dynamically between the traditional insertion policy and BIP

based on a set dueling mechanism that tries to choose the one that incurs fewer

misses. Our experiments show that our coordinated approach to reduce conflict

and capacity misses works substantially better than simply applying simultaneously

DSBC and DIP in a cache.

3.2. Background and Motivation

The related proposals discussed in Section 2.2 emphasize the flexibility of place-

ment of lines in the cache to improve miss rates or access time. Other researchers

have focused on keeping in the cache the most useful lines. A first example of this

kind of works are the adaptive insertion policies in [53], which will be thoroughly

revised further in this section due to its significance in the cache design presented in

this chapter. Another proposal in this direction are the pseudo-LIFO replacement

policies [9]. The probabilistic escape LIFO, which dynamically learns the best evic-

tion positions within the fill stack and prioritizes the ones close to the top of the

stack, belongs to this latter family. This family of policies relies on fill stack, where

lines once are installed in the cache can only go downwards, instead of the tradi-

tional recency one. Then, the degree of reuse of lines beyond each stack position

is estimated by means of a dynamic mechanism and evictions are performed from

several escape points within the stack. Lines with high eviction priorities are those

residing close to the top of the stack while those lines which are likely to be reused

reside at the bottom.

More recently, DRRIP [28] chooses the most appropriate Re-Reference Interval

Prediction (RRIP) insertion policy for each application based on set dueling. The

competing insertion policies are the Static RRIP, which inserts new lines with a long

re-reference interval prediction, and the Bimodal RRIP, which inserts most of the

new lines with a distant value; such value making the new line become an eligible

3.2 Background and Motivation 49

victim in the next replacement operation. When a hit occurs in a certain line its

re-reference interval prediction is reduced, while every miss increases the re-reference

interval prediction of each line in the set until a victim is eventually found.

All techniques presented so far mainly tackle only one kind of problem. We have

combined two techniques in order to deal with both conflict and capacity misses

at the same time. For this purpose, we have extended the Dynamic Set Balancing

Cache with the possibility of applying the novel insertion policies proposed in [53].

Both approaches will be discussed in turn, followed by a constructive critic of their

limitations and their complementarity.

The basic idea of the Dynamic Set Balancing Cache or DSBC, as we could see in

Chapter 2, is to alleviate the problems of oversubscribed cache sets by moving part

of the lines originally mapped to them to other sets that have underutilized lines.

This requires detecting the degree to which each cache set is able to hold its working

set. The DSBC achieves this with the Set Saturation Level (SSL) metric, which is

tracked separately for each set by means of a saturation counter. Still SBC can do

little for example in situations of thrashing, so it does not suffice to deal with all

the capacity misses.

As we previously stated in Section 1.1, most caches nowadays use a LRU re-

placement policy in which lines are inserted in the MRU position in the recency

stack. The lines must then descend this stack position by position until they reach

the LRU position, which is the one of the lines evicted under a miss in the set.

Although this policy works very well for many workloads, in [53] it was observed

that it often leads memory-intensive workloads with working sets larger than the

cache size to thrashing. As a result, they proposed an LRU Insertion Policy (LIP)

which always inserts lines in the LRU position of the recency stack. If the inserted

line is reutilized, it is moved to the MRU position, as in any cache. If the line is

not reused before the next miss in the set, the next line inserted replaces it. At this

point it is very important to remember that [53], just as [60] and this Thesis, deal

with non first level caches. LIP exploits the fact that in these caches many lines are

dead on arrival (i.e. they are not reused in the cache before their eviction) because

all their potential short term temporal or spatial locality is exploited in upper level

caches.

50 Chapter 3. Bimodal Set Balancing Cache

While LIP works well for some workloads, it may tend to retain in the non-LRU

positions of the recency stack lines which are actually not useful, that is, that do

not belong to the current working set. Thus a Bimodal Insertion Policy (BIP) that

tries to adapt the contents of the set to the active working set of the application

was also proposed in [53]. BIP achieves this by inserting with a low probability ε

the incoming lines in the MRU position of the recency stack, operating like LIP all

the other times.

There is not an absolute winner between BIP and the traditional MRU insertion

policy, BIP being better suited for some applications and the traditional policy for

others. Thus [53] proposed the Dynamic Insertion Policy (DIP), which uses set

dueling to track the behavior of both insertion policies in order to apply the best

one to the remaining cache sets, called follower sets. Set dueling requires dedicating

a fraction of the cache sets to operate always under BIP and another fraction to

apply always MRU insertion. A group of 32 sets dedicated to each policy is found

to be good in [53]. The misses in one of the groups of sets increase the value of a

global saturating counter while the misses in the other group decrease it. The most

significant bit of the counter indicates then which is the best policy in each moment.

All the follower sets apply the policy indicated by the counter.

The DSBC relies on the unbalance of the working set of different sets to trigger

the mechanisms that make it different from a standard cache. As a result it is

oriented to reduce conflict misses rather than capacity misses. Another consequence

of this approach is that its metrics must be defined at the cache set level in order

to find these unbalances, which is indeed the case of the SSL.

The adaptive insertion policies proposed in [53] alleviate the lack of capacity of

the cache to hold the data set manipulated by an application. Since this is a global

problem for all the cache, these policies are applied to all the sets at once. For the

same reason, DIP, the one that can adapt dynamically to the characteristics of the

workloads, relies on a global metric gathered on the behavior of all cache sets.

This way, it looks straightforward that DSBC and DIP should be complementary

and that implementing them simultaneously in a cache will offer a higher level of

protection against misses than using only one of them. This is also very feasible given

their reduced hardware overhead. Nevertheless, the simultaneous implementation

3.3 Bimodal Set Balancing Cache 51

of DSBC and DIP, referred as DSBC+DIP henceforth, yields results very similar or

even worse than the ones achieved with any of them independently, as we will see

in Section 3.5. The main problems happen when DIP chooses BIP for the followers.

DSBC displaces the LRU line of the source sets, as it seems the natural option. This

means that the line that DIP exposes to be evicted on the next miss in the source

set of an association is actually saved by DSBC, which moves it to the destination

set. Since these lines are not actually useful, their existence in the destination set

gives place to unsuccessful second searches, which delay the resolution of the miss

by the time taken to make a new access to the tag array. Even worse, they may

expel an actually useful line just inserted in the LRU position of the destination set

before it gets a chance to be reused.

When DIP chooses the traditional insertion policy for the followers, a DSCB+DIP

cache behaves very much as a DSBC with two penalties. The first one, which is in-

herent to DIP, is the existence of sets (32 in our implementation, as advised in [53])

that are forced to apply BIP for the sake of the set dueling even when it is not

performing well. The other is that when these sets are involved in an association

they generate the problems discussed above.

As a result, while these policies seem complementary, they require a coordinated

approach to work properly together. Our proposal is presented in the next section.

3.3. Bimodal Set Balancing Cache

A first issue we explore in the attempt to exploit jointly DSBC and the adaptive

insertion policies is the possibility of using the same metric to control them. This

will ease their coordination and it can even simplify the hardware with respect to the

one required for implementing them separately, thanks to the reuse of the hardware

that computes the metric. A metric per set like the one that DSBC requires cannot

be obtained from the global counter used by DIP. Thus we checked whether the

decision that DIP takes based on the set dueling can be made instead based on the

SSL provided by the DSBC. This would not only simplify the design of the cache,

but also avoid having always a fraction of the cache sets working with a wrong

policy, even if this fraction is small. A way to achieve this is to use the SSL of

52 Chapter 3. Bimodal Set Balancing Cache

each set to decide whether the traditional insertion policy or BIP is better suited

for that specific set. Our proposal is to change the insertion policy of a set to BIP

only if it gets saturated (SSL=2K-1 for a saturation counter in the range 0 to 2K-

1), and revert to MRU insertion when it reduces clearly its SSL. An SSL below K

has been chosen to trigger the change to MRU insertion. This proposal, which we

call Local DIP, only involves a saturation counter and one additional bit per set,

called insertion policy bit, that indicates the insertion policy of the set. Local DIP

is compared with DIP in terms of IPC improvement and miss rate reduction over

a baseline 8-way second level cache of 2MB with lines of 64 bytes in Figures 3.1

(a) and 3.1 (b), respectively. BIP uses ε = 1/32 as the probability a new line is

inserted in the MRU position of the recency stack instead of in the LRU one in both

implementations. The simulation environment and the benchmarks are explained

in Section 3.4. The results are similar, Local DIP being slightly better than DIP on

average. Thus we dropped set dueling in favor of a local per-set decision based on

its SSL.

Let us consider now the nature of the SSL. A high SSL indicates that the set

cannot hold its working set, but it is difficult to know only with this value whether

this is a problem specific to the set, which means other sets have no problems with

their working sets, or a global problem of capacity of the cache. The answer lies

in the comparison with the SSL of the other cache sets. If the cache has enough

capacity to hold its working set, the DSBC mechanism should be able to find suitable

sets to be associated to the problematic one, allowing it to displace part of the lines

of its working set to a destination set with underutilized lines. If the DSBC cannot

associate the set, that is because there are no sets with a SSL low enough to deem

them good candidates to receive lines from other sets. This then points to a potential

problem of capacity of the cache, which can be dealt with adopting BIP. Since DSBC

only seeks to initiate associations when a set is saturated, a good strategy is to first

try to associate the set to a destination set, and if no good candidate is found,

change the set insertion policy to BIP.

Altogether this strategy equates to first trying to consider the high SSL in the set

as a local problem, that is, conflict misses due to the oversubscription of this specific

set, and if this fails, consider that there may be a global problem of capacity which

requires turning to BIP. If the cache has a capacity problem, it is very likely that sets

3.3 Bimodal Set Balancing Cache 53

0

5

10

15

%
 I

P
C

 i
m

p
ro

v
em

en
t DIP

Local DIP

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n

(a)

0

20

40

60

%
 M

is
s
 R

a
te

 r
e
d

u
c
ti

o
n

DIP

Local DIP

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n

(b)

Figure 3.1: Percentage of IPC improvement (a) and miss rate reduction (b) related to
a 2MB 8-ways and 64 bytes line size baseline cache using DIP and Local DIP.

that were chosen previously as destinations of an association become saturated too.

Thus we propose that destination sets that become saturated change their insertion

policy to BIP. Relatedly, it is logical that if the source set of an association gets

saturated and its destination set is applying BIP, the source set changes to BIP too.

This acknowledges that a capacity problem rather than a local conflict problem is

being faced. Finally, just as in our Local DIP, if the SSL of a set in BIP mode drops

below K, its insertion policy changes to MRU insertion, since the capacity problems

seem to have disappeared.

The eviction of recently inserted lines in destination sets that operate under BIP

by lines displaced from their source set was identified as one of the problems of

the DSBC+DIP approach in Section 3.2. BIP puts useful lines in destination sets

in a dangerous situation because, since they are inserted in the LRU position, any

displacement before their reuse evicts them from the cache. Our design avoids this

enforcing that destination sets in BIP mode are in read-only mode. This means

that misses in their source set will lead to searches in them, but no displacements of

lines from the source set will be allowed. This is consistent with our view that BIP

is triggered to deal with capacity problems rather than conflicts. Another positive

side-effect of this policy is that since no displacements are allowed in BIP mode, it is

easier to break the association, which is in fact not helpful when there is a capacity

problem. Let us recall that the association is broken when during its operation the

destination sets evicts all the lines it received from the source set. Finally, when the

54 Chapter 3. Bimodal Set Balancing Cache

SSL of a destination set goes below K, besides reverting to MRU insertion, it also

enables again the displacement of lines from its source set.

Altogether, our proposal, called Bimodal Set Balancing Cache (BSBC) because

it is a Set Balancing Cache with an integrated BIP, has almost the same hardware

overhead as a DSBC. Only one additional bit is required per set in order to store its

current insertion policy. As for the time required to apply the BSBC algorithms, just

as in the DSBC and DIP, they are triggered by misses and can be thus overlapped

with their resolution. The contention in the tag array due to second searches has

been considered in our evaluation.

3.4. Simulation environment

We have used the same simulation environment and executed the benchmarks

under the same conditions as in Chapter 2. Still, we have increased the number

of benchmarks tested in order to strengthen the obtained results. These additional

benchmarks (429.mcf, 470.lbm and 482.sphinx3) are very memory-demanding, which

results in big working sets and therefore high capacity miss rates. For this reason,

the SBC can only help partially to improve their performance. This way in this

evaluation 13 benchmarks from the SPEC CPU 2006 suite will be used. They are

characterized in Table 3.1, which shows the number of accesses to the L2, the miss

rate in the L2 cache both in the two-level (2MB L2) and the three-level (256kB)

configurations, and the component of the suite they belong to.

3.5. Experimental evaluation

The BSBC and the compared techniques have been applied in the second level

for the two-level configuration and in the two lower levels for the three-level con-

figuration. As for the parameters that are specific to the different approaches used

in this study, DIP uses 32 sets dedicated to each policy to decide between BIP and

3.5 Experimental evaluation 55

Table 3.1: Benchmarks characterization. MR stands for miss rate.

Bench L2 Accesses 2MB L2 MR 256kB L2 MR Comp.
bzip2 125M 9% 41% INT
mcf 720M 31% 56% INT
milc 255M 71% 75% FP

namd 63M 2% 5% FP
gobmk 77M 5% 10% INT
soplex 105M 8% 15% FP
hmmer 55M 10% 41% INT
sjeng 32M 26% 27% INT

libquantum 156M 74% 74% INT
lbm 580M 31% 32% FP

omnetpp 100M 28% 91% INT
astar 192M 23% 48% INT

sphinx3 122M 68% 76% FP

MRU insertion. This BIP as well as the one triggered by the BSBC use a prob-

ability ε = 1/32 that a new line is inserted in the MRU position of the recency

stack. The DSBC and the BSBC use a Destination Set Selector of four entries (see

Section 2.4.1).

Figures 3.2 and 3.3 show the performance improvement in terms of instructions

per cycle (IPC) for each benchmark in the two-level and the three-level configura-

tions tested, respectively. The figures compare the baseline not only with DSBC and

DIP, but also with a combination of both approaches without coordination. This

latter configuration is tested to show the importance of coordinating the behavior

of policies designed to deal with different problems. The bar labeled geomean is the

geometric mean of the individual IPC improvements seen by each benchmark.

In the two-level configuration the BSBC always has a positive or, at worst, in the

case of 445.gobmk benchmark, a negligible negative effect on performance smaller

than 1%. The geometric mean of the relative IPC improvement for BSBC with

respect to the baseline configuration is 4.8% in the two-level configuration. DIP,

DSBC and DIP+DSBC achieve 3.2%, 3.6% and 3%, respectively. The analysis based

on IPC points again to the importance of the contributions of this Thesis. A non

coordinated attempt to deal with capacity and conflict misses such as DIP+DSBC

is outperformed by all the configurations tried.Nevertheless, our coordinated effort

of DIP and DSBC guided by the SSL achieves clearly the best overall results. The

56 Chapter 3. Bimodal Set Balancing Cache

0

5

10

15

%
 I

P
C

 im
pr

ov
em

en
t

Dynamic SBC
DIP
DIP+DSBC
Bimodal SBC

40
1.

bz
ip

2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

ge
om

ea
n

(a)
Figure 3.2: Percentage of IPC improvement over the baseline in the two-level configu-
ration.

0

5

10

15

%
 I

P
C

 im
pr

ov
em

en
t

Dynamic SBC
DIP
DIP+DSBC
Bimodal SBC

40
1.

bz
ip

2

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

ge
om

ea
n

(b)
Figure 3.3: Percentage of IPC improvement over the baseline in the three-level configu-
ration.

situation is very similar in the configuration with three levels of cache. Here BSBC

improves 6% on average the IPC with respect to the baseline system, while DIP,

DSBC and DIP+DSBC achieve increases of 3.8%, 5% and 4%, respectively.

Finally, BSBC is able to clearly outperform both static and dynamic versions in

streaming applications like 429.mcf, 433.milc and 482.sphinx3 and only diminishing

performance in 444.namd and 470.lbm. In these latter cases where applying a differ-

ent insertion policy with little accuracy can be harmful, the ε parameter of the BIP

insertion policy allows to better adjust its operation. We performed experiments

applying different values, achieving 5.5% improvement using an ε = 1/16 and 5.2%

with an ε = 1/8 over the three-level baseline configuration without degrading the

performance of any benchmark.

3.5 Experimental evaluation 57

0

50

100
(a)

0

50

100
(b)

0

50

100
(c)

401.Bzip2
429.Mcf

433.Milc
444.Namd

445.Gobmk
450.Soplex

456.Hmmer
458.Sjeng

462.Libquantum
470.Lbm

471.Omnetpp
473.Astar

482.Sphinx3
mean

b
a
se

D
IP

D
S

B
C

B
S

B
C

b
a
se

D
IP

D
S

B
C

B
S

B
C

First Misses

Second Misses

First Hits

Second Hits

Figure 3.4: Miss, secondary miss, hit and secondary hit rates for the (a) L2 cache in the
two-level configuration, (b) L2 cache in the three-level configuration, and (c) L3 cache
in the three-level configuration.

The behavior of DIP, DSBC and BSBC is compared in the second level cache

of the hierarchy with two levels of caches and the two lower levels of the hierarchy

with three levels in Figure 3.4. It shows the rate of accesses that result in misses

after a single access to the tag-array (primary misses) or two (secondary misses), and

accesses that hit in the cache in the first check of the tag-array (primary hits) or after

the second one (secondary hits). Only DSBC and BSBC present secondary accesses,

which take place when an access misses in the source set of an association. The last

group of columns (mean), represents the arithmetic mean of the rates observed in

each cache. For example in the L2 of the two-level configuration the BSBC gets an

average miss rate (considering both kinds of misses) of 25.2% compared to the 30%

of the baseline configuration. This means a relative reduction in the miss rate of

16%. In this cache DIP achieves a miss rate reduction of 10% and DSBC of 11.5%.

So we can see that our design allows the two policies to work coordinately getting

58 Chapter 3. Bimodal Set Balancing Cache

the best of each one of them. The ratio of all the cache accesses that result in

secondary misses is 2% and 3% for BSBC and DSBC, respectively. The additional

delay of a secondary miss with respect to a primary miss is small, but still it is good

that BSBC not only generates more hits than DSBC but also reduces by 1/3 the

number of secondary misses. The reduction is not surprising if we realize that in

applications with capacity problems, the saturation of the destination sets will avoid

displacements of lines that are actually not useful. This is will also enable these sets

to break the association before. Let us remember that an association is broken when

the destination set evicts all the lines received from the source set. Altogether this

leads to fewer unsuccessful secondary searches than in DSBC. DSBC and BSBC

present the same rate of accesses that result in secondary hits, about 4%.

Looking at individual benchmarks we can appreciate how BSBC adapts to the

different types of applications, often performing better than both DIP and DSBC.

For example, in 433.milc, 462.libquantum and 482.sphinx3, which are more suited

to DIP than to DSBC, BSBC achieves similar results to DIP (somewhat worse

in 482.sphinx3), and better than DSBC. The BSBC is also able to adapt to those

applications that benefit more from DSBC because of imbalances in the working sets

sizes for different cache sets. This happens, for example, in 401.bzip2, 471.omnetpp

and 473.astar, where BSBC and DSBC work better than DIP. Therefore, the BSBC

works largely as DIP for streaming applications using BIP, and mostly as the DSBC

when the application presents imbalances among the working sets of sets. It is often

the case that the BSBC even improves over both approaches by combining both

behaviors.

From this figure we can see how BSBC is able to work largely like DSBC when

there are unbalances among sets and largely like DIP when capacity problems appear

in the cache. The coordination of both approaches is responsible for the large

benefits of BSBC.

After evaluating BSBC related to its underlying techniques we analyze here how

it performs in comparison with some related proposals. Figures 3.5 (a) and (b) com-

pare the IPC improvement in the two and three-level configurations, respectively,

among pseudoLIFO, DRRIP and the BSBC. DRRIP (using Hit Priority) [28] use

32 sets dedicated to each policy for each core to decide between BRRIP and SRRIP.

This bimodal policy uses a probability ε = 1/32 that a new line is inserted with a

3.5 Experimental evaluation 59

0

5

10

15

%
 I

P
C

 i
m

p
ro

v
em

en
t

PseudoLIFO

DRRIP

Bimodal SBC

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n
(a)

0

5

10

15

%
 I

P
C

 i
m

p
ro

v
em

en
t

PseudoLIFO

DRRIP

Bimodal SBC

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n

(b)

Figure 3.5: Comparison with recent proposals in terms of IPC improvement in the two
(a) and three-level (b) configurations.

long re-reference interval prediction. The probabilistic escape LIFO we evaluate, or

pseudoLIFO in what follows, approximates the hit counts by the next power of two

for escape probabilities and uses 4 dedicated sets every 1024 sets in the cache for

each one of the four policies described in [9]. The last group of bars corresponds to

the geometric mean.

In Figure 3.5 (a) we can observe how BSBC achieves the best performance in

terms of IPC, followed by pseudoLIFO with 3.4% and, finally, DRRIP 3%. As

for the three-level configuration, Figure 3.5 (b) shows that pseudoLIFO and DR-

RIP achieve the same degree of IPC improvement: 3.4%. We can observe that

pseudoLIFO outperformed DIP and DIP+DSBC in the two-level configuration (see

Figure 3.2). Nevertheless the opposite happened in the three-level configuration

(compare Figure 3.5 (b) with Figure 3.3), and by somewhat larger margins. This,

coupled with the negligible hardware cost and simple algorithm of DIP were the

main reasons to choose BIP as the preferred approach to deal with capacity misses

in the BSBC design.

As for the miss rate reduction, we can see in Figure 3.6 that the results vary

between the 16% reduction for the BSBC and the 11% of the pseudoLIFO and

DRRIP approaches. Benchmark by benchmark, DRRIP is the best one in three of

them while BSBC in nine. We must take into account that most of the approaches

turn misses into hits, while the BSBC turns them into secondary hits, which suffer

the delay of a second access to the tag array.

60 Chapter 3. Bimodal Set Balancing Cache

0

20

40

60

%
 M

is
s
 R

a
te

 r
e
d

u
c
ti

o
n

PseudoLIFO

DRRIP

Bimodal SBC

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n

(b)

Figure 3.6: Miss rate reduction of the BSBC and some recent proposals in the two-level
configuration.

3.5.1. Average memory latency and power consumption

Figures 3.7 and 3.8 show the percentage of power consumption and latency re-

duction achieved by BSBC related to the two and three-level baseline configurations,

respectively. The bars for both magnitudes are broken down in the percentage of

hits that are satisfied in the second (and third level for the latter case) level of the

memory hierarchy or in the main memory. We do not show the percentage due to

the L1 hits because it is quite similar for all the approaches. Using CACTI [21]

we have deduced the power consumption due to second searches. As the tag check

delay means only a 3% of the total power consumption per read/write access in the

cache, our approach has a negligible power consumption overhead. Note that the

percentage that second hits represent in terms of power consumption and latency

are considered in this analysis.

3.6. Cost

We consider here the cost of BSBC in terms of storage. The cost of DSBC,

already discussed in Section 2.7, is also computed for comparison purposes, the cost

of DIP being negligible (just 10 bits for the global counter).

3.6 Cost 61

0

20

40

60

80

100

401.Bzip2
429.Mcf

433.Milc
444.Namd

445.Gobmk
450.Soplex

426.Hmmer
458.Sjeng

462.Libquantum
470.Lbm

471.Omnetpp
473.Astar

482.Sphinx3
mean

P
o
w

e
r

L
a
te

n
cy

P
o
w

e
r

L
a
te

n
cy

Main Memory Hits

L2 Hits

Figure 3.7: Average power consumption and memory latency reduction achieved by the
BSBC and breakdown of the accesses in the two-level configuration related to the
baseline.

0

20

40

60

80

100

401.Bzip2
429.Mcf

433.Milc
444.Namd

445.Gobmk
450.Soplex

456.Hmmer
458.Sjeng

462.Libquantum
470.Lbm

471.Omnetpp
473.Astar

482.Sphinx3
mean

P
o
w

e
r

L
a
te

n
cy

P
o
w

e
r

L
a
te

n
cy

Main Memory Hits

L3 Hits

L2 Hits

Figure 3.8: Average power consumption and memory latency reduction achieved by the
BSBC and breakdown of the accesses in the three-level configuration related to the
baseline.

The BSBC, like the DSBC, requires the following additional hardware with re-

spect to a standard cache: a saturation counter per set to compute the SSL, an

additional bit per entry in the tag-array to identify displaced lines (d bit), an As-

sociation Table with one entry per set that stores a bit to specify whether the set

is the source or the destination of the association, and the index of the set it is

associated to, and finally a Destination Set Selector (DSS) to choose the best set for

an association. A 4-entry DSS has been used in our evaluation. The BSBC needs

also one bit per set to indicate the set insertion policy. Based on this, Table 3.2

calculates the storage required for a baseline 8-way 2 MB cache with lines of 64B

assuming addresses of 42 bits.

62 Chapter 3. Bimodal Set Balancing Cache

Table 3.2: Baseline, DSBC and BSBC storage cost in a 2MB/8-way/64B/LRU cache
Baseline DSBC BSBC

Tag-store entry:
State(v+dirty+LRU+[d]) 5 bits 6 bits 6 bits

Tag (42− log2 sets− log2 64) 24 bits 24 bits 24 bits
Size of tag-store entry 29 bits 30 bits 30 bits

Data-store entry:
Set size 64*8*8 bits 64*8*8 bits 64*8*8 bits

Additional structs per set:
Saturation Counters - 4 bits 4 bits
Insertion policy bit - - 1 bit
Association Table - 12+1 bits 12+1 bits

Total of structs per set - 17 bits 18 bits

DSS (entries+registers) - 4*(1+12+4)+2*(2+4) bits 4*(1+12+4)+2*(2+4) bits

Number of tag-store entries 32768 32768 32768
Number of data-store entries 32768 32768 32768

Number of sets 4096 4096 4096
Size of the tag-store 116kB 120kB 120kB

Size of the data-store 2MB 2MB 2MB
Size of additional structs - 8714B 9226B

Total 2164kB 2176kB (0.55%) 2177kB (0.6%)

3.7. Analysis

In this section we evaluate how the performance and cost of BSBC vary with

respect to the parameters of the cache. Also we have analyzed its internal behavior.

Finally, we study the BSBC performance in a multicore environment.

3.7.1. Impact of varying cache parameters

All along this section we will always use as baseline the 2MB/8-way/64B/LRU

L2 cache of our two-level configuration. Table 3.3 shows the miss rate reduction

achieved by BSBC as well as the storage overhead it involves as the cache size

varies between 256kB and 4MB. The BSBC always reduces the average miss rate

obtained, but as the cache size increases the working set of some benchmarks fits

better, reducing the opportunities of improving it.

3.7 Analysis 63

Table 3.3: Cost-benefit analysis of BSBC as a function of the cache size.
Cache size Baseline miss rate BSBC miss rate BSBC miss rate reduction BSBC storage overhead

256KB 48.4% 42% 13.2% 0.53%
512KB 43.1% 36% 16.4% 0.55%
1MB 36.5% 30.8% 15.6% 0.57%
2MB 30% 25.2% 16% 0.6%
4MB 24% 20.5% 14.5% 0.63%

Table 3.4: Cost-benefit analysis of BSBC as a function of the line size.
Line size Baseline miss rate BSBC miss rate BSBC miss rate reduction BSBC storage overhead

64B 30% 25.2% 16% 0.6%
128B 27.4% 23.4% 15.6% 0.28%
256B 24% 20% 16.6% 0.13%

Table 3.5: Cost-benefit analysis of BSBC as a function of the associativity.
Associativity Baseline miss rate BSBC miss rate BSBC miss rate reduction BSBC storage overhead

8-ways 30% 25.2% 16% 0.6%
16-ways 29.3% 24.6% 16% 0.37%
32-ways 29% 24.3% 15.2% 0.28%

Table 3.4 studies the cost-benefit of BSBC comparing the miss rate reduction

achieved by it versus the additional storage cost it incurs as a function of the line

size in the baseline cache. The increase in the line size reduces proportionally both

the number of lines and sets, being the BSBC cost mostly proportional to the latter

as we can see.

Table 3.5 makes the same study from the point of view of the associativity

considering values of 8, 16 and 32. The increase of associativity reduces the number

of sets, and thus the relative cost of BSBC, but increases the tag size. Miss rates

and their reduction stay very flat. Also, just as the experiments in Section 3.5

considering caches that duplicated the associativity, this table shows that making

shared usage of the lines of two sets under heuristics like the ones proposed by BSBC

is much more effective than organizing the cache lines in sets with twice or even four

times larger.

3.7.2. BSBC behavior

Firstly, we analyze here the percentage of misses that occur in the BSBC which

insert the new line in the MRU or in the LRU position, that is, applying the tradi-

tional insertion policy or BIP, in comparison with DIP. Then, we analyze the BSBC

64 Chapter 3. Bimodal Set Balancing Cache

behavior based on measurements in the L2 cache of the two-level configuration. In

this latter case, we have performed some experiments on particular parameters of

DSBC, a combination of DSBC and DIP without coordination (DSBC+DIP) and,

finally, BSBC. Namely, we gathered the percentage of lines displaced that are never

used, the average number of reuses per displaced line and the number of lines evicted

from a set which are the next miss in that set. This latter value is the number of

times that a given line X is evicted from a set to insert a new line, and then (after

may be several hits in the middle), the next miss happens on that line X.

Figure 3.9 shows the miss rate reduction for both DIP and BSBC related to the

baseline, which is represented by the horizontal dotted line in 100. The ratio of

misses is broken down into the percentage of misses which insert the new line in

the MRU position, applying the traditional MRU insertion policy, or in the LRU

position, applying BIP. Note that, in this case, we are referring to the original

set, because second searches which result in misses do not imply a new insertion

in the destination set. The average number of insertions which take place in the

LRU position is 48%, 78% and 28% in the L2 cache of the two-level configuration,

in the L2 of the three-level configuration and, finally, in the L3 of the three-level

configuration, respectively. As for DIP, it inserts lines in the LRU position with a

probability of 54%, 82% and 60%, respectively.

As for the average number of hits per displaced line, DSBC achieved a 3.3 on

average, DSBC+DIP 1.1 and, finally, BSBC 6. It is worthy to point out that the

number of displacements for DSBC and BSBC is similar, unlike DSBC+DIP, that

performs about 20% more, achieving a lower ratio of hits per displaced line as well.

Regarding the average number of displaced lines that are never used, its percentage

is 28% for DSBC, 37% for DSBC+DIP and 24% for BSBC. Finally, the percentage

of misses that go to the last evicted line in the set is, on average, 1% for DSBC, 3%

for DSBC+DIP and 0.5% for BSBC.

We can conclude, according to these results, that BSBC is able to reduce the

harmful behaviors that may appear if DSBC and DIP are combined without coor-

dination. Also, we can infer that our designs select in a more accurate way which

lines should be displaced as well. However, the prevention of evicting lines that have

been very recently inserted in the cache and which presumably have little locality is

not the main reason for the difference between the performance obtained by BSBC

3.7 Analysis 65

0

20

40

60

80

100

(a)

0

20

40

60

80

100

(b)

0

20

40

60

80

100

(c)

401.Bzip2

429.Mcf

433.Milc

444.Namd

445.Gobmk

450.Soplex

456.Hmmer

458.Sjeng

462.Libquantum

470.Lbm

471.Omnetpp

473.Astar

482.Sphinx3

mean

D
IP

B
S

B
C

D
IP

B
S

B
C

Misses with insertion in MRU

Misses with insertion in LRU

Figure 3.9: Insertions in the MRU and LRU position after a miss in the DIP and BSBC
designs for the (a) L2 cache in the two-level configuration, (b) L2 cache in the three-level
configuration, and (c) L3 cache in the three-level configuration.

related to the other approaches. We believe that the possibility of choosing the

insertion policy at the cache set level, rather than for the whole cache at once, like

in other approaches, is more important. Moreover, avoiding the displacement of

useless lines to destination sets when they are saturated brings great improvements

for BSBC, since it gets a ratio of hits per displacement high enough to make the

percentage of useless displaced lines less critical.

3.7.3. Multicore experiments

The concepts underlying the Set Balancing Cache are directly applicable to a

multicore environment. We have performed experiments using the same two-level

baseline system described in Table 2.1 with a shared L2 cache instead. The bench-

66 Chapter 3. Bimodal Set Balancing Cache

Table 3.6: Multiprogrammed workloads characterization.
Name Benchmarks L2 Miss rate MPKI

MW1 471.omnetpp + 473.astar 42% 22.7
MW2 433.milc + 482.sphinx3 70% 28.5
MW3 401.bzip2 + 462.libquantum 39.5% 14.8
MW4 462.libquantum + 470.lbm 36.1% 45.9
MW5 401.bzip2 + 429.mcf 26.7% 35.9
MW6 429.mcf + 433.milc 61% 103
MW7 444.namd + 471.omnetpp 24% 7.1
MW8 456.hmmer + 482.sphinx3 55.5% 11.1
MW9 445.gobmk + 473.astar 15% 5.5
MW10 462.libquantum + 471.omnetpp 70% 28.6
MW11 433.milc + 473.astar 48.8% 22.7
MW12 458.sjeng + 482.sphinx3 55.4% 9.6
MW13 429.mcf + 444.namd 18.4% 19.6
MW14 429.mcf + 445.gobmk 22.7% 27.6
MW15 433.milc + 470.lbm 37.8% 56.7
MW16 401.bzip2 + 458.sjeng 10.8% 1.8

marks described in Table 3.1 have been combined in order to make 16 multipro-

grammed workloads of two applications and 6 of four with at least an MPKI of 1

(details are shown in Table 3.6 for the former and in brackets in each graph for

the latter). They have been simulated using the same parameters as in Section 3.5.

When each core commits the preestablished number of instructions (1010) it con-

tinues its execution until the last core finishes, in order to keep competing for the

shared resources in the L2 cache.

Our evaluation relies on metrics usually referenced in the bibliography: through-

put, weighted speedup [67], which indicates execution time reductions, and the har-

monic mean of weighted speedups [48], which balances fairness and performance. We

have compared our designs with some recent techniques which were briefly described

in Section1.2.2.1. The Thread-Aware Dynamic Insertion Policy (TADIP) [27] has

been simulated (specifically TADIP-Feedback) using 32 sets dedicated to each policy

for each core to decide between BIP and MRU insertion. BIP uses a probability

ε = 1/32 that a new line is inserted in the MRU position of the recency stack.

The Pseudo-LIFO policy used in our experiments, which proved to benefit shared

caches [9], approximates the hit counts by the next power of two for escape probabil-

ities and uses 4 dedicated sets every 1024 sets in the cache for its particular policies.

Also, we have included PIPP [84] in our tests, using 32 dedicated sets to track the

3.7 Analysis 67

hit counters information in the utility monitors and a probability of promotion of

3/4 and 1/128 in normal and streaming mode, respectively. The cache switches to

streaming mode if the number of misses per interval is greater than 4095 or the miss

rate in the shadow tags exceeds 12, 5%.

Figure 3.10 shows the percentage of throughput improvement over the baseline

for the different approaches considered, running 2 applications. We can see how the

DSBC and BSBC average improvements, 2% and 3% respectively, are smaller than

those reported in the single core platform. Despite that, both approaches achieve

improvements of up to 10%, only PIPP gets a better peak improvement. BSBC

obtains the best overall results. Second comes TADIP thanks to its thread-aware

design, followed by DSBC.

Despite the moderate throughput improvement DSBC and BSBC get, both tech-

niques achieve a high miss rate reduction in the shared L2 cache, being the L1 cache

miss rate almost the same in all approaches. Figure 3.11 shows that this reduction is

7.8% and 10% related to the baseline, respectively. TADIP gets a 8%, PseudoLIFO

7% and, finally, PIPP 5%.

The studies for the other common metrics related to speedup show very similar

trends to those observed in Figure 3.10 for the throughput improvement. Therefore,

Figure 3.12 (a) and 3.12 (b), devoted to the weighted speedup and the harmonic

mean of weighted speedups or fairness, respectively, only show the values for BSBC

and TADIP, the two approaches which performed better in the throughput experi-

ments. BSBC outperforms the baseline configuration by 2.2% and 3.4% in terms of

weighted speedup and fairness, respectively, while TADIP does it by 2.2% and 3.3%.

In order to see how DSBC and BSBC work when the number of cores increases, Fig-

ure 3.13 shows the same study as in Figure 3.10 but running 4 applications that share

a 4MB 16-ways L2 cache. This time, DSBC is outperformed by all approaches but

PseudoLIFO. As for BSBC, although it is only outperformed by TADIP, it achieves

a small 2% of throughput improvement over the baseline, like PIPP. We can see how

approaches specifically designed for multicore environments, like TADIP, get better

results as the number of cores increases due to its strength and thread-awareness.

68 Chapter 3. Bimodal Set Balancing Cache

-5.0

0.0

5.0

10.0

M
W

1

M
W

2

M
W

3

M
W

4

M
W

5

M
W

6

M
W

7

M
W

8

M
W

9

M
W

1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

-5.0

0.0

5.0

10.0

%
 T

h
ro

u
g

h
p

u
t

im
p

ro
v

em
en

t

 r
el

a
te

d
 t

o
 L

R
U

DSBC

BSBC

PIPP

PseudoLIFO

TADIP

Figure 3.10: Percentage of throughput improvement over the baseline configuration
using several policies when running 2 applications.

0

10

20

30

40

%
 M

is
s
 r

a
te

 r
e
d

u
c
ti

o
n

 r
e
la

te
d

 t
o

 L
R

U

DSBC

BSBC

PIPP

PseudoLIFO

TADIP

M
W

1

M
W

2

M
W

3

M
W

4

M
W

5

M
W

6

M
W

7

M
W

8

M
W

9

M
W

1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

-40% -22% -11%

Figure 3.11: Percentage of miss rate reduction over the baseline configuration using
several policies when running 2 applications.

-5

0

5

10

M
W

1
M

W
2

M
W

3
M

W
4

M
W

5
M

W
6

M
W

7
M

W
8

M
W

9
M

W
1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

(a)

-5

0

5

10

%
 W

ei
g

h
te

d
 s

p
ee

d
u

p

	i
m

p
ro

v
em

en
t

re
la

te
d

 t
o

 L
R

U BSBC

TADIP

-5

0

5

10

M
W

1
M

W
2

M
W

3
M

W
4

M
W

5
M

W
6

M
W

7
M

W
8

M
W

9
M

W
1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

(b)

-5

0

5

10

%
 H

a
rm

o
n

ic
 I

P
C

 m
ea

n

	
im

p
ro

v
em

en
t

re
la

te
d

 t
o

 L
R

U BSBC

TADIP

Figure 3.12: Percentage of weighted speedup (a) and harmonic IPC (fairness) improve-
ment (b) over the baseline configuration using BSBC and TADIP.

3.8 Summary 69

0

5

10

15

401+444+

445+456

(2.5)

444+445+

456+471

(3.1)

401+433+

450+462

(33.9)

433+471+

473+482

(42.3)

401+444+

458+471

(3)

444+458+

462+471

 (16.2)

geomean

0

5

10

15

%
 T

h
ro

u
g
h

p
u

t
im

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

DSBC

BSBC

PIPP

PseudoLIFO

TADIP

Figure 3.13: Percentage of throughput improvement over the baseline configuration
using several policies when running 4 applications.

3.8. Summary

There has been extensive research to improve the behavior of caches, particularly

of non first-level ones. Different approaches are sometimes better suited to reduce

different kinds of misses. For example, DSBC [60] and DIP [53] target somewhat

different problems. If implemented jointly in the cache, complementary techniques

like these ones should have the potential to achieve better performance than any

of them isolated. Nevertheless, as this chapter shows with the case of DSBC and

DIP, implementing them at the same time is not enough to exploit their advantages.

In fact, the direct simultaneous application of these techniques often yields worse

results than the usage of only one of them. This chapter introduces a coordinated

mechanism that combines both techniques in order to increase performance by tack-

ling conflict and capacity misses at the same time. We have analyzed the reasons for

this behavior and proposed in a reasoned way an integrated design of these policies

that allows them to cooperate effectively. As part of this design the usefulness of

the Set Saturation Level (SSL) metric to detect problems of capacity as well in the

cache is demonstrated.

Simulations using benchmarks with varying characteristics show that, when

properly integrated with the proposed Bimodal Set Balancing Cache (BSBC) de-

sign, the joint application of the DSBC and BIP policies goes from being often one

of the worst approaches to being the best one. For example in a 2MB, 8-way second

level cache DIP+DSBC jointly reduces the miss rate by 8.3% in relative terms, while

70 Chapter 3. Bimodal Set Balancing Cache

DSBC and DIP reduce it by 12% and 10% respectively. With BSBC the relative

miss rate reduction almost doubles to 16%. This leads also the BSBC to get the

largest IPC improvement, 4.8% on average for this configuration, compared to the

3% that a straight DSBC+DIP implementation provides.

Additionally, we have also shown that BSBC is directly applicable to shared

caches, where it has performed well, achieving 10% of miss rate reduction on aver-

age and 3% of throughput improvement. This is even better than some techniques

specifically designed to work on this kind of platforms, like PIPP [84]. The DSBC

has been also evaluated in shared caches, reducing the baseline miss rate by 7.8% on

average and achieving throughput improvements of up to 10%. Despite that, tech-

niques that include support for thread-awareness, like TADIP [27], have performed

better in our experiments considering a shared LLC when the number of cores in-

creases. This calls for the extension of BSBC with thread-awareness to achieve

better results in shared caches.

Chapter 4

Virtually Split Cache

4.1. Introduction

In the previous chapter we concluded that different access streams, specifically

those generated by different threads sharing cache resources, should be handled by

applying particular treatments to each one of them. Extending this concept to first-

level caches would mean to separately consider the two main streams these caches

deal with, namely those due to data and instruction accesses. First-level caches with

a split design for instructions and data are commonly found nowadays in modern

processors. This design is the preferred one, rather than a unified approach, as it

is well suited for the design of the processor pipeline so that different stages access

different caches, there being no conflicts between them and achieving a better mem-

ory bandwidth than a unified cache. Also, the instruction cache design is simplified

as it only requires to support read operations, while a unified or data cache needs

hardware to deal with both read and write operations. However, unified approaches,

usually found in the lower levels of the memory hierarchy, provide a better use of re-

sources by automatically sharing the cache capacity for both instructions and data,

at the expense of requiring a higher latency, design complexity and limiting the total

bandwidth. Also, a first-level unified cache would usually need to be multi-ported;

so that it could process simultaneously both instructions and data requests, which

requires more complexity. Furthermore, the higher locality instructions usually have

compared to data is not considered in unified approaches, which are thus unaware of

71

72 Chapter 4. Virtually Split Cache

the different space requirements instructions and data could demand. We propose

in this chapter the Virtually Split Cache or VSC, a middle-way solution aimed to

embrace the advantages that both split and unified designs provide while it allevi-

ates their drawbacks. This new design distributes cache resources between data and

instructions depending on their particular demand. Finally, this new technique uses

a bank level granularity in order to simplify its design, strongly restricted by the

issue logic.

4.2. Background and Motivation

Nowadays, the most usual configuration for the first level of the cache memory

hierarchy devotes independent caches for both instructions and data. This is the

preferred configuration, mainly, because of the following reasons:

Different instructions can access the instruction cache, in the fetch stage of

the pipeline, and the data cache, usually in the memory stage, at the same

time in pipelined processors. Unified approaches would require several access

ports and, thus, more complexity to provide the same advantages.

The instruction cache design may be simpler, as it only needs to perform,

ideally, read operations.

Unified caches of the same aggregated capacity imply higher latencies.

Nevertheless, unified approaches provide higher hit rates by automatically shar-

ing resources instead of statically partitioning them.

Several designs have appeared in the last years in order to improve performance

or reduce power consumption in first-level caches.

As for the first-level data caches, many techniques have been proposed in order

to increase performance. Besides increasing associativity, logically or virtually as

pseudo-associative caches do [2][6][87], or early evicting dead blocks in order to retain

in the recency stack data with higher locality [43][46], other techniques oriented to

better distribute the memory references across the cache in order to reduce conflict

misses have also appeared. For instance, the B-Cache [86] tries to balance the

4.2 Background and Motivation 73

accesses to the sets of first-level direct-mapped caches by increasing the decoder

length and incorporating programmable decoders and an ad-hoc replacement policy.

Also, other approaches try to reduce cache access latency by partitioning the first-

level data cache in order to place data near those units which are more likely to

use them [56], leverage in software techniques to increase performance [47] or merge

different designs to reduce power consumption [23].

Regarding the first-level instruction caches, techniques to increase performance

have been focused on code layout optimization [76] or code reorganization [42] due

to the different locality properties and access patterns instructions usually have

compared to data.

These previous approaches concentrate their efforts on improving the design of

only one kind of cache, but they are not aware of the underutilized space instruction

or data caches may provide. This way, they are unable to balance resources in the

first level of the memory hierarchy.

On the other hand, unified cache designs are usually found in lower levels of the

memory hierarchy, where issue logic restrictions and latency constraints are more

relaxed. Many approaches have been proposed in order to increase performance at

these levels, both for private and shared configurations between several cores, due

to the recent appearance of chip multiprocessors (CMPs). Recent approaches are

mainly oriented to reduce capacity misses [53], conflict misses [60] or both [61][85].

There are also techniques specifically oriented to increase performance in shared last-

level caches (LLCs) of CMPs, which usually apply partitioning mechanisms [13][54]

to limit the amount of space devoted to each core.

Apparently, there is no previous research on unified caches focused on applying

different policies for instructions and data, that is, there are no unified approaches

that become aware of the different locality that instructions and data may have.

Even more, the design of hybrid approaches with characteristics of shared and split

caches has not ever been considered either.

In order to motivate the explanation of this possibility, we have performed stud-

ies increasing the cache size for both the instruction and data first-level caches in

order to emphasize the different locality and space requirements both caches have.

Figure 4.1 shows the evolution of the miss rate for both instruction and data caches

74 Chapter 4. Virtually Split Cache

1 2 3 4 5 6 7 8
0

5

10

15

20
429.Mcf

M
is

s
 r

a
te

1 2 3 4 5 6 7 8
0

2

4

6

8
444.Namd

1 2 3 4 5 6 7 8
0

5

10

15

20
445.Gobmk

1 2 3 4 5 6 7 8
0

2

4

6

8

10
450.Soplex

1 2 3 4 5 6 7 8
0

2

4

6

8
456.Hmmer

1 2 3 4 5 6 7 8
0

2

4

6

8

10
458.Sjeng

M
is

s
 r

a
te

1 2 3 4 5 6 7 8
0

5

10

15

20
470.Lbm

1 2 3 4 5 6 7 8
0

2

4

6

8
471.Omnetpp

Enabled ways

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12
473.Astar

1 2 3 4 5 6 7 8
0

2

4

6

8

10
482.Sphinx3

DL1

IL1

Figure 4.1: Miss rate for SPEC CPU2006 benchmarks as the number of allocated
ways varies for both instruction and data first-level caches. The X axis shows the
number of ways allocated from a 8-way 64KB cache (the remaining ways are dis-
abled).

varying their size while the number of sets remains unchanged at executing 10 bench-

marks from the SPEC CPU2006 suite. Further information about the evaluation

parameters can be found in Section 4.5. Results go from a direct-mapped 8KB cache

through a 8-ways 64KB cache, enabling one additional way in every cache related

to the previous one. Our 32KB 4-way baseline instruction and data caches, which

will be further described in Section 4.4, lay in between. Results show that for a

first group of benchmarks such as 444.namd, 471.omnetpp or 482.sphinx3, 3 ways

are enough to achieve a miss rate close to that one obtained using 8 ways in the

instruction cache, that is, allocating more than 3 ways in the instruction cache does

not provide better performance. On the other hand, allocating more than 4 ways in

the data cache usually means a lower miss rate for these benchmarks. This is due to

the lower locality, in terms of both space and time, that data have related to instruc-

tions. Therefore, instruction caches can provide data caches with space in order to

better balance the resources of the memory hierarchy for this group of benchmarks.

A second group includes those benchmarks where the opposite behavior happens.

For instance, during the execution of the 445.Gobmk and 458.Sjeng benchmarks, the

instruction cache can benefit from receiving underutilized ways from the data cache

4.3 Virtually Split Cache 75

from enabling 4 ways on. Finally, a third group embraces those benchmarks, usually

streaming applications, where both instruction and data caches are not hardly influ-

enced by the number of enabled ways. An example of this behavior can be observed

in benchmark 470.Lbm.

4.3. Virtually Split Cache

We propose a new cache design, aimed for the first level of the cache memory

hierarchy, which provides the benefits of a unified approach while not bringing its

inconveniences. Our design can be described as a k-way associative cache whose

data-store and tag-store are partitioned so that part of them will be devoted to

caching instructions while the other part will cache data, giving place to two virtual

caches. Each one of these caches has its own port(s), which operate independently,

acting therefore as a traditional split first-level cache. Tag and data stores are

often partitioned in banks in order to achieve power, latency and/or bandwidth

improvements [33][69][73][78]. In our design both stores are partitioned in k banks

each, one per cache way. This way, each bank has as many sets as the cache, but it

holds the tag (in the tag-store) or the line (in the data-store) of a single way. When

a traditional k-way associative cache with this design is accessed, the k banks of its

tag-store are read in parallel so that their content for the selected set is compared

with the requested tag. The k banks of the data-store are also read in parallel in the

meantime in order to minimize the latency in case one of these comparisons results

in a hit, as in that case the data from the corresponding bank will be immediately

sent to the processor. Our proposal, called Virtually Split Cache or VSC, divides its

k banks, or correspondingly ways, in each store in two groups, one for instructions

and another one for data, which operate as two independent caches. The number

of ways assigned to each cache, each way corresponding to the pair composed of

one bank of the tag-store plus one bank of the data-store, is decided dynamically

by our design based on an analysis of the behavior and space requirements of the

instructions and data streams.

Our design needs some modifications with respect to a standard k-way cache in

order to be able to dynamically assign different roles to its banks. Figure 4.2 shows

a tag-store bank (or way) of the VSC. The line i/dj indicates whether way j of the

76 Chapter 4. Virtually Split Cache

Tag-store way j

i/dj
Sinstr Sdata

Select

M
UX

Indxinstr

Indxdata

i/dj

Indx

0

1

M
UX

Taginstr

Tagdata

Tag

0

1

Hiti/dj

Figure 4.2: Way j in the tag-store of
the Virtually Split Cache.

Tag-store

i/d
Sinstr Sdata

Indxinstr Indxdata

Taginstr Tagdata

Hit

k

k

Data-Instr-store

i/d
Sinstr Sdata

Indxinstr Indxdata

Data-instr

k

k

Instr Select
k

i/d Data Select
k

i/d

 Instr DataInstr Hit Data Hit

Figure 4.3: Virtually Split Cache general
structure.

cache is assigned to instructions (value 1) or data (value 0). This signal controls

the multiplexers that choose whether the address lines to select the set that must

be indexed in the bank (Indx) and the tag that must be stored or compared (Tag)

are those than come from the port for instructions or data. Similarly, it selects

the appropriate selection line (Sinstr or Sdata) so that the bank will only perform

accesses requested by the corresponding port. The modifications in the banks of the

data-store of the VSC are analogous. Figure 4.3 shows the general structure of the

VSC. Both the tag-store and the data-store, which is called data-instr-store in the

figure to outline it can store both kinds of information, receive all the signals needed

to operate each bank, both from the instruction and from the data port. They

also receive the lines i/dj, 0 ≤ j < k so that each one of them controls whether

the j-th bank of the store is assigned to either instructions or data, and operates

therefore under the signals from that port. The selection boxes in the lower part

of the figure take the k hit/miss lines from the tag-store, the values read from the

data-instr-store, and the i/d lines that indicate whether each bank is assigned to

data or instructions. With this information they can calculate in a straightforward

way whether the current instruction (data) access has resulted in a hit or not, and

in the first case, select the value from the associated bank and provide it to the

processor.

4.3 Virtually Split Cache 77

We have assumed a single bank per way in each store and a single port per virtual

cache in order to simplify the explanation. Nevertheless the banks of the VSC can be

further subdivided as long as all the banks associated to the same way are controlled

by the signals from the same virtual cache. This way, they could be subdivided to

save energy [73], or to distribute the sets among interleaved subbanks in order to

support multiple ports per virtual cache [59][69]. Any other of the usual strategies to

implement multiple cache ports [59] could also be applied to the VSC. Additionally,

while in the abstract representation in Figure 4.3 the tag-store and the data-instr-

store have been separately depicted in order to simplify the representation, a smarter

organization can be implemented. Namely, the tag-store banks could be interleaved

with the data-instr-store banks, so that the two banks that form a way are nearby.

In this situation, if the instructions port and the data port were in opposite sides

of the array of banks, and the ways assigned to each virtual cache were always the

nearest ones to its port, the wire delay of the VSC would be minimized. This smart

design will be the one evaluated in Section 4.5.

There remains the issue of the algorithm to allocate ways to the virtual caches.

Our design uses a counter I of ways that must be assigned to the instruction cache.

All the lines i/dj, 0 ≤ j < I are set to 1, the ones for I ≤ j < k being set to 0.

Our approach initially allocates half the ways for instructions and the other half

for data. During its operation, the number of ways allocated to each virtual cache

varies depending on each particular demand, provided that both caches have always

one allocated bank at least. When a bank is reassigned to another virtual cache its

contents are invalidated. This implies that this new allocated line per set is likely

to be selected as a victim during the next replacement operation. We now explain

in turn two practical designs of the VSC that use different algorithms to measure

the demand of the virtual caches and decide the number of ways assigned to each

one of them.

4.3.1. Shadow Tag VSC

This first approach tracks the space requirements for both instructions and data

by estimating how well both streams would work if they acquired one additional

way per set or, globally, an additional bank. Two shadow tags per set are used

78 Chapter 4. Virtually Split Cache

in order to achieve this. One shadow tag stores the last instruction tag evicted

from the set and the other one stores the last data tag evicted from the same set.

Each time a miss occurs in a certain set the appropriate shadow tag, depending on

the kind of request, is checked. If a hit occurs in the shadow tag and this is an

instruction request, a global counter devoted to instructions is increased. Similarly,

we use another global counter for data misses that hit in the data shadow tag as

well. Also, as allocating an additional bank to a virtual cache implies deallocating

it from the other cache, this approach needs additional structures to predict the

performance loss implied in a virtual cache if it is deprived of one of its ways. For

this purpose, our design uses two additional counters to track how many hits take

place in the LRU position of every set for both instructions and data. Periodically,

each 1 million cache accesses in our experiments, all 4 counters are checked. If

the value of the shadow tag counter for data is greater than the value of the LRU

counter for instructions, one bank initially devoted to instructions is allocated for

data; and vice versa. The reason is that if the number of hits in shadow tags for data

is higher than the number of hits in LRU positions for instructions, allocating one

additional bank for data brings more benefits in terms of performance than keeping

the same bank devoted to instructions. Analogous conclusions can be obtained for

the opposite situation. Note that the number of allocated banks for instructions and

data remains unchanged if both conditions or none of them are fulfilled. After this

process the four counters are reset. Figure 4.4 shows the structure of this approach.

4.3.2. Global Selector VSC

While having a pair of shadow tags per set implies a small storage overhead

(see Section 4.6), cheaper alternatives can be explored. This way we propose a

lighter design which gets similar results using a common saturation counter, or global

selector, for both instructions and data. This global selector is increased each time

a miss occurs for an instruction request and decreased in case of a data miss. The

counter value is checked after an update. If the global selector holds the maximum

value, it means that instructions need more space. One additional bank, used for

data hitherto, is allocated for instructions in this case. If the saturation counter

has its minimum value, it means that more space for data must be provided. Our

approach selects one instruction bank and allocates it for data. The global selector

4.4 Simulation environment 79

Instruction
Banks

Data
Banks

S
H
A
D
O
W

T
A
G
S

S
H
A
D
O
W

T
A
G
S

Hit
Counter

Hit
Counter

Hit
Counter

Hit
Counter

LRU LRU

Comp Comp

Figure 4.4: Shadow Tag VSC.

Instruction
Banks

Data
Banks

GS

+ -

Miss Miss

Figure 4.5: Global Selector VSC.

is then initialized with a value in the middle of its range. We have determined

experimentally that a good range for the Global Selector counter is between 0 and

twice the cache associativity minus one. This way this is the range used in our

experiments, the reset value being the associativity. Figure 4.5 shows the structure

of this design.

4.4. Simulation environment

To evaluate our approach we have used the SESC simulator [58] with a baseline

configuration based on a four-issue out-of-order core with an hybrid branch predictor

scheme as well as two on-chip cache levels. Both data cache levels use 32 MSHRs [41]

while the instruction L1 uses 4. This configuration is detailed in Table 4.1.

We have used CACTI [21] to derive the latency related to each component of

the memory hierarchy.

We have performed experiments using 13 benchmarks of the SPEC CPU 2006

suite. They have been executed using the reference input set (ref), during 10 billion

instructions after the initialization. The results achieved under these conditions

are very stable and representative of real behaviors. Table 4.2 characterizes them

providing the miss rate for both instruction and data L1 caches, the combined miss

80 Chapter 4. Virtually Split Cache

rate regarding the number of accesses and misses both caches have altogether and

the CPI obtained with the baseline.

4.5. Experimental evaluation

We have applied VSC in the first level of the cache memory hierarchy to evaluate

its performance in terms of IPC improvement and miss rate reduction. We have

compared both versions of the VSC as well as a dual-ported unified cache with

aggregated capacity, 64KB and 8 ways, with the baseline. The hit latency, calculated

with CACTI [21], for this unified approach is 3 cycles. Both versions of the VSC have

been evaluated using a variable latency depending on the number of banks allocated.

Several research papers [2][6][87] as well as actual well-known architectures [75] have

different latencies in the L1 cache despite the issue logic restrictions. Namely, we

have estimated a latency for each one of the two virtual caches provided by the VSC

of 1 cycle when it has 1 or 2 allocated banks, 2 cycles from 3 to 5 banks and, finally,

3 cycles if 6 or 7 banks are allocated. This latter latency of 3 cycles is actually an

overestimation used to evaluate the design using whole numbers depending on the

number of allocated banks, but 2 cycles would suffice in the worst case according

to CACTI. For this reason we have also made evaluations of the VSC using a fixed

hit latency of 2 cycles, which is the same used in the baseline configuration. The

results of these experiments were very similar to those of the VSC with variable

hit latencies, therefore they are not shown. Figure 4.6 shows the percentage of

IPC improvement for the VSC designs and the unified cache related to the split

baseline configuration. The unified cache degrades the IPC improvement related to

the baseline in 1.5% due to its higher latency. Our Global Selector VSC gets a 3.2%

improvement while using shadow tags this percentage is increased, up to 3.7%.

Figure 4.7 shows the percentage of miss rate reduction related to the combined

miss rate of the baseline. The unified approach gets a 6% of miss rate reduction,

the Global Selector VSC 11% and, finally, the Shadow Tag VSC 13%.

We can conclude that our VSC combines the lower latency of split approaches

while providing even smaller miss rates than unified caches.

4.5 Experimental evaluation 81

Table 4.1: Architecture. In the Table RT and TC stand for round trip and tag
directory check, respectively

Processor

Frequency 4GHz
Fetch/Issue 4/4
ROB entries 176

Integer/FP registers 96/80

Memory subsystem

L1 i-cache & d-cache 32kB/4-ways/64B/LRU/WB
L1 Cache latency (cycles) 2 RT

L2 (unified, inclusive) cache 2MB/8-way/64B/LRU/WB
L2 Cache latency (cycles) 14 RT, 6 TC

Main memory latency 62ns

Table 4.2: Benchmarks characterization.
Benchmark DL1 miss rate IL1 miss rate Combined miss rate CPI

401.bzip2 2.8% 0.001% 1.8% 1.49
429.mcf 13% 0.001 8.9% 9.1
433.milc 5.7% 0.001% 3.7% 3.57

444.namd 1.7% 0.01% 1% 0.96
445.gobmk 1% 3% 1.7% 1.51
450.soplex 5% 1% 2.7% 2.32
456.hmmer 1.2 0.003% 1% 2.08
458.sjeng 1% 1% 1% 1.6

462.libquantum 7.8% 0.0001% 3.1% 2.85
470.lbm 20% 0.0001% 9.6% 2.08

471.omnetpp 6.8% 1% 6% 2
473.astar 5.2% 0.001% 3.1% 3.3

482.sphinx3 5.3% 0.01% 3% 2.94

0

5

10

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n

0

5

10

%
 I

P
C

 i
m

p
ro

v
em

en
t

re
la

te
d

 t
o

 t
h

e
b

a
se

li
n

e
ca

ch
e

Unified Cache

Shadow Tag VSC

Global Selector VSC

Figure 4.6: Percentage of IPC improve-
ment related to the baseline cache.

0.0

0.5

1.0

1.5

M
is

s
 r

a
te

 r
e
d

u
c
ti

o
n

 r
e
la

ti
v

e

 t
o

 t
h

e
 b

a
s
e
li

n
e
 c

a
c
h

e

Unified Cache

Shadow Tag VSC

Global Selector VSC

4
0
1
.b

zi
p
2

4
2
9
.m

cf
4
3
3
.m

il
c

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k
4
5
0
.s

o
p
le

x
4
5
6
.h

m
m

er
4
5
8
.s

je
n
g

4
6
2
.l
ib

q
u
an

tu
m

4
7
0
.l
b
m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

g
eo

m
ea

n

Figure 4.7: Percentage of miss rate reduc-
tion related to the baseline cache.

82 Chapter 4. Virtually Split Cache

4.5.1. Average memory latency and power consumption

We have analyzed the average memory latency and the power consumption of

our approaches related to the baseline configuration. The power consumption per

access in the different levels of the hierarchy has been estimated using CACTI [21],

the energy consumption in the first level of our VSC being slightly higher than that

in the first level of the split baseline configuration. Figure 4.8 shows the relative

average memory latency of the memory hierarchy when using the Shadow Tag and

Global Selector VSC related to the one measured when the baseline split cache is

used, and Figure 4.9 shows a similar study in terms of power consumption. Each

bar is broken down in the percentage of hits that are satisfied in the first or second

level of the memory hierarchy or in the main memory. The last column shows the

arithmetic mean. As for the average memory latency, Shadow Tag VSC outperforms

the baseline cache by 5% while Global Selector VSC does it by 4%. Moreover,

despite the larger power cost of the VSC itself, when we look at the total power

consumption of the memory hierarchy, the Shadow Tag VSC achieves 10% power

consumption reduction with respect to the baseline design, while the Global Selector

VSC provides an average 8% reduction. The reason for the larger reduction achieved

by the Shadow Tag VSC is the larger fraction of accesses to the second level cache

that it is able to avoid.

0

20

40

60

80

100

401.Bzip2 429.Mcf 433.Milc 444.Namd 445.Gobmk 450.Soplex 456.Hmmer 458.Sjeng 462.Libquantum 470.Lbm 471.Omnetpp 473.Astar 482.Sphinx3 mean

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

Main Memory Hits

L2 Hits

L1 Hits

Figure 4.8: Average memory latency reduction of the Shadow Tag and Global Se-
lector VSC relative to the split baseline.

4.6 Cost 83

0

20

40

60

80

100

401.Bzip2 429.Mcf 433.Milc 444.Namd 445.Gobmk 450.Soplex 456.Hmmer 458.Sjeng 462.Libquantum 470.Lbm471.Omnetpp 473.Astar 482.Sphinx3 mean

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

S
T

G
S

Main Memory Hits

L2 Hits

L1 Hits

Figure 4.9: Power consumption of the Shadow Tag and Global Selector VSC relative
to the split baseline.

Table 4.3: Baseline (Instructions cache + Data cache), Shadow Tag and Global
Selector VSC storage cost in a 32KB/4-way/64B/LRU cache.

Baseline Shadow Tag VSC Global Selector VSC

Tag-store entry:
State(v+dirty+LRU) 1+1+2 bits 1+1+3 bits 1+1+3 bits

Tag (42− log2 sets− log2 64) 29 bits 29 bits 29 bits
Size of tag-store entry 33 bits 34 bits 34 bits

Data-store entry:
Set size 64*4*8 bits 64*8*8 bits 64*8*8 bits

Additional structs per set:
Shadow Tags - 2*29 -

Total of structs per set - 58 bits -

Total Counters: - 16*3 + 19 bits 4 bits

No of tag-store entries 512 1024 1024
No of data-store entries 512 1024 1024

No of sets 128 128 128
Size of the tag-store 2.0625KB 4.25KB 4.25KB

Size of the data-store 32KB 64KB 64KB
Size of additional storage - 936B 4 bits

Total (I+D) 2*34.0625KB ∼69.1KB (∼1.4%) ∼68.25KB (∼0.1%)

4.6. Cost

In this section we evaluate the cost of both Shadow-Tag and Global Selector

Virtually Split Caches in terms of storage requirements. Global Selector VSC only

needs 4 additional bits, assuming an aggregated associativity of 8, for the saturation

counter. Shadow Tag VSC needs two additional tags per set as well as two counters

for tracking the hits in the shadow tags, either for instructions or data, and two

additional counters in order to track the number of hits in LRU positions. According

to our experiments and using the periodicity described in Section 4.3.1, the counter

devoted to the number of hits in the LRU position for data needs 19 bits, while

16 bits are enough for the rest of the counters. Based on this, Table 6.4 calculates

84 Chapter 4. Virtually Split Cache

the storage required by both approaches of the VSC and for a 4-way 32KB baseline

cache with lines of 64B assuming addresses of 42 bits. Note that we have taken into

account the storage cost for both instruction and data cache in the split baseline

configuration. We can see that the storage cost of both approaches is small, even

negligible in the case of the Global Selector VSC. We have also calculated that

the storage cost of the Shadow Tag VSC could be halved, about to 0.65%, if we

reduced the number of bits per tag to 10 bits applying the hash functions proposed

in [57], since the number of lines that a set can hold, and consequently the number

of possible values that a shadow tag can have, is limited.

4.7. Analysis

In this Section we analyze the internal behavior of our approach as well as the

performance it achieves when the cache resources are shared among several cores.

4.7.1. VSC behavior

Figure 4.10 shows a box plot with the distribution of the number of banks allo-

cated by the Shadow Tag VSC for both instructions and data during the execution

of the benchmarks considered in Figure 4.1. The number of banks devoted to both

instructions and data over time has been sampled each 1000000 accesses to the

cache, i.e, each time a new adjustment is performed in the Shadow Tag VSC. The

height of each box indicates the percentage of samples that lay between the first and

third quartiles, while its width indicates the size of the sampled population. The

median of the considered population is shown as a cross line in each box. Whiskers

show both the minimum and maximum samples within the most significative pop-

ulation and, finally, circles, which colour gradually varies depending on the number

of samples they embrace, represent outliers. We can observe how the poorer locality

data have compared to instructions translates into all benchmarks allocating, in a

certain moment of the execution, the maximum number of banks for data allowed

by our approach, the associativity minus one. On the other hand, half the bench-

marks allocate the maximum number of allowed banks for instructions in a certain

moment of time, but most of them are outliers, even allocating from 4 or more ways

4.7 Analysis 85

Data Inst

2

4

6

W
a

y
s

mcf
Data Inst

2

4

6

namd
Data Inst

2

4

6

gobmk
Data Inst

2

4

6

soplex
Data Inst

2

4

6

hmmer

Data Inst

2

4

6

W
a

y
s

sjeng
Data Inst

2

4

6

lbm
Data Inst

2

4

6

omnetpp
Data Inst

2

4

6

astar
Data Inst

2

4

6

sphinx3

Figure 4.10: Distribution of the number of banks allocated for instructions and data
using Shadow Tag VSC.

for instructions. As a result, all benchmark executions have always at least 3 banks

allocated for data, existing some outliers with 1 and 2 allocated banks, while the

minimum number of allocated banks for instructions is only 1, being 2 or 3 the com-

mon case. Only those benchmarks where the data working set is smaller than the

instructions one, like 445.gobmk or 462.lbm, or where resources are fairly balanced

between data and instructions, like 450.soplex or 458.sjeng, do not need to devote

more banks for data than for instructions.

4.7.2. Multicore experiments

We have performed experiments in a multicore environment configured with a

shared L2 cache of 4MB and 16 ways. We have used the benchmarks listed in Ta-

ble 4.2 to test 16 multiprogrammed workloads of two applications and 6 of four. Each

benchmarks is executed until it commits 10 billion instructions after the initializa-

tion, with the same reference input set as in the previous experiments. When each

core reaches this number of instructions it continues its execution until the slowest

core finishes, in order to keep competing for the cache resources. Figure 4.11 shows

the percentage of IPC improvement related to the baseline for both Shadow Tag

and Global Selector VSC. The last column indicates the geometric mean. Shadow

Tag VSC gets a 4% IPC improvement while Global Selector VSC a lower 3.2%. As

86 Chapter 4. Virtually Split Cache

0

2

4

6

8

10

4
7
1
+

4
7
3

4
3
3
+

4
8
2

4
6
2
+

4
0
1

4
6
2
+

4
7
0

4
2
9
+

4
0
1

4
3
3
+

4
2
9

4
4
4
+

4
7
1

4
8
2
+

4
5
6

4
4
5
+

4
7
3

4
7
1
+

4
6
2

4
3
3
+

4
7
3

4
5
8
+

4
8
2

4
4
4
+

4
2
9

4
4
5
+

4
2
9

4
3
3
+

4
7
0

4
0
1
+

4
5
8

g
eo

m
ea

n

0

2

4

6

8

10

%
 P

er
fo

rm
a

n
ce

 i
m

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 t

h
e

sp
li

tt
ed

 b
a
se

li
n

e

Shadow Tag VSC

Global Selector VSC

Figure 4.11: Performance improvement over the split baseline executing 2 applica-
tions using Shadow Tag and Global Selector VSC.

for the experiments executing 4 applications, shown in Figure 4.12, Shadow Tag

and Global Selector VSC obtain 4.5% and 3.7%, respectively. From these results we

can infer that the benefits of our VSC increase as the number of cores applying it

and sharing the lower level increases. As our VSC has been successfully proved to

reduce the miss rate, the number of accesses that the shared lower level must handle

0

2

4

6

8

401+444+

445+456

444+445+

456+471

401+433+

450+462

433+471+

473+482

401+444+

458+471

444+458+

462+471

geomean

0

2

4

6

8

%
 P

er
fo

rm
a

n
ce

 i
m

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 t

h
e

sp
li

tt
ed

 b
a
se

li
n

e

Shadow Tag VSC

Global Selector VSC

Figure 4.12: Performance improvement over the split baseline executing 4 applica-
tions using Shadow Tag and Global Selector VSC.

4.8 Summary 87

is lower, which increases performance.

4.8. Summary

This chapter introduces the Virtually Split Cache (VSC), a new design specifi-

cally oriented for the first level of the cache memory hierarchy that provides higher

hit rates than split configurations and lower latency than unified approaches at the

same time by balancing resources between instructions and data. It is aware of

the different locality instructions and data have and it allocates resources for both

depending on their demand. Two alternative designs to track the different require-

ments instructions and data demand are proposed. The first approach, the Shadow

Tag VSC, uses shadow tags to decide whether assigning one more bank for instruc-

tions or data increases performance. The second approach, the Global Selector VSC,

uses a common saturation counter to make instructions and data fight a duel for

resources.

Shadow Tag VSC achieved 3.7% IPC improvement and 13% and 10% of miss rate

and power consumption reduction related to a split baseline, respectively. Global

Selector VSC got 3.2% IPC improvement and 11% miss rate reduction needing only

4 bits of additional storage, while achieving 8% of power consumption reduction as

well. Furthermore, both approaches achieve notable reductions in power consump-

tion and have been successfully proved to work well in multicore environments.

Shadow Tag VSC outperformed a 4-core baseline configuration by 4.5% on average

in terms of throughput while the Global Selector VSC did it by 3.7%.

Chapter 5

Thread-Aware Bimodal Set

Balancing Cache

5.1. Introduction

In an attempt to make a more efficient usage of their caches, the memory hierar-

chies of many chip multiprocessors (CMPs) present last-level caches which are shared

by several cores, thus facilitating the dynamic allocation of their resources among the

cores. Unfortunately, the standard management strategies for private caches, which

are by nature thread-oblivious, often lead to suboptimal behaviors when applied to

shared caches. This fact has been largely recognized and studied, and a wide variety

of techniques to improve the performance, fairness and Quality of Service (QoS) of

shared caches have been proposed. Many approaches focus on the distribution of

the cache resources among the competing applications [13][54][74], while other ones

explore the adaption of cache policies to the behavior of each application [27], there

being also mixed proposals like [84]. Finally, there are also techniques, which being

oblivious to the behavior of each application, and thus also applicable to non-shared

caches, have proved to benefit shared caches [9][36][37][82]. In Chapter 3 we intro-

duced the Bimodal Set Balancing Cache (BSBC), an approach specifically designed

to reduce capacity and conflict misses at the same time in single core environments,

thanks to the Set Saturation Level (SSL) metric versatility. This technique proved

to be very beneficial in shared caches as well, although thread-aware techniques

89

90 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

showed that there is still room for improvement in this kind of environment.

In this chapter we extend the scope of application of the Set Saturation Level

(SSL) metric by proposing and evaluating a new strategy for shared caches which

takes some decisions based on the joint behavior of all the applications that share

the cache, while other decisions are specific to the particular behavior of each ap-

plication. Still, these latter decisions do not consider the application in isolation,

but rather take also into account how the other applications impact on the behavior

of the analyzed one. This new proposal considers both the potential unbalance in

the distribution of the memory references and the existence of working sets which

cannot be accommodated in the cache, and gives an appropriate answer to them in

a coordinated way. It is worthy to point out that these problems are exacerbated in

shared caches, where the capacity available to each application is diminished, and

where thrashing applications hurt not only themselves, but the other sharers as well.

Our technique for shared caches, called Thread-Aware Bimodal Set Balancing

Cache (TABSBC) detects the degree to which a given thread can suffer these prob-

lems in each cache set independently and applies the best combination of policies to

the lines of each thread at a set level by using the SSL metric.

5.2. Background and Motivation

There have been many proposals [8][17][25][54][70] specifically designed to opti-

mize the behavior of shared caches by partitioning their resources among the ap-

plications that share them. A problem with partitioning is that, depending on its

granularity and strictness, it can lead to resource underutilization. For example, in

a way-partitioning scheme it can well happen that the lines reserved to a given core

in some sets are of little or even no use, while other cores struggle to keep their

working set in those sets.

If we consider the traditional 3C classification of the cache misses, two kinds of

problems avoid the successful reuse of lines: the restrictions due to the placement

algorithm (conflict misses), and the lack of space to hold the working set (capacity

misses). In the scope of shared caches, we can further distinguish between self and

inter conflict and capacity misses. Self misses would be the ones that take place even

5.2 Background and Motivation 91

if the associated application had all the cache for itself, while the inter-conflict and

inter-capacity misses would be the new misses of the respective kind that appear

in the presence of other applications, considering together all their working sets.

Detecting the conflict and capacity misses of shared caches and addressing them

specifically seems thus a good management strategy.

A technique that follows this approach is Adaptive Set Pinning (ASP) [70], which

reduces inter-conflict misses according to our classification thanks to the ownership

of each cache set by a processor, which is the only one that can insert new lines in

it, the other processors having to resort to a small processor owned private (POP)

cache partition. It cannot help with self-conflict misses, though.

A proposal oriented to self and inter-capacity misses is the Thread-Aware Dy-

namic Insertion Policy (TADIP) [27], which extends to shared caches the insertion

policies introduced in [53] to deal with capacity misses in private caches. TADIP can

apply these policies in isolation to each independent thread according to the benefit

it can get from them, measured by means of set dueling. The thread-aware TA-

DRRIP [28] chooses the most appropriate Re-Reference Interval Prediction (RRIP)

insertion policy for each application based on set dueling, RRIP being mainly focused

on capacity misses, as we explained in Section 3.2. The Pseudo-LIFO policies [9]

are also particularly suited to capacity misses. These policies evict blocks from the

upper part of the fill stack, that is, among the most recently inserted lines of the

set, thereby retaining a large fraction of the working set in the cache. Dead-block

prediction based replacement and bypass policies [37], which try to avoid polluting

the cache with dead blocks by evicting them as soon as possible or even bypassing

them help mainly with the reduction of capacity misses as well.

Furthermore, there are approaches like Promotion/Insertion Pseudo-Partitioning

(PIPP) [84], which combines pseudo-partitioning with new insertion and promotion

policies. Namely, if the partitioning algorithm it relies on, which is Utility-based

Cache Partitioning or UCP [54], assigns n ways to a thread, its insertions take place

n positions away from the bottom of the recency stack, the top being the MRU

line. Also, hits do not promote lines to the MRU position, but a single position

up in the stack, and only with a given probability. This, coupled with a variation

for applications in streaming mode, gives PIPP special protection against capacity

misses.

92 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

As we see, there are no proposals to our knowledge that tackle specifically both

the self and inter-conflict misses as well as the self and inter-capacity misses we

identify in shared caches. Also, most of the proposals that target capacity problems

in shared caches take their insertion decisions globally, based on an average picture

of the cache behavior obtained either from set dueling [53] or set sampling [54]. As

a consequence, they apply those insertion decisions uniformly in all the cache sets.

5.3. Thread-Aware Bimodal Set Balancing Cache

When the techniques specifically designed for single core or private LLCs are

applied in shared caches, they are not aware of the interaction between several

threads in the cache. We will consider in turn the detection of the two problems

to retain the working set identified in Section 5.2 and the strategies to deal with

them in shared caches, followed by the coordinated implementation we propose.

Specifically, our approach coordinates in a sensible way the previously described

SBC, which mainly deals with conflict misses, with a modified BIP, which we have

called BIP-C, to tackle capacity problems by using the SSL metric to control both

behaviors.

5.3.1. Unbalances among sets: Conflict Misses

When several applications share a cache, each set should hold the working set

of all of them, and unbalance among sets can be exploited only if there are sets

that still have underutilized lines after considering together the working set of all

the applications. Thus, in principle it would not be of practical interest to distin-

guish between self and inter-conflict misses. We have considered the Dynamic SBC,

due to its flexibility and low complexity, in order to deal with unbalances among

sets. A single SSL per set would be an useful indicator of the joint pressure on

the set. Therefore, our proposal for shared caches relies on SSL to detect load un-

balance among sets and applies modified SBC policies, which will be described in

Section 5.3.4, to solve them.

5.3 Thread-Aware Bimodal Set Balancing Cache 93

5.3.2. Lack of space in the cache: Capacity Misses

An application experiences capacity misses when its working set cannot fit in the

cache even if the restrictions of the placement algorithm are raised. Since we use

SSL and SBC to deal with conflict misses, a situation of lack of capacity of the cache

can be detected by noticing that the SBC displacements of lines cannot be applied

or do not suffice to solve the stress in the cache sets. As we have seen in Chapter 3, a

clear indicator of this situation is the impossibility of finding appropriate destination

sets when a non associated set reaches the highest value in its saturation counter

applying SBC. This means that all the other sets are either already involved in

associations, or they have a SSL too high to become destination sets. When this

happens, a policy suitable for capacity misses should be applied to the set. While in

the BSBC design the insertion policy for sets with the highest SSL that could not

find a destination set was changed to BIP, in our TABSBC design for shared caches

we will use a modified version called BIP-C which will be described in Section 5.3.3.

There are two main problems left to be solved. The first one is how to return

to MRU insertion after switching to BIP-C if the working set evolves to fit in the

cache. If this happens, the SSL will decrease gradually thanks to the higher hit rate.

Thus, a simple solution is to revert to MRU insertion when the SSL falls below K,

as the BSBC does.

The second problem is that while the resolution of conflict misses displacing lines

from overloaded sets to underutilized ones without distinguishing the owner of the

displaced line seems sensible, this is not the case for the modification of the insertion

policy of different applications to reduce capacity misses. Applications with reason-

able amounts of locality will be hurt by BIP. The Thread-Aware Dynamic Insertion

Policy (TADIP) [27] has already shown the importance of this topic. TADIP uses

independent Set Dueling Monitors for each application sharing the cache in order

to discover the policy that suits it best in the presence of the other applications,

achieving substantially better results than applying BIP or MRU to all the threads

disregarding their individual characteristics.

The Set Dueling approach of TADIP leads to take global decisions for the whole

cache, that is, the insertion policy it chooses is applied to all the sets. This is

sensible, since it deals mainly with capacity problems, which in general affect the

94 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

0 200 400 600 800
0

20

40

60

80

100
(a)

Accesses in 433.milc

%
 o

f s
et

s

0 200 400 600 800
0

20

40

60

80

100
(b)

Accesses in 482.sphinx3

%
 o

f s
et

s

Figure 5.1: Distribution of the sets with a high (black), medium (gray) and low (white)
SSL for SPEC CPU 2006 application 433.milc during its simultaneous execution with
SPEC CPU 2006 application 482.sphinx3 in a 8-way 2MB cache. Samples each 5∗105K
accesses.

whole cache. But in our case some sets could solve their capacity problems thanks

to displacements to underutilized sets. Also it is possible that while a majority

of the sets are under pressure, a minority work well under MRU insertion, being

counterproductive to switch them to BIP. Figure 5.1 illustrates a situation we have

seen in many parallel executions. It classifies the sets of a 8-way 2MB L2 cache

shared by SPEC CPU 2006 applications 433.milc and 482.sphinx3, during the first

400 ∗ 106 accesses to the cache in three categories. The sets are classified according

to the value of an SSL which is only updated by the accesses by benchmark 433.milc

to the set. Concretely, an SSL is classified as low (0-5), medium (6-10) or high (11-

15). Another SSL updated in each set only by 482.sphinx3, not shown, is uniformly

saturated in all the sets along this simultaneous execution. Nevertheless we see there

is a representative and sustained 20% to 25% of sets in which 433.milc exhibits a low

SSL, pointing to a good locality that should benefit from MRU insertion. As a result

of the increasing number of cores in current systems, it is of the upmost priority to

reduce as much as possible the bandwidth requirements of shared LLCs, provided

the hardware complexity involved is within reasonable margins. Thus, given these

observations, we use one SSL per core per set to choose the appropriate insertion

policy with the best granularity.

5.3 Thread-Aware Bimodal Set Balancing Cache 95

5.3.3. BIP-C

Our proposal uses a modified BIP, which we call BIP-C, that inserts the incoming

lines not in the LRU position of the recency stack, but min{C−1, bK/2c} positions

away, where C is the number of cores sharing the cache and K the associativity. The

rationale for this is that while in a private cache it is only up to the owner application

to evict the line with a subsequent miss, or reuse it and bring it to the MRU position,

in a shared cache any other application can evict the line before the owner has a

chance to reuse it. The situation is even more challenging when the cache works

under our TABSBC proposal, as lines near the bottom of the LRU stack can be

replaced not only by incoming lines mapped to the set, but from lines that come

from displacements from source sets in associations as a result of applying SBC. Our

approach inserts deeply lines in the recency stack in typical configurations (K� C)

while allowing a few misses in the set from the other running threads before the line is

evicted, so that the owner has more chances to prove the merit of the line. Figure 5.2

shows an example of its operation in a LLC shared by 2 cores and assuming a

replacement operation driven by core number 1. In the following we will say an

application is in BIP-C mode in a set when its insertions apply this policy, and in

MRU mode otherwise. Figure 5.3 shows the throughput improvement of TABSBC

with respect to a baseline 4MB 16-way cache shared by four cores when using five

BIP variations in the presence of capacity problems. The variations are the original

BIP, BIP-CC, which inserts new lines as many positions away from the LRU one

as different cores have lines in the set; BIP-C/2, which inserts min{bC/2c, bK/2c}
positions away from the LRU one; BIP-2*C, which inserts new lines upper in the

stack, specifically min{2∗C, bK/2c} positions away from the LRU; and finally, BIP-

A
B
C
D

E

C

A

E

A

C

MRU

LRU
Original
State

Traditional
MRU

BIP BIP-C

A
B

B
C

B
E

(b) Insertion policies (after inserting new line E, owned by core 1, in set X)

1
1
2
2

1
2
2
1

1
2
2
1

1
2
1
2

Owner

Figure 5.2: Behavior of different insertion policies after inserting new line E in set X of
a 4-way LLC shared by 2 cores.

96 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

0

5

10

15

401+444+

445+456

(2.5)

444+445+

456+471

(3.1)

401+433+

450+462

(33.9)

433+471+

473+482

(42.3)

401+444+

458+471

(3)

444+458+

462+471

 (16.2)

geomean

0

5

10

15

%
 T

h
ro

u
g
h

p
u

t
im

p
ro

v
em

en
t

		
 r

el
a
te

d
 t

o
 L

R
U

TABSBC (BIP)

TABSBC (BIP-CC)

TABSBC (BIP-C/2)

TABSBC (BIP-2*C)

TABSBC (BIP-C)

Figure 5.3: Throughput improvement over a 4MB 16 ways baseline cache shared by 4
cores using TABSBC with different versions of BIP. MPKI of each workload in parenthesis
under its name.

C. The workloads consist of SPEC CPU 2006 benchmarks that will be presented

in Section 6.5 with all the other parameters of the simulations. BIP-C outperforms

clearly the other approaches. Altogether, TABSBC using BIP-C provides 1.1%

better throughput than a modified TABSBC using BIP due to the reasons explained

above.

5.3.4. Computing Set Saturation Levels

Section 5.3.1 argued that a single SSL counter per set is enough to detect unbal-

ance between sets, while Section 5.3.2 argued on the need to have one SSL per set

per core in order to learn the best insertion policy for each application. Thus TAB-

SBC uses one SSL per set per core. Each time an access updates a SSL, a Global

SSL (GSSL) is computed for the set. This value represents the global capacity of

the set to hold the particular working sets of all applications sharing the cache. The

GSSL does not need to be stored in the set; it is just supplied to the DSS (see

Section 2.4.1). Thus, if the GSSL computed is smaller than the maximum value

in the selector, and it is also below the saturation limit K (the cache associativity)

allowed for a set to be candidate to become a destination set, the set index and the

GSSL are stored in the DSS.

The GSSL can be computed by simply adding the SSLs and saturating the

outcome to the maximum value of a single SSL. The GSSL can be also tuned taking

into account the insertion policy of each application. Applications in BIP-C mode

5.3 Thread-Aware Bimodal Set Balancing Cache 97

always have a SSL≥ K, since they return to MRU mode when the SSL falls below

K, as this indicates that the working set fits in the set. This way, if their SSLs are

added up directly, these applications preclude by themselves GSSLs smaller than

K, making impossible for the corresponding sets to become destination sets. Still,

when an application is in BIP-C mode, its high SSL does not mean that it is using

effectively many lines in the set. Rather it means that there is high recent miss

rate, probably because the application is memory-intensive. As as result it is quite

probable that many of the lines that belong to the application in the set are of

little use and it would be better to give them to another application. Of course this

can also happen with applications with MRU insertion, but the chances are higher

among those with BIP-C. Thus in our experiments the SSL of applications in BIP-C

mode is scaled down for the sake of the computation of the GSSL by dividing them

by 2, since this can be implemented in hardware with a simple shift of one bit. This

minor change improved the throughput in our tests around 0.25%.

5.3.5. Interaction between the Insertion and the Placement

Policy

1. When to switch the insertion policy of a set to BIP-C? If a certain

application has capacity problems despite applying the previously described

policies, the associations established initially will become useless. In fact they

will be counterproductive because dead lines will be moved to destination

sets, giving later place to second searches that will be useless most of the

time, thereby delaying the resolution of misses and potentially increasing the

miss rates in the destination sets.

2. When to switch the insertion policy of sets involved in associa-

tions? Also, there must be a way to enable an application to change to

BIP-C in the sets that participate in an association, and eventually break it, if

the high SSLs continue. TABSBC does this by changing the insertion policy to

BIP-C also for (1) applications in destination sets in which their SSL reach the

highest value, and (2) applications in source sets that try to displace a line to

their destination set and find that the application follows BIP-C there. Notice

that the second situation implies that the SSL of the application has also the

98 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

highest value in the source set. This way, if an application suffers a capacity

problem in an association, this is first detected in the destination set, which is

the one that suffers more pressure because of the displacements, and then it is

propagated to the source set. Relatedly, in TABSBC if an application follows

BIP-C in a source set, it stops displacing lines to the destination set, since the

displacements are not helping. This avoids the counterproductive situation

described above. It also avoids the perverse effect that lines recently inserted

in the bottom of the recency stack of the destination set by BIP-C are evicted

due to displacements from the source set before having a chance to be reused.

Further, this strategy facilitates breaking the association, since this happens

when the destination set evicts all the lines from the source set. Misses in the

source set always lead to searches in the destination set while the association

lasts.

3. How are the displacements of lines between sets triggered? While

it is clear that insertion is ruled by the application that requests the line to

be inserted, a clarification is needed on the rules for displacements. TABSBC,

as the SBC, displaces the LRU line of the source set, as it is the line selected

by the replacement policy. Nevertheless its displacement must not be ruled by

the application that generates the eviction, but by the owner of the line to be

potentially displaced. Thus TABSBC requires storing the owner of each line

(log2C bits, where C is the number of cores) in the tag-store. Under a miss,

the field is examined for the LRU line in a set to decide which is the policy to

apply based on the insertion mode and SSL of its owner.

Finally, the association algorithm changes slightly with respect to the one in

SBC. Association attempts are triggered when under a miss the owner of the LRU

line is in MRU mode and its SSL is the highest one. This is sensible since this is

a precondition for a displacement to take place. The association takes place if the

DSS can provide a suitable destination set, that is, one with a GSSL smaller than

K.

Figure 5.4 shows a C-like pseudocode of the actions taken by TABSBC under an

access to a set. In the figure, SSL represents a vector with one value per core, which

means the SSL for each core in the accessed set. The computation of the GSSL and

5.3 Thread-Aware Bimodal Set Balancing Cache 99

a c c e s s (Core i , Address addr) {
i f h i t (addr) {

SSL [i]−−;
move addr l i n e to MRU;
i f lowlySaturated (SSL [i])

mode [i] = MRU;
}
e l s e {

SSL [i]++;
i f (t h i s i s a secondary search)

re turn ;
i f (s e t i s source s e t o f an a s s o c i a t i o n)

i f (a c c e s s (i , addr) i s s u c c e s s f u l in d e s t i n a t i o n S e t)
re turn ;

r eque s t addr l i n e to memory ;
l e t lineLRU = l i n e in LRU p o s i t i o n in s e t ;

i f (s e t i s not a s s o c i a t e d) {
i f (e x i s t s candidate d e s t i n a t i o n s e t in DSS) {

i f mode [lineLRU . owner] == MRU && saturated (SSL [lineLRU . owner])
a s s o c i a t e t h i s s e t to candidate d e s t i n a t i o n s e t ;

} e l s e i f sa turated (SSL [i])
mode [i] = BIP−C;

}

i f (s e t i s source s e t o f an a s s o c i a t i o n
&& mode [lineLRU . owner] == MRU
&& saturated (SSL [lineLRU . owner])

i f d e s t i n a t i o n S e t . mode [lineLRU . owner] == BIP−C {
mode [lineLRU . owner] = BIP−C;
e v i c t lineLRU from cache ;

} e l s e
d i s p l a c e lineLRU to MRU p o s i t i o n in d e s t i n a t i o n s e t ;

e l s e
e v i c t lineLRU from cache ;

i f (s e t i s the d e s t i n a t i o n s e t o f an a s s o c i a t i o n) {
i f s a turated (SSL [i])

mode [i] = BIP−C;
i f (the re are no l i n e s from the source s e t)

break a s s o c i a t i o n ;
}

}
}

Figure 5.4: TABSBC operation under a cache access.

100 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

corresponding update of the DSS, which take place when an SSL is updated, are

elided. The insertion of incoming lines, which simply follows the insertion policy of

the owner application in the set, is not reflected either because it takes place when

they arrive.

5.3.6. Contribution of each policy to TABSBC performance

TABSBC coordinates techniques to improve the cache behavior in a thread-aware

way. In order to justify our design decisions, Figure 5.5 analyzes the contribution of

each portion of TABSBC to its global behavior by comparing the average throughput

improvement that several policies achieve over the 4MB 16-ways baseline cache

shared by two cores described in Section 5.4 when running the workloads in Table 5.1.

From left to right, a non-thread aware Dynamic Insertion Policy (DIP) [53], which

sets the whole cache in BIP or LRU insertion mode, provides less performance

than a non-thread aware SBC. The Bimodal Set Balancing Cache (BSBC), which

is unaware of the existence and the behavior of the different applications, performs

much better by coordinating efficiently placement and insertion policies to reduce

conflict and capacity misses. TADIP thread-awareness applied to insertion policy

management brings large advantages in shared caches, as seen in [27].

The next policy evaluated, TASBC, is a thread-aware SBC, that is, it is similar

to TABSBC but without applying any insertion policy to tackle capacity problems.

TASBC has no advantages over SBC because the problem solved by SBC, i.e., the un-

balance of the load of different cache sets, is not specific to the behavior of a thread,

but to the combined behavior of all of them in each set, as Section 5.3.1 explains.

The importance of coordinating adequately the insertion and placement policies can

be seen by comparing BSBC, which is totally thread-oblivious but coordinates the

insertion policy and SBC, with DIP+TASBC, which applies independently DIP and

a thread-aware SBC, being each one of them totally unaware of the behavior of the

other one.

Applying TADIP with TASBC in an uncoordinated way brings similar perfor-

mance advantages to those of discovering and applying the best insertion policy to

each thread in each set independently using the SSL metric instead of set dueling,

a technique we have called TADIP-Local. If TADIP-Local is combined with SBC

5.3 Thread-Aware Bimodal Set Balancing Cache 101

0

1

2

3

4

D
IP

S
B

C

B
S

B
C

T
A

D
IP

 (
B

IP
)

T
A

S
B

C
D

IP
+

T
A

S
B

C
T

A
D

IP
+

T
A

S
B

C
T

A
D

IP
-L

o
ca

l
T

A
D

IP
-L

o
ca

l+
S

B
C

T
A

B
S

B
C

 (
B

IP
)

T
A

B
S

B
C

 (
B

IP
-C

)

0

1

2

3

4

%
 I

P
C

 i
m

p
ro

v
em

en
t

re
la

te
d

 t
o
 L

R
U

Figure 5.5: Throughput improvement over a 4MB 16 ways baseline cache shared by two
cores under several policies.

(which, let us remember, has very similar performance to TASBC) in an uncoordi-

nated way, a small additional performance gain is achieved. Let us recall that all

those approaches that combine in a non-coordinated way a technique that deals with

capacity problems, like DIP, with another one that mainly tackles conflict misses,

like SBC, can generate harmful behaviors like displacing recently inserted lines in

source sets working under BIP, giving raise to unsuccessful second searches, or like

evicting just inserted lines in destination sets due to displacements, depriving them

of a chance to be reused before being evicted. They have an aggregate storage

overhead as well. This way, better results are obtained when TADIP-Local+SBC is

improved implementing the coordination provided by the TABSBC, giving place to

TABSBC (BIP), which uses BIP for the applications that suffer of capacity prob-

lems, just like TADIP and TADIP-Local. Finally, when TABSBC applies the BIP-C

policy proposed in this paper, we reach the maximum performance.

The relative contributions of each policy vary of course with the environment.

For example thread-awareness relevance grows with the number of cores sharing the

cache, while SBC policies become more important for workloads whose working sets

fit relatively well in the cache, for which MRU insertion works well.

102 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

5.4. Simulation environment

We use the SESC simulator [58] and the two-level baseline configuration de-

scribed in Chapter 2 with some adjustments to evaluate our proposal. The baseline

system consists of two cores with private L1 caches and a shared L2 cache. The

size of this cache and its associativity have been increased up to 4MB and 16 ways,

respectively. We have used the same workloads as in Section 3.7.3 and under the

same conditions. The statistics for each application are only recorded during the

execution of its first 10 billion instructions. These long simulations, in which ap-

plications can go through several stages, lead to lower IPC improvements over the

baseline for all the policies in our experiments than those observed in other studies.

We feel the results achieved in this way are very stable and representative of real

behaviors. Table 5.1 characterizes the multiprogrammed workloads with the miss

rate and MPKI of each combination in the 4MB 16-way L2 shared cache.

5.4.1. Metrics

Our evaluation relies on metrics usually referenced in the bibliography: Through-

put, Weighted Speedup [67], which indicates execution time reductions, and the

Harmonic mean of weighted speedups [48], which balances fairness and performance.

Concretely, being N the number of applications of the multiprogrammed workload

and assuming one application per core, IPCi the IPC achieved by application i

when running concurrently with the others in the workload, and SingleIPCi the

IPC of application i when running in isolation:

Throughput =
∑N

i=1 IPCi

Weighted Speedup =
∑N

i=1 (IPCi/SingleIPCi)

Harmonic mean of normalized speedups =

N/
∑N

i=1 (SingleIPCi/IPCi)

5.5 Experimental evaluation 103

Table 5.1: Multiprogrammed workloads characterization.
Name Benchmarks L2 Miss rate MPKI

MW1 471.omnetpp + 473.astar 7.8% 6
MW2 433.milc + 482.sphinx3 65.1% 26
MW3 401.bzip2 + 462.libquantum 32.3% 13.2
MW4 462.libquantum + 470.lbm 36.1% 45.6
MW5 401.bzip2 + 429.mcf 17.5% 24
MW6 429.mcf + 433.milc 49% 72
MW7 444.namd + 471.omnetpp 1.6% 1.1
MW8 456.hmmer + 482.sphinx3 52.4% 10.4
MW9 445.gobmk + 473.astar 12.9% 4.7
MW10 462.libquantum + 471.omnetpp 24.5% 13.4
MW11 433.milc + 473.astar 42.1% 19.2
MW12 458.sjeng + 482.sphinx3 52.4% 9
MW13 429.mcf + 444.namd 15.4% 18.2
MW14 429.mcf + 445.gobmk 18.3% 21
MW15 433.milc + 470.lbm 37.5% 56
MW16 401.bzip2 + 458.sjeng 6.5% 1.2

5.5. Experimental evaluation

TABSBC, as well as the other approaches, has been applied in the shared

last level of the cache memory hierarchy. As for the parameters that are specific

to the different approaches evaluated in this study, TADIP (specifically TADIP-

Feedback) [27] and TADRRIP (using Hit Priority) [28] use 32 sets dedicated to

each policy for each core to decide between BIP and MRU insertion in the former

case, and between BRRIP and SRRIP in the latter. These bimodal policies, BIP

and BRRIP, as well as the one triggered by TABSBC, use a probability ε = 1/32

that a new line is inserted in the MRU position of the recency stack or with a long

re-reference interval prediction in the BRRIP case. PIPP [84] uses 32 dedicated sets

to track the hit counters information in the utility monitors and a probability of

promotion of 3/4 and 1/128 in normal and streaming mode, respectively. The cache

switches to streaming mode if the number of misses per interval is greater than 4095

or the miss rate in the shadow tags exceeds 12, 5%. The probabilistic escape LIFO

we evaluate, or pseudoLIFO in what follows, approximates the hit counts by the

next power of two for escape probabilities and uses 4 dedicated sets every 1024 sets

in the cache for each one of the four policies described in [9]. Finally, we also include

the BSBC. TABSBC and BSBC use a Destination Set Selector of four entries like

104 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

the one used in the previous chapters.

Figure 5.6 shows the throughput improvement of all the approaches related to

the LRU traditional policy for the 16 workloads of 2 applications described above.

In this figure and all the subsequent ones the last group of columns corresponds

to the geometric mean for the values achieved for all the workloads. This mean

improvement achieved by each technique is: BSBC 1.8%, PIPP 2%, PseudoLIFO

1.2%, TADIP 2.2%, TADRRIP 3.1% and 4% for the TABSBC. These results show

two trends that appear consistently in all the evaluation. The first one is that,

non surprisingly, thread-aware approaches, tend to outperform in general the non-

thread-aware BSBC and PseudoLIFO. The advantage of thread-awareness can be

also observed comparing BSBC and TABSBC: out of the 16 workloads, the thread-

aware TABSBC technique proposed in this paper outperforms the thread-oblivious

BSBC, which also reduces capacity as well as conflict misses, in 11 workloads, while

both yield very similar results in the other 5 workloads. Further, TABSBC improve-

ments over the baseline are on average 120% larger than those of BSBC. The second

trend observed is that those approaches that tackle both conflict and capacity issues

tend to achieve the best results in their category. The other techniques can reduce

capacity misses. Some also improve the detection and eviction of dead blocks in

each independent set, which can reduce conflicts, but they cannot exploit the load

unbalance among sets, therefore it is more difficult for them to make effective use

of large portions of dead cache lines [36].

The studies for the other metrics related to speedup show very similar trends to

those observed in Figure 5.6 for the throughput improvement. Therefore, Figure 5.7

(a) and 5.7 (b), devoted to the weighted speedup and the harmonic mean of weighted

speedups, respectively, only show the values for BSBC and TABSBC in order to

emphasize the value of thread-awareness. This way, under the weighted speedup

metric the relative advantage of TABSBC over the baseline is about 100% larger

than that of BSBC, since TABSBC is able to apply the best policies to each thread

depending on its behavior. This helps avoid slowing down threads at the expense of

others.

Our fairness metric also reflects clearly the positive properties of TABSBC in this

regard. Figure 5.7 (b) shows the percentage of improvement of the harmonic mean

of normalized speedups over the one measured for the baseline 16-way 4MB cache.

5.5 Experimental evaluation 105

0

5

10

M
W

1

M
W

2

M
W

3

M
W

4

M
W

5

M
W

6

M
W

7

M
W

8

M
W

9

M
W

1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

0

5

10

%
 T

h
ro

u
g
h

p
u

t
im

p
ro

v
em

en
t

		

 r
el

a
te

d
 t

o
 L

R
U

BSBC

PIPP

PseudoLIFO

TADIP

TADRRIP

TABSBC

Figure 5.6: Percentage of throughput improvement over the 4MB 16 ways baseline
configuration using several policies.

-5

0

5

10

M
W

1
M

W
2

M
W

3
M

W
4

M
W

5
M

W
6

M
W

7
M

W
8

M
W

9
M

W
1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

(a)

-5

0

5

10

%
 W

ei
g
h

te
d

 s
p

ee
d

u
p

	i
m

p
ro

v
em

en
t

re
la

te
d

 t
o
 L

R
U BSBC

TABSBC

-5

0

5

10

M
W

1
M

W
2

M
W

3
M

W
4

M
W

5
M

W
6

M
W

7
M

W
8

M
W

9
M

W
1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

(b)

-5

0

5

10

%
 H

a
rm

o
n

ic
 I

P
C

 m
ea

n

	
im

p
ro

v
em

en
t

re
la

te
d

 t
o

 L
R

U BSBC

TABSBC

Figure 5.7: Percentage of weighted speedup (a) and harmonic IPC (b) improvement
over the 4MB 16 ways baseline configuration using BSBC and the TABSBC.

On average, BSBC gets 2.3% improvement over the baseline and TABSBC 4.4%.

The average values for the other techniques evaluated not shown in the graph are:

PIPP 0.75%, PseudoLIFO 1.5%, TADIP 2.6%, and TADRRIP 3.4%. As expected,

in general, thread-aware policies show more potential for fairness. Among them,

TABSBC shows the overall best behavior because while the other techniques are

restricted to managing the working set associated to each cache set, TABSBC can

promote better a fair usage of the cache resources thanks to the incorporation of a

displacement policy among sets based on their state.

It is interesting to notice that TABSBC is the only proposal that does not slow

down any IPC metrics for absolutely any workload in any configuration with respect

to its baseline. This is in contrast with other strategies, which can reduce the metrics

up to 10% (15% in the case of fairness) in some experiments.

106 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

0

10

20

30

%
 M

is
s
 r

a
te

 r
e
d

u
c
ti

o
n

 r
e
la

te
d

 t
o
 L

R
U

BSBC

PIPP

PseudoLIFO

TADIP

TADRRIP

TABSBC

M
W

1

M
W

2

M
W

3

M
W

4

M
W

5

M
W

6

M
W

7

M
W

8

M
W

9

M
W

1
0

M
W

1
1

M
W

1
2

M
W

1
3

M
W

1
4

M
W

1
5

M
W

1
6

g
eo

m
ea

n

-11% -22% -22% -17%

Figure 5.8: Miss rate reduction over the 4MB 16 ways baseline configuration using
several policies.

Our last metric is the global miss rate, which considers together, as a whole, the

accesses of all the applications during their simultaneous execution until the slowest

one completes its 10 billion instructions. That is, it includes also the accesses of the

fastest applications after they complete their 10 billion instructions. These rates

give an idea of the reduction of bandwidth to memory provided by each approach,

a resource which becomes more critical as the number of cores in CMPs increases.

Since accesses to memory require much more power than cache hits, they are also a

good indicator of the energy savings that can be achieved by the different techniques.

Figure 5.8 shows this miss rate reduction related to the one observed in the baseline

for the 4MB L2 caches considered. The (geometric) average relative reduction of the

miss rate achieved by each policy is BSBC 7%, PIPP 5%, PseudoLIFO 4%, TADIP

7.5%, TADRRIP 9.8% and TABSBC 12%. The qualitative tendency in these figures

is the same observed for the IPC metrics, the advantage of coordinated approaches

to reduce conflict and capacity misses being larger. This way, BSBC can match

and even outperform techniques specifically designed for shared caches. When the

benefit of thread-aware policies is added, the good miss rate reduction achieved by

SBC can still be almost duplicated by TABSBC, as we see in Figure 5.8. In fact,

TABSBC, with only a 0.65% overhead as we will see in section 6.8, provides 40% of

the miss rate reduction achieved by doubling the size of our baseline cache to 8MB.

5.6 Cost 107

0

20

40

60

80

100

MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW10 MW11 MW12 MW13 MW14 MW15 MW16 mean

P
o
w

e
r

L
a
te

n
cy

P
o
w

e
r

L
a
te

n
cy

Main Memory Hits

L2 Hits

Figure 5.9: Average power consumption and memory latency reduction achieved by the
TABSBC related to the baseline using 2 applications. Each bar shows a breakdown of
the accesses, either satisfied in the L2 cache or in main memory.

5.5.1. Average memory latency and power consumption

The percentage that second hits represent in terms of power consumption and

latency has been counted in Figures 5.9 and 5.10, which show the percentage of

power consumption and latency reduction achieved by the TABSBC using 2 and 4

applications, respectively. Each bar is broken down in the percentage of hits that

are satisfied in the second level of the memory hierarchy or in the main memory. We

do not show the percentage due to the L1 hits because it is very similar for all the

approaches. As the tag check delay means only a 3% of the total power consumption

per read/write access in the cache, our approach has a negligible power consumption

overhead.

TABSBC gets an average power consumption and memory latency reduction of

11% and 10% for the 2-core experiments, respectively, and 14% and 11% in the

4-core ones. This way, the more cores, the larger the advantages of the application

of TABSBC.

5.6. Cost

We consider here the cost of TABSBC in terms of storage. Table 5.2 calculates

the storage required for a 4MB 16-way baseline cache with lines of 64B assuming

108 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

0

10

20

30

40

50

60

70

80

90

100

445+401+444+456

445+444+456+471

433+462+450+401

433+471+473+482

458+444+401+471

458+444+471+462

mean

P
o
w

e
r

L
a
te

n
cy

P
o
w

e
r

L
a
te

n
cy

Main Memory Hits

L2 Hits

Figure 5.10: Average power consumption and memory latency reduction achieved by the
TABSBC related to the baseline using 4 applications. Each bar shows a breakdown of
the accesses, either satisfied in the L2 cache or in main memory.

addresses of 42 bits. TABSBC requires the following additional hardware with

respect to a standard cache: a saturation counter per set to compute the SSL for

each core; an additional bit per entry in the tag-array to identify displaced lines

(d bit in Table 5.2); log2(C) bits, C being the number of cores, to determine the

owner core of a line (c bits in the table); an Association Table with one entry per

set that stores a bit to specify whether the set is the source or the destination of the

association; and the index of the set it is associated to, and, finally, a Destination

Set Selector (DSS) to choose the best set for an association. TABSBC needs also

one bit per set to indicate the set insertion policy for each core. Based on this, the

resulting TABSBC storage overhead is about 0.65%.

Figure 5.11 shows the hardware overhead scalability of our design when varying

the number of cores for three cache configurations. We can see that for typical

realistic configurations the cost stays around 1% or below. In fact, unrepresentative

configurations, such as a 2MB cache shared by 8 cores or a 8MB cache shared by

16, are needed to reach a 2% cost, which is still reasonable. As the cache size

increases, the overhead is reduced. Also its growth is clearly sublinear with respect

to the number of cores that share the cache. Altogether, while the cost of other

techniques designed for shared caches is even smaller, the large performance benefits

of TABSBC coupled with its small cost make it a very interesting design point,

5.7 Analysis 109

Table 5.2: Baseline and TABSBC storage cost in a 4MB/16-way/64B/LRU cache shared
between 2 cores.

Baseline TABSBC

Tag-store entry:
State(v+dirty+LRU+[d]+[c]) 6 bits 8 bits
Tag (42− log2 sets− log2 64) 24 bits 24 bits

Size of tag-store entry 30 bits 32 bits

Data-store entry:
Set size 64*16*8 bits 64*16*8 bits

Additional structs per set:
Saturation Counters - 2*5 bits
Insertion policy bit - 2*1 bits
Association Table - 12+1 bits

Total of structs per set - 25 bits

DSS (entries+registers) - 11B

Number of tag-store entries 65536 65536
Number of data-store entries 65536 65536

Number of sets 4096 4096
Size of the tag-store 245760B 262144B

Size of the data-store 4096kB 4096kB
Size of additional structs - 12811B

Total 4336kB 4364kB (0.64%)

particularly given the large availability of transistors and the critical role of cache

performance in current systems.

5.7. Analysis

5.7.1. Scalability analysis

Table 5.3 shows the evolution of the metrics previously considered to evaluate

TABSBC with respect to a baseline 16 ways cache shared by two cores for different

cache sizes. These values are geometric means obtained on the 16 multiprogrammed

workloads in Table 5.1. As expected the values tend to diminish with the cache size,

but the reduction is not continuous or pronounced.

Figure 5.12 shows the percentage of throughput improvement with respect to

the baseline 4MB 16-way cache using four cores. All the workloads used, identified

by the benchmark numbers, have also an MPKI (in parenthesis) greater than 1.

On average, BSBC gets an improvement of 1.8%, PIPP 1.9%, pseudoLIFO 1.6%,

110 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

0 2 4 8 16
0

0.5

1

1.5

2

2.5

3

3.5

Number of cores%
 S

to
ra

g
e

 o
v
e

rh
e

a
d

 o
f

th
e

 T
A

B
S

B
C

2MB 8 ways

8MB 16 ways

16MB 32 ways

Figure 5.11: Storage overhead of the TABSBC as a function of the number of cores for
several cache configurations.

Table 5.3: Percentage of throughput, weighted speedup, harmonic IPC improvement
and miss rate reduction of TABSBC over the baseline, varying the cache size.

Cache
size

Throughput
improvement

Weighted
Speedup

Harmonic IPC
improvement

Miss rate
reduction

1MB 4.5% 6.3% 6.3% 11.0%
2MB 5.1% 4.2% 4.3% 14.3%
4MB 4.0% 4.0% 4.4% 12.0%
8MB 3.0% 3.2% 3.5% 11.0%

TADIP 3.5%, TADRRIP 3.4% and TABSBC 5.1%. The increase in the number of

cores that share the cache leads thread-aware techniques to outperform more clearly

non-thread-aware ones. The exception is PIPP because the increase in the pressure

that the four cores exert on this cache coupled with PIPP slow promotion policy,

lead to much contention in the bottom part of the LRU stack of each set, where

this technique inserts incoming lines. It is also interesting that while in two core

experiments TADRRIP performed consistently better than TADIP, there is a match

between them here. As for TABSBC, the variety of policies it uses, coupled with

the accuracy with which it applies them to the appropriate lines and sets depending

on their state in a thread-aware way, allows it to adapt very well to an increasing

number of cores. Its fine granularity and accuracy are also reflected in the fact that

it does not slow down any workload either in this environment. Finally, Figure 5.12

5.7 Analysis 111

0

5

10

15

401+444+
445+456

(2.5)

444+445+
456+471

(3.1)

401+433+
450+462

(33.9)

433+471+
473+482

(42.3)

401+444+
458+471

(3)

444+458+
462+471
 (16.2)

geomean

-3 -5 -7 -10 -5 -5

0

5

10

15

%
 T

hr
ou

gh
pu

t
im

pr
ov

em
en

t
re

la
te

d
to

 L
R

U

BSBC
PIPP
PseudoLIFO
TADIP
TADRRIP
TABSBC
Private LLC

Figure 5.12: Throughput improvement over the 4MB 16 ways baseline cache shared by
4 cores using several policies. MPKI of each workload in parenthesis under its name.

includes a comparison with a CMP architecture which uses a private LLC (16 ways,

1MB per core, 8 cycles for the round trip latency and 4 for the tag check delay) per

core. We can see how important the sharing of resources is, as this configuration

clearly performs worse, about 5% on average, than our baseline LLC shared by the

four cores.

Table 5.4 completes our scalability study with the average improvements of the

six policies for the four indicators considered. TABSBC advantage over the other

techniques grows with the number of cores, improving all the indicators at least

about 50% more than any other strategy. The 3x reduction of misses it achieves

with respect to BSBC is a clear indicator of the importance of thread awareness.

Table 5.4: Throughput, weighted speedup, harmonic IPC improvement and miss rate
reduction of several techniques over the 4MB 16-ways baseline shared by 4 cores.

Policy
Throughput
improvement

Weighted
Speedup

Harmonic IPC
improvement

Miss rate
reduction

BSBC 1.8% 1.8% 1.8% 4.9%
PseudoLIFO 1.6% 2.0% 1.6% 4.5%
PIPP 1.9% 1.8% 1.8% 5.0%
TADIP 3.5% 3.0% 3.4% 10.0%
TADRRIP 3.4% 3.0% 3.3% 9.9%
TABSBC 5.0% 4.8% 5.6% 15.0%

112 Chapter 5. Thread-Aware Bimodal Set Balancing Cache

5.7.2. Interaction with Prefetching

We have performed some experiments adding a simple 16KB stride prefetcher

to the L2 shared cache for both TABSBC and the baseline configurations. In the

2-core experiments TABSBC got an average IPC improvement of 3.97% over the

baseline, quite similar to the 4% obtained without using prefetching. As for the

4-core applications, TABSBC achieved a 6.1% improvement, which is 20% greater

than the 5.1% reached in the experiments without prefetcher. According to these

results, we can infer that TABSBC takes a meaningful advantage of prefetching as

the number of applications sharing the cache increases. The particular management

of each core that TABSBC proposes allows the prefetcher to obtain a more accurate

prediction, achieving higher hit rates than the prefetcher applied to the baseline

configuration. For example, as the BIP-C policy may prevent recently inserted lines

from being evicted by a different core from the one that brought the line to the cache,

the stream of references that the prefetcher receives has fewer interferences [83]

between cores than the prefetcher used in the baseline configuration. Even more,

as the prefetcher is able to perform better predictions, the TABSBC manages lines

with more locality in the cache, thus achieving better results. Note that we are

using a simple prefetcher, without regarding the interaction between several cores

in the shared cache.

5.8. Summary

The traditional conflict and capacity misses present in single core environments,

which the novel metric called Set Saturation Level (SSL) has been successfully

proved to detect in the previous chapters, are found in shared caches as well. In

fact, new misses of both kinds appear in shared caches due to the effects of the

joint working set of the applications sharing them. From this analysis, this chapter

proposes, in a reasoned way, a coordinated thread-aware strategy to reduce both

capacity and conflict misses. This technique, called Thread-Aware Bimodal Set

Balancing Cache (TABSBC) measures the degree of pressure that each application

applies to each cache using the Set Saturation Level. When TABSBC estimates

an application is experiencing problems in a set, it first tries to displace lines of

5.8 Summary 113

the problematic application to underutilized sets applying the Set Balancing Cache

techniques. When this fails or is not possible, it resorts to a modified Bimodal Inser-

tion Policy, which we have called BIP-C, for the problematic application, which has

proven to be suitable to reduce capacity misses. Despite its fine-grained nature both

in terms of measurement and modification of the cache behavior, and the variety of

policies that it can apply, TABSBC cost is very reasonable; around 1% or less in

representative configurations.

Large simulations using a wide range of workloads indicate four things. First,

thread-awareness is a very desirable property for policies oriented to shared caches

and can be successfully managed by the SSL as well. Second, among them, TABSBC

achieves the best results overall consistently. This is due to two key characteristics

that distinguish it clearly from the all other thread-aware techniques we are aware

of. The first one is the small granularity at which it can take and apply decisions,

as opposed to the global decisions of other approaches. The second one is its coordi-

nated approach to reduce conflict and capacity misses that can balance load among

sets. This latter issue is largely ignored by the other proposals specifically designed

for shared caches, which only focus on the workload inside each set. We think that

it is of the upmost importance to identify the dead blocks in the cache and make

the best usage of them. This requires changes to the placement policy like the ones

explored here. The third observation is that for the same reasons TABSBC scales

very well as the number of cores that share the cache increases. Finally, it is worth to

point out that the proposed BIP-C insertion policy implies a notable improvement

with respect to the original BIP [53] in shared caches, as it protects lines from early

displacements due to other threads.

Chapter 6

Adaptive Set-Granular

Cooperative Caching

6.1. Introduction

Choosing either a private or shared configuration for the last-level cache (LLC)

is one of the key points of the design in CMPs. When the LLC is shared among

all the cores, it requires a high bandwidth because every single request by any

upper cache needs to access the interconnection network. Shared LLCs are usually

distributed in tiles owned by different cores and, thus, needing different latencies

depending on where the requested line is found. As the number of cores and cache

banks increases, it becomes more difficult to hide wire delays. Even worse, harmful

applications can hurt the performance of other concurrently executing applications.

On the other hand, in private configurations each core is assigned a static portion

of the LLC, which provides lower latency, better scalability, isolation and makes

easier the optimization of particular parameters like power consumption, at the cost

of depriving the system of the ability of sharing underutilized resources. CMPs

provide room for improving performance since multiple different applications may

be executed concurrently, ones being short of cache resources while others can offer

underutilized space. Therefore, it is interesting to track the global availability of

resources and select the best policies to allocate them appropriately.

115

116 Chapter 6. Adaptive Set-Granular Cooperative Caching

In this chapter we propose an approach to share resources between caches in a

per-set level basis called Adaptive Set-Granular Cooperative Caching (ASCC). This

design measures the degree of stress of each set and spills lines from those sets with

a high number of misses related to hits, which are thus unable to hold their working

set, to sets with underutilized lines in another cache, where they can be found later

using the coherence mechanism. Also, ASCC adds a third neutral state where the

set is disabled for both spilling or receiving lines. This way each set applies the

policy which best suits it.

Another novel idea explored by ASCC is that the metrics used to manage the

sharing of resources can also drive changes in the local management of a set. The

fact that the same metric drives both kinds of optimization eases their desirable

coordination. ASCC first resorts to spills to alleviate high miss rates. If this does

not suffice, the cache may be dealing with capacity problems. ASCC adopts the

innovative feature of changing the insertion policy to one specially designed to deal

with capacity problems when spilling is not enough to hold the working set in the

CMP.

Furthermore, experiments using different granularities for the ASCC indicate

that granularity is an important point of the design. We propose an extension that

dynamically adjusts the granularity of ASCC by virtually grouping adjacent sets for

the sake of the tracking of their state and the application of the ASCC policies. We

have called it Adaptive Variable-Granularity Cooperative Caching. Finally, we have

improved this design adding support for Quality of Service.

6.2. Background and Motivation

Novel approaches, many of which are not suitable for the traditional multiproces-

sors, have been proposed to exploit the new capabilities of CMPs. A great number

of them has focused on the memory hierarchy due to its large impact in the overall

performance. By using private LLCs, a system is able to provide the applications

with isolation, low latency and minimum bandwidth. Also, it allows easier design

extensions, as the tags are associated to each cache. Several approaches have ap-

peared in the past years in order to provide private levels with shared capacity.

6.2 Background and Motivation 117

Some techniques use partitioning in order to limit the amount of space for private

and shared data, while others try to make a better use of resources by spilling

lines between caches. There are also mixed approaches like the Elastic Cooperative

Caching (ECC) [19], which devotes some lines of each set to allocate lines evicted

from the upper level and the rest to hold lines spilled by neighbor caches. As we

have previously mentioned, the main problem with the approaches that rely on par-

titioning [4][8][71] is that they can waste space if the allocated ways in the shared or

in the private region are not useful. These approaches often waste space by forcing

to allocate at least one way for each type of data, even if it is not profitable, and they

need large structures to operate. Additionally, the uneven demands experienced by

different sets [55][60][61][85] may result in some ways being wasted in the regions of

some sets, while the same regions could benefit from more ways in other sets.

As for the designs that rely on spills, Cooperative Caching (CC) [7] disregards

whether the spilling is going to benefit the cache or not. In a similar way, any

cache can play the role of receiver even if it has no free space to share and the final

candidate is chosen randomly. Dynamic Spill-Receive [52] (DSR) applies set dueling

to label each cache either as spiller or receiver depending on a global counter per

cache. Every single cache may update this global counter in order to determine

whether the spillings are going to hurt receiver caches or not. A common limitation

of CC and DSR is that they apply uniformly the same policy to all the cache sets,

as they cannot detect whether a given set is going to perform better with more ways

or applying a different policy. Even worse, all sets have to work always as spillers

or receivers when sometimes it may be better to neither spill nor receive spilled

lines. For example, a certain cache playing the role of spiller for the only reason it

was not working well as receiver, and whose working set tightly fits in it, may spill

lines to other caches requiring higher latencies to found them later and, consequently,

degrading the overall performance. Furthermore, DSR restricts the number of spiller

or receiver sets because they could be members of a Set Dueling Monitor (SDM)

which uses a fixed policy even when a different one is performing better in the cache.

In summary, there are no approaches that use a fine-grain metric to profile the state

of the caches and apply different policies to different portions of the cache depending

on their status. Also, no approach allows a given set to be in a neutral state, not

operating as spiller or receiver. Moreover, these approaches are not designed to deal

with capacity problems. Our approach, called Adaptive Set-Granular Cooperative

118 Chapter 6. Adaptive Set-Granular Cooperative Caching

2 4 6 8 10 12 14 16 FA
0

10

20

30

40
433.Milc

MPKI
CPI

2 4 6 8 10 12 14 16 FA
0

5

10

15

20
482.Sphinx3

2 4 6 8 10 12 14 16 FA
0.2

0.4

0.6

0.8

1
444.Namd

2 4 6 8 10 12 14 16 FA

1.3

1.4

1.5

1.6

1.7

1.8

1.9

458.Sjeng

2 4 6 8 10 12 14 16 FA
0.5

1

1.5

2

2.5

3
445.Gobmk

2 4 6 8 10 12 14 16 FA
1

2

3

4

5

6
401.Bzip2

2 4 6 8 10 12 14 16 FA
2

4

6

8

10

12
473.Astar

2 4 6 8 10 12 14 16 FA
0

5

10

15

20
471.Omnetpp

Figure 6.1: MPKI and CPI for SPEC CPU2006 benchmarks as the number of allocated
ways varies. The X axis shows the number of ways allocated from a 16-way 2MB
cache (the remaining ways are disabled). Benchmarks in the upper row can provide
cache capacity and benchmarks in the lower row can benefit from allocating more ways
gradually.

Caching (ASCC), is able to determine in a per-set basis whether the set should be

a spiller, a receiver or neither of them while it tackles capacity misses at the same

time. Furthermore, previous designs apply their policies using a static granularity

to track the cache behavior when sometimes it may be harmful. We have designed

an extension called Adaptive Variable-Granularity Cooperative Caching (AVGCC),

which dynamically changes the granularity of the ASCC policies.

Figure 6.1 shows the MPKI and CPI obtained in a 2MB 16 ways L2 cache

enabling from 2 to 16 ways for 8 benchmarks from the SPEC CPU2006 suite. In

our experiments in Section 6.6 we have used a 1MB 8 ways L2 cache as the baseline

configuration, which is represented in the graphs with a dotted line. Statistics are

gathered for the first 10 billion instructions executed after the initialization. We

can see how benchmarks in the lower row significantly benefit from allocating more

ways, while the ones in the upper row do not. In the first row we can deduce that

milc and sphinx3 are streaming applications because they have a high MPKI and

they are barely affected by the increase in the number of allocated ways, namd has a

small working set and sjeng is sensitive to cache capacity only up to 1/4th MB. All

of them can offer cache capacity by increasing the number of allocated ways for the

6.2 Background and Motivation 119

Number of enabled ways
(a)

P
e
rc

e
n
ta

g
e
 o

f
s
e
ts

4 6 8 10 12 14 16
0

20

40

60

80

100

Favored sets

Constant sets

Number of enabled ways
(b)

P
e
rc

e
n
ta

g
e
 o

f
s
e
ts

4 6 8 10 12 14 16
0

20

40

60

80

100

Favored sets

Constant sets

Figure 6.2: Percentage of sets that benefit from allocating more ways (favored) and
percentage of sets which remain unchanged (constant) in the execution of the Astar (a)
and Milc (b) benchmarks.

hungry applications. On the other hand, benchmarks in the lower row significantly

benefit from allocating more ways. These benchmarks that are sensitive to cache

capacity may take advantage of the simultaneous execution with applications that

do not benefit from receiving extra space to hold their working sets if we provide

a mechanism to reassign underutilized resources between applications. The last

column in each graph shows the MPKI and CPI using full associativity in the cache.

We can see how in many benchmarks there is still room for improving performance

by reducing capacity misses.

Memory references are known to be non uniformly distributed across the sets

of a set-associative cache [55][60][61][85]. Thus, there may be sets which might

benefit from allocating a greater number of ways and sets that are able to hold their

working set with their current assigned ways. This fact is illustrated by Figure 6.2,

which shows the percentage of sets which benefit from enabling more ways and the

percentage of sets which remain unaffected by this increase during the execution of

the applications astar and milc of the SPEC CPU 2006 suite in subfigures (a) and

(b), respectively. The simulation environment is the same as in the previous study.

The classification is based on the MPKI of each set. If the MPKI does not decrease

when the number of allocated ways increases, or if it decreases less than 1% related

to the previous MPKI, calculated using 2 fewer ways, we mark this set as a constant

set. Otherwise, it is a favored set. We can see how the percentage of sets, either

120 Chapter 6. Adaptive Set-Granular Cooperative Caching

favored or constant, changes considerably from 10 enabled ways on in Figure 6.2 (a)

and from 6 to 12 in Figure 6.2 (b).

These results indicate that, depending on the application and cache associativity,

a different number of sets may benefit from getting extra ways, while others do not.

Our approach tries to detect these different behaviors in the sets to perform cache-to-

cache transfers, from a cache set, which is not currently able to hold its working set

and would benefit from more space, to another cache where the set is underutilized.

Relatedly, we can see how having a neutral state can be beneficial, that is, it may be

the case that the best for a set is to neither spill to nor receive lines from another set.

For instance, increasing the number of ways in Figure 6.2 (a) from 10 to 12 leaves

around 90% of favored sets, while 10% remain unaffected. When we increase the

number of allocated ways up to 14, only 36% of the sets whose behavior improved

when going from 10 to 12 lines keep taking advantage of having more ways. The

other 64% has reached its optimum behavior using 12 ways and they do not benefit

from getting more ways, while allocating fewer than 12 could be harmful. As a

result, a neutral state, where the set is neither spiller nor receiver, is beneficial for

this latter group of sets.

Furthermore, as we could see in Figure 6.1, a noticeable percentage of the miss

rate is due to capacity (and compulsory) misses. Since spills may not be enough

to alleviate capacity problems, our approach tackles these problems changing the

insertion policy of the sets as well.

6.3. Adaptive Set-Granular Cooperative Caching

We propose the Adaptive Set-Granular Cooperative Caching architecture to pro-

mote a better distribution of cache resources in CMP platforms that use private last

levels for the cache memory hierarchy. Our proposal achieves this by spilling lines

from those caches which are short of space to other ones with underutilized resources

and by adapting the insertion policy of the cache sets to their demand. Our ap-

proach tries to balance the storage of the working sets of each core between caches

and to reduce capacity misses by displacing lines and applying a new insertion pol-

icy, respectively. In order to track the status of each set, our proposal uses, initially,

6.3 Adaptive Set-Granular Cooperative Caching 121

one saturation counter per set with the same design and characteristics of the ones

used in the previous chapters.

Our design classifies a set in one of three groups depending on its SSL. We have

used thresholds for the different values of SSLs regarding the results presented in

Chapter 2. Thus, when the SSL is below K, the high recent proportion of hits

indicates that the set can hold quite successfully its working set. In this situation it

is likely there are underutilized lines in the set that could be used to store part of the

working set of the set with the same index in other private caches. Therefore the set

is classified as a receiver set. When K ≤ SSL < 2 ∗K − 1, the set has some recent

hits but given the degree of pressure on it, it might be unwise to devote lines of it

to store lines of the working set of other sets. This way, the set is in a neutral state

where it is neither a sender nor a receiver. Finally, when the saturation counter of

a set reaches its maximum value, 2 ∗K − 1, the high proportion of misses related to

hits indicates that the set is not able to hold its working set and is thus classified

as a sender. If the line to be evicted during a replacement operation in a sender set

is the last copy in the chip, our proposal tries to optimize the usage of the caching

resources by spilling it to a receiver set (with the same index) in another private

cache in the same level instead of evicting it to a lower level. If there are several

potential receiver sets, the one with the lowest value will be selected. If a tie occurs

among several caches, the destination cache is selected randomly among the ones

with the lowest value. This is the only point of the design which requires further

access to the interconnection network. In order to scale the design an intermediate

structure per cache similar to the Spill Allocator proposed in [19] can be easily

adapted. It would only require one entry per set and it would store the saturation

counter value, which must be lower than K or K when there is no valid candidate,

and the index of the current candidate cache. It should be updated with every

miss in the other caches. Note that the low SSL in the receiver set favors that a

previously spilled line is not likely to be spilled again in the near future, preventing

inactive lines from being spilled repeatedly. As the spilling of lines is performed

after a miss, the search of a candidate cache can be done simultaneously with the

line search operation provided by the coherence mechanism, just as in [52].

122 Chapter 6. Adaptive Set-Granular Cooperative Caching

6.3.1. Spilling-Aware BIP

Another novelty of our approach is that it changes a basic policy of the private

caches in CMPs in response to the feedback of the cooperation mechanism. Namely,

when a spiller set is not able to find a candidate receiver set, this indicates that

spilling is not possible because the set has a high SSL in all caches, giving rise to a

global problem of capacity. Thus, in this situation our design changes the insertion

policy of the spiller set in order to avoid capacity misses. The insertion policy reverts

to the traditional MRU (Most Recently Used) one when the value of the saturation

counter falls below K, indicating that the capacity problem has disappeared. The

Bimodal Insertion Policy or BIP [53], which inserts new lines in the MRU position

of the recency stack with a low probability, ε, while it inserts most lines in the LRU

position, proved to be very effective to provide thrashing protection and thus reduce

capacity misses. Our design uses a variation of BIP which inserts most lines not in

the LRU position, but in the previous one in the recency stack, LRU-1, in order to

discard temporary data. We have called this insertion policy Spilling-Aware BIP or

SABIP.

Note that using the original BIP two harmful behaviors could happen. Firstly,

destination sets working under BIP could evict just inserted lines, depriving them of

a chance to be reused and consequently promoted to the MRU position, not only due

to local misses, but also to make room for a spilled line. Our proposal avoids that

behavior by applying the restriction on the SSL value of the destination sets so that

destination sets always apply MRU insertion. But this situation could also happen

in sets which were previously in BIP mode and which, due to a recent good behavior,

become destination sets. Here only SABIP protects the most recently inserted line,

which has probably good locality given the change of behavior of the set, from being

evicted due to a spill from another set. Also, as SABIP gives more chances than

BIP to lines to be reused before their eviction, it generates fewer spillings of lines

with some locality, as they are retained more effectively in the set.

Our approach uses an insertion policy bit per set to determine the current inser-

tion policy of the set. Figure 6.3 explains the behavior of different insertion policies.

Also, our approach adds swapping of lines between caches when both the requested

line found in another cache and the victim line selected by the replacement policy

6.3 Adaptive Set-Granular Cooperative Caching 123

L2 (P0)L2 (P0) L2 (P1)L2 (P1) L2 (P2)L2 (P2) L2 (P3)L2 (P3)

 XK-1 XK+2 XK-4 X2K-1

(b) Insertion policies (after inserting new line E in set X)

(a) Candidate cache search (after miss in set X of L2 in P0)

A
B
C
D

E

C

A

E

A

C

MRU

LRU
Original

State
Traditional

MRU BIP SABIP

Saturation
counter value

displacement

A
B

B
C

B
E

(c) Swapping of lines (P0 requests line G of set X and it is found in P3)

A
B
C
D

E
F
G
H

G
A
B
C

D
E
F
H

MRU

LRU
Original State State after swapping

P0 P3 P0 P3

Set IndexSSL Set IndexSSL Set IndexSSL Set IndexSSL

Figure 6.3: Different insertion policies for the new line E in set X in a 4-way cache.

in the cache that performed the request, are the last copy on chip. This is done in

order to keep these lines longer in the CMP.

6.3.2. Design breakdown

Figure 6.4 reasserts our design decisions and measures the contribution to per-

formance of each one of them by showing some intermediate points of the design.

The experiments consider 4 cores and multiprogrammed workloads using bench-

marks from the SPEC CPU2006 suite. The characterization of these benchmarks

and the simulation environment will be described in Section 6.5. In this figure, LRS

or Local Random Spilling is ASCC without insertion policy modifications to tackle

capacity misses and choosing randomly any cache with a value in the saturation

counter of the current set lower than K as a candidate to receive a spilled line. LMS

or Local Minimum Spilling selects the cache with the lowest value instead. GMS or

Global Minimum Spilling uses only one counter to globally manage each cache (4

bits to represent the only saturation counter per cache with an associativity of 8),

so that all the cache sets have the same behavior. LMS+BIP adds BIP to LMS and

GMS+SABIP (with an extra bit to determine the current insertion policy in the

cache) adds SABIP to GMS. Also, we show the Dynamic Spill-Receive (DSR) [52]

performance. Note that DSR is similar to GMS but using the set dueling mechanism

instead of the SSL one, and ASCC is identical to LMS+BIP but using SABIP. We

can see that LMS outperforms LRS thanks to the selection of the receiver cache with

the lowest value for the saturation counter of the current set. In a similar way, LMS

outperforms GMS thanks to its ability to handle each cache set separately. The ben-

efits of SABIP, with respect to BIP in this environment, can be deduced comparing

124 Chapter 6. Adaptive Set-Granular Cooperative Caching

0

5

10

401+444+

445+456

(2.5)

444+445+

456+471

(3.1)

401+433+

450+462

(33.9)

433+471+

473+482

(42.3)

401+444+

458+471

(3)

444+458+

462+471

 (16.2)

geomean

0

5

10

%
 P

er
fo

rm
a
n

ce
 i

m
p

ro
v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

LRS

LMS

GMS

LMS+BIP

GMS+SABIP

DSR

ASCC

Figure 6.4: Performance improvement over
the baseline for several intermediate designs
of the ASCC using local (L) or global (G)
policies to make decisions on spillings, for
DSR and for ASCC itself running four appli-
cations.

0

5

10

401+444+

445+456

(2.5)

444+445+

456+471

(3.1)

401+433+

450+462

(33.9)

433+471+

473+482

(42.3)

401+444+

458+471

(3)

444+458+

462+471

 (16.2)

geomean

0

5

10

%
 P

er
fo

rm
a
n

ce
 i

m
p

ro
v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U DSR

DSR-3S

ASCC-2S

ASCC

Figure 6.5: Performance improvement over
the baseline for ASCC, a variation that uses
only 2 states to classify the role of the sets,
DSR and a variation that uses 3 states to
classify the role of the cache, running four
applications.

ASCC with LMS+BIP. It is worthy to point out the improvement of GMS+SABIP

over DSR. This design, which uses half the negligible storage overhead of DSR, pro-

vides 30% more speedup over the baseline thanks to its management of the insertion

policy. Furthermore, the comparison of GMS+SABIP with ASCC gives an idea of

the value of a fined grain granularity in the cache management.

Figure 6.5 evaluates the usefulness of the neutral state of a set, in which it is

neither a spiller nor a receiver. DSR with three states (DSR-3S) is a variation of

DSR which uses the 2 most significant bits of its selector counter to decide if the

cache is a spiller, when the 2 MSBs are 11, receiver, 00, or neutral, 01 or 10. This

design achieves 9% more performance improvement over the baseline cache than

the original DSR. Also, we have tried an ASCC design which uses only 2 states,

ASCC-2S, in which a set is a spiller if its SSL is >= K and a receiver otherwise, to

see the effect of the neutral state in ASCC. We can see in the last column, which

represents the geometric mean, that its performance improvement over the baseline

is 10% smaller than that of ASCC.

6.4 Adaptive Variable-Granularity Cooperative Caching 125

Table 6.1: Percentage of performance improvement of the ASCC from using 4096 coun-
ters (the original ASCC design, using 1 counter per set) to using only 1 counter (grouping
all 4096 sets in the cache), related to the baseline configuration.

MW ASCC ASCC1024 ASCC256 ASCC64 ASCC16 ASCC4 ASCC1

MW41 1% 1% 1% 1% 1% 1.2% 2.1%
MW42 8% 13.6% 15.6% 17.9% 17.9% 16.4% 11%
MW43 0.1% 0.96% 1.4% 1.4% 1.4% 1.5% 2.7%
MW44 5.1% 6.17% 5.6% 6.4% 6.2% 6.1% 1%
MW45 10.2% 5.13% 6.6% 9% 9.1% 7.1% 1.4%
MW46 10.1% 5.45% 7.9% 9.2% 9.1% 7.6% 7%

geomean +5.7% +5.2% +6.2% +6.9% +6.8% +6.5% +4.5%

6.4. Adaptive Variable-Granularity Cooperative

Caching

In Figure 6.4 we could see how the designs that apply a global metric to trigger

the spilling of lines perform better in the first two of the six multiprogrammed

workloads. We have performed experiments applying different granularities in ASCC

to study their influence on the performance. Applying a granularity for n consecutive

sets using saturation counters simply involves updating a single counter and using

its value to take the decisions for the whole group. Table 6.1 shows the percentage

of performance improvement over the baseline when applying ASCC grouping sets

1 by 1, 4 by 4 and so on, up to 4096, i.e, from using 4096, 1024 counters and so

on, to using only one counter for the whole cache. Note that the insertion policy

relies on the saturation counter, so all the sets associated to one counter apply the

same insertion policy. This is sensible, as if the number of counters is small, it

means we are using a global metric and the insertion policy should be global as well.

Figure 6.6 shows an example for a 4-set cache applying different levels of granularity

using SSLs.

From these results we can infer that some workloads, or individual benchmarks

within a workload, are better managed using a global metric, while others work

better with a fine granularity of management. Increasing the granularity can help to

correct ASCC overreactions to temporary outstanding behaviors of particular sets,

while decreasing it allows to track the state of the cache sets and detect capacity

problems in a more accurate way. Therefore, we have two options. The first one

126 Chapter 6. Adaptive Set-Granular Cooperative Caching

Set 0

(a)
Finest granularity

 Hit
Miss

SSL

Set 3
 Hit

SSL

Set 2
 Hit

SSL

Set 1
 Hit

SSL
Miss

Miss

Miss

Set 0

SSL

Set 3

SSL+

Set 2

Set 1

 Hit

Miss

 Hit

Miss

Set 0

Set 3

SSL

Set 2

Set 1
 Hit

Miss

(b)
Medium granularity

(c)
Coarsest

granularity

-

+
-

+
-

+
-

+
-

+
-

+
-

Figure 6.6: Different levels of granularity.

is to fix statically the granularity to some value that seems to work well overall.

The drawbacks of this option are that it is not optimal, it does not adapt to the

nature and the changes of behavior of the workloads, and there is no guarantee the

granularity selected will be far from good for some workloads. The second option

is to design a dynamic mechanism to adapt the algorithm granularity to the needs

of the applications during the execution. Our proposal entails starting with one

counter for the whole cache. The number of counters used is increased, duplicating

the current number, if more than half the saturation counters in use have a value

lower than K. When this happens, it means that most sets in the cache can provide

sets in other caches with space, so we use a finer granularity to allow the sets to

exchange lines in a more accurate way. Also, the current number of counters in use

is decreased, halving it, when every pair of neighbor counters has a similar value,

specifically when there is an absolute difference between their values of two at the

most, and their embraced sets are working under the same insertion policy. This

is sensible, since we can save storage space using one counter to track their SSL

simultaneously, as they are similar. Note that different caches in the same CMP

can be applying different granularities. We have called this technique Adaptive

Variable-Granularity Cooperative Caching or AVGCC.

6.4 Adaptive Variable-Granularity Cooperative Caching 127

6.4.1. Hardware description

In order to implement the described mechanism, AVGCC needs three counters

per cache. The first one, D henceforth, stores the logarithm of the current number

of sets per saturation counter in use to base 2. That is, D is the logarithm to base

2 of the granularity applied by AVGCC. The saturation counters are then accessed

adding a shifter controlled by D in the indexing path. This way, given a set index

I, the index of the associated counter would be I >> D, where the a >> b operator

represents an arithmetic shift of b bits to the right of integer a.

Secondly, AVGCC uses another counter, A, in order to track how many pairs of

SSLs fulfill the conditions required when checking whether the number of counters in

use must be halved. The condition is evaluated twice, before updating the accessed

SSL, and after doing it. A flip-flop is needed to check whether the evaluation of the

condition between the given SSL and its adjacent one has changed after updating

the former. Counter A is decreased if the evaluation of the condition turns from

being fulfilled to not being, increased in the opposite case, and it remains unchanged

otherwise. Finally, the number of counters in use must be duplicated if more than

half the saturation counters have a low value (below K). A counter, B, is needed

for this purpose. B is increased when the value of a saturation counter goes from

K to K-1 and decreased when it changes from K-1 to K. Furthermore, as it was

previously mentioned, the D counter is increased when A = (S >> D)/2, where

S is the number of sets, as every pair of the (S >> D) saturation counters in

use fulfills the condition for it. Counter D is decreased when B > (S >> D)/2.

Also, after updating the current number of counters, the new ones are initialized

to K − 1 and the associated insertion policies are reset to the traditional MRU

one. This process is performed periodically. We will see in Section 6.6 that this

design provided an average improvement of 7.8% over the baseline for the same set

of workloads and configuration used in Table 6.1 in comparison with the 6.9% of the

best static approach.

128 Chapter 6. Adaptive Set-Granular Cooperative Caching

Table 6.2: Architecture of the CMP with private LLCs.

Processor

Frequency 4GHz
Fetch/Issue 4/4
ROB entries 176

Integer/FP registers 96/80

Memory subsystem

L1 i-cache & d-cache 32kB/2-4-ways/32B/LRU/WT
L2 (unified, inclusive) cache 1MB/8-way/32B/LRU/WB
L2 Cache latency (cycles) 9 local hits, 25 remote hits

Main memory latency 115ns
Coherence protocol MESI-based broadcasting

6.5. Simulation environment

To evaluate our approach we have used the SESC simulator [58] with a baseline

configuration based on four-issue out-of-order cores with two cache levels, both of

which are private to each core. This configuration is detailed in Table 6.2. The ratio

of LLC space per core is similar to that used in the related bibliography and actual

processors [15] [1].

We have used the same 13 benchmarks of the SPEC CPU 2006 suite as in the

previous chapters with an MPKI of at least 1, as shown in their characterization

in Table 6.3, to make 14 multiprogrammed workloads of two applications and 6 of

four. These workloads cover combinations between applications that benefit from

allocating more ways and other ones that do not, workloads where no benchmark

benefits from getting extra space and workloads where all the benchmarks would

benefit from getting it.

Table 6.3: Benchmarks characterization.

Benchmark L2 MPKI CPI Benchmark L2 MPKI CPI
401.bzip2 2.7 1.8 458.sjeng 1.36 1.6
429.mcf 40.1 10.4 462.libquantum 22.4 4.3
433.milc 33.1 4.28 470.lbm 29 2

444.namd 1 0.76 471.omnetpp 15.2 2
445.gobmk 1.1 1.34 473.astar 7.3 3.5
450.soplex 3.6 1 482.sphinx3 16.1 4.37
456.hmmer 3.4 1.3

6.6 Experimental evaluation 129

They have been executed using the reference input set (ref), during 10 billion

instructions after the initialization. When each core reaches this number of instruc-

tions it continues its execution until the last core finishes, in order to keep competing

for the cache resources.

6.6. Experimental evaluation

ASCC, as well as the other approaches, has been applied in the last level of the

cache memory hierarchy for every single core. In our experiments we have also tested

DSR with 32 sets per Set Dueling Monitor and 1 SDM per policy, a combination

of DSR and DIP [53], where DIP decides the insertion policy for the global cache

(either BIP or the traditional LRU one) depending on which policy is working better

using also set dueling and, finally, the ECC approach described in Section 6.2. Our

designs, as well as the DIP used in the combination with DSR, use a probability

ε = 1/32 of inserting the new line in the MRU position using BIP. ECC uses the

values proposed in [19] for the thresholds and we have implemented it without the

distributed structures they propose, tracking the shared state of the lines with an

additional bit per block. Note that this implementation provides the ECC design

with more accuracy than the original design, which cannot track the information of

all lines in the cache, specially if the degree of replication is low. Finally, AVGCC

checks whether the number of counters must be changed every 100000 accesses to

the cache.

Figures 6.7 and 6.9 (a) show the performance improvement over the baseline for

the different approaches, measured as the weighted speedup of CPIs, using 2 and

4 cores, respectively. Numbers above or beneath the bars provide the percentages

that are outside the scale range. The last column shows the geometric mean for

each design. ASCC, which gets 6.4% and 5.7% of performance improvement over

the baseline when executing 2 and 4 applications, respectively, and AVGCC, which

achieves 7% and 7.8%, respectively, clearly outperform the other approaches. DSR

adapts to the requirements of the applications thanks to the set dueling mechanism,

but it is not able to take advantage of the state of each set as ASCC and AVGCC

do. Also, it forces sets to be either spillers or receivers and lacks of a policy ori-

ented to capacity problems. DSR+DIP outperforms DSR executing 2 applications

130 Chapter 6. Adaptive Set-Granular Cooperative Caching

-5

0

5

10

4
7
1
+

4
7
3

4
3
3
+

4
8
2

4
6
2
+

4
0
1

4
6
2
+

4
7
0

4
2
9
+

4
0
1

4
3
3
+

4
2
9

4
4
4
+

4
7
1

4
4
5
+

4
7
3

4
7
1
+

4
6
2

4
3
3
+

4
7
3

4
5
8
+

4
8
2

4
4
4
+

4
2
9

4
3
3
+

4
7
0

4
0
1
+

4
5
8

g
eo

m
ea

n

27.831.7 27.8 26

-8 -10-11
-5

0

5

10

%
 P

er
fo

rm
a

n
ce

 i
m

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

Figure 6.7: Performance improvement for DSR, DSR+DIP, ECC, ASCC and AVGCC
running two applications over the baseline.

-5

0

5

10

4
7
1
+

4
7
3

4
3
3
+

4
8
2

4
6
2
+

4
0
1

4
6
2
+

4
7
0

4
2
9
+

4
0
1

4
3
3
+

4
2
9

4
4
4
+

4
7
1

4
4
5
+

4
7
3

4
7
1
+

4
6
2

4
3
3
+

4
7
3

4
5
8
+

4
8
2

4
4
4
+

4
2
9

4
3
3
+

4
7
0

4
0
1
+

4
5
8

g
eo

m
ea

n

2629 20 26

-6-10-11

-5

0

5

10

%
 F

a
ir

n
es

s
im

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

Figure 6.8: Fairness improvement for DSR, DSR+DIP, ECC, ASCC and AVGCC running
two applications over the baseline.

because it tackles capacity misses as well. The problem with DSR+DIP is that its

BIP insertion policy is not aware of the spillings, as we explained in Section 6.3.1.

Thus, one just inserted line, which is not likely to be reused in the near future if

the set is applying BIP, can be spilled to another cache and, as a result, a line with

more locality could be evicted there. Even worse, a spilled line can evict a just

inserted line in a set applying BIP depriving it of a chance to be reused and conse-

quently promoted to the top of the recency stack. Let us recall that this particular

behavior cannot happen in our designs. As the number of executing applications

increases, the number of candidate caches to receive spilled lines increases as well,

so the negative effects of BIP are likely to happen more frequently. That is why

DSR+DIP degrades the performance of DSR executing 4 applications. The discrete

and even negative behavior of DSR+DIP with respect to DSR emphasizes the need

for modifying policies to adapt them to different environments, as we have done

6.6 Experimental evaluation 131

0

5

10

15

401+444+

445+456

444+445+

456+471

401+433+

450+462

433+471+

473+482

(a)

401+444+

458+471

444+458+

462+471
geomean

18.9

0

5

10

15

%
 P

er
fo

rm
a
n

ce
 i

m
p

ro
v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

0

5

10

15

401+444+

445+456

444+445+

456+471

401+433+

450+462

433+471+

473+482

(b)

401+444+

458+471

444+458+

462+471

geomean

0

5

10

15

%
 F

a
ir

n
es

s
im

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

Figure 6.9: Performance (a) and fairness improvement (b) over the baseline for DSR,
DSR+DIP, ECC, ASCC and AVGCC running four applications.

with SABIP, and for integrated management designs such as ASCC and AVGCC.

The ECC performance improvement is modest compared to those of ASCC and

AVGCC because it mainly relies in a high degree of replication, as it uses scalable

structures that cannot hold information for all the lines in the cache and has the

problems inherent in partitioning described in Section 6.2. Finally, AVGCC outper-

forms ASCC by adapting the granularity of its policies to the different requirements

of the applications.

Figures 6.8 and 6.9 (b) show the percentage of fairness improvement with respect

to the baseline system of each one of the considered approaches calculated as the

harmonic mean of IPCs, using 2 and 4 applications, respectively. ECC gets better

results than DSR and DSR+DIP because it is able to reduce the execution time

for the longest applications. Overall the results and therefore the explanations for

them, are similar to the ones obtained in the performance analysis. From these

results we can conclude that ASCC and AVGCC do not hurt fairness when speeding

up mixed workloads, AVGCC being again the leader thanks to its larger flexibility.

Figures 6.10 and 6.11 perform the same study in terms of throughput improvement

and show similar trends to those observed in the previous studies.

We have also simulated the usage by all the cores of a shared cache of the same

aggregated capacity in which addresses are mapped to banks in an interleaved way.

This cache has been simulated using an average latency (almost twice the latency of

a private L2 in the baseline for the 2-core experiments and almost four times using

4 cores) for the accesses to the different banks, assuming a uniform distribution

of the accesses across the banks given by the interleaved mapping. For the sake

132 Chapter 6. Adaptive Set-Granular Cooperative Caching

-5

0

5

10

4
7
1
+

4
7
3

4
3
3
+

4
8
2

4
6
2
+

4
0
1

4
6
2
+

4
7
0

4
2
9
+

4
0
1

4
3
3
+

4
2
9

4
4
4
+

4
7
1

4
4
5
+

4
7
3

4
7
1
+

4
6
2

4
3
3
+

4
7
3

4
5
8
+

4
8
2

4
4
4
+

4
2
9

4
3
3
+

4
7
0

4
0
1
+

4
5
8

g
eo

m
ea

n

-10

36 16 15

-5

0

5

10

%
 T

h
ro

u
g

h
p

u
t

im
p

ro
v
em

en
t

	

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

Figure 6.10: Percentage of throughput improvement for ECC, DSR, DSR+DIP, ASCC
and AVGCC running two applications over the baseline.

0

5

10

15

401+444+

445+456

(2.5)

444+445+

456+471

(3.1)

401+433+

450+462

(33.9)

433+471+

473+482

(42.3)

401+444+

458+471

(3)

444+458+

462+471

 (16.2)

geomean

0

5

10

15

%
 T

h
ro

u
g
h

p
u

t
im

p
ro

v
em

en
t

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

Figure 6.11: Percentage of throughput improvement for ECC, DSR, DSR+DIP, ASCC
and AVGCC running four applications over the baseline.

of clarity the results for these simulations are not shown in the figures. Globally,

the 2MB shared cache outperformed the baseline private configuration in the 2-core

experiments by 1.8% and 1.7% in terms of performance and fairness, respectively,

laying quite far from the performance of AGCC and AVGCC. Using 4 cores, the 4MB

shared cache got a 3% of improvement in both metrics. This means that, in general,

and despite the automatic sharing of resources inherent in shared caches, private

designs with additional sharing mechanisms can be more effective by protecting sets

from being assimilated by greedy cores.

6.6 Experimental evaluation 133

0

20

40

60

80

100

120

471+473 433+482 462+401 462+470 429+401 433+429 444+471 445+473 471+462 433+473 458+482 444+429 433+470 401+458 geomean

D
S

R
D

S
R

+
D

IP
E

C
C

A
S

C
C

A
V

G
C

C

D
S

R
D

S
R

+
D

IP
E

C
C

A
S

C
C

A
V

G
C

C

Main Memory Hits

L2 Local Hits

L2 Remote Hits

Figure 6.12: Percentage of improvement in the average memory latency showing the
percentage of hits in main memory, in local L2 or in remote L2 for DSR, DSR+DIP,
ECC, ASCC and AVGCC running two applications over the baseline.

0

20

40

60

80

100

445+401+444+456 445+444+456+471 433+462+450+401 433+471+473+482 458+444+401+471 458+444+471+462 geomean

D
S

R
D

S
R

+
D

IP

E
C

C

A
S

C
C

A
V

G
C

C

D
S

R
D

S
R

+
D

IP

E
C

C
A

S
C

C
A

V
G

C
C

Main Memory Hits

L2 Local Hits

L2 Remote Hits

Figure 6.13: Percentage of improvement in the average memory latency showing the
percentage of hits in main memory, in local L2 or in remote L2 for DSR, DSR+DIP,
ECC, ASCC and AVGCC running four applications over the baseline.

134 Chapter 6. Adaptive Set-Granular Cooperative Caching

6.6.1. Average memory latency and power consumption

Figure 6.12 shows the average memory latency normalized to the baseline con-

figuration (represented by the horizontal dotted line of 100) for all the approaches in

the 2-core configuration. Each bar is broken down showing the percentage of accesses

to the L2 which result in hits in the local L2, in a remote one or in main memory.

The percentage due to the L1 hits is not shown because it is almost the same for

all the approaches. The average memory latency has been calculated regarding that

each access is sequentially processed, without overlaps between accesses. This bar

graph provides some feedback on previous results. For instance, we can infer that

ASCC and AVGCC degrade the baseline performance for the workload 429+401

(mcf+bzip2) because most local L2 hits in the baseline become remote L2 hits for

both approaches. The last column shows the geometric mean. DSR gets a 5%

of improvement, DSR+DIP 12%, ECC 1%, ASCC 18% and AVGCC 22% in the

2-core configuration. As for the 4-core configuration, whose results are shown in

Figure 6.13, DSR outperforms the baseline design by 10%, DSR+DIP by 14%, ECC

by 11%, ASCC by 21% and finally AVGCC by 27%. This translates in average power

consumption reductions in the memory hierarchy of 22% and 20% for ASCC and of

25% and 29% for AVGCC in our 2 and 4-core experiments, as Figures 6.14 and 6.15

show, respectively. Although DSR outperformed DSR+DIP in terms of weighted

speedup and fairness (see Figure 6.9) here it is DSR+DIP the one which obtains the

best results. This is due to the best performance DSR obtains in those applications

with low IPCs, since as the executions take longer, the problems of DSR+DIP are

exacerbated. This behavior is also asserted by the throughput analysis, which is not

so dependent on the particular improvement over a single application but on the full

workload, where DSR+DIP outperforms DIP (see Figure 6.11).

6.7. QoS-Aware AVGCC

In some CMPs losing performance may be unacceptable. AVGCC degrades

the baseline performance sometimes. In order to solve this problem we propose

an extended design to provide Quality of Service (QoS). Our design can inhibit

AVGCC by stopping spillings and fixing the insertion policy to MRU. We leverage

6.7 QoS-Aware AVGCC 135

0

20

40

60

80

100

4
7
1
+

4
7
3

4
3
3
+

4
8
2

4
6
2
+

4
0
1

4
6
2
+

4
7
0

4
2
9
+

4
0
1

4
3
3
+

4
2
9

4
4
4
+

4
7
1

4
4
5
+

4
7
3

4
7
1
+

4
6
2

4
3
3
+

4
7
3

4
5
8
+

4
8
2

4
4
4
+

4
2
9

4
3
3
+

4
7
0

4
0
1
+

4
5
8

g
eo

m
ea

n

0

20

40

60

80

100

%
 P

o
w

er
 c

o
n

su
m

p
ti

o
n

 r
el

a
ti

v
e

 t
o

 t
h

e
b

a
se

li
n

e

ASCC

AVGCC

Figure 6.14: Percentage of power consumption of ASCC and AVGCC related to the
baseline running two applications.

0

20

40

60

80

100

401+444+

445+456

444+445+

456+471

401+433+

450+462

433+471+

473+482

401+444+

458+471

444+458+

462+471
geomean

0

20

40

60

80

100

%
 P

o
w

er
 c

o
n

su
m

p
ti

o
n

 r
el

a
ti

v
e

to
 t

h
e

b
a
se

li
n

e

ASCC

AVGCC

Figure 6.15: Percentage of power consumption of ASCC and AVGCC related to the
baseline running four applications.

136 Chapter 6. Adaptive Set-Granular Cooperative Caching

0

5

10

4
7
1
+

4
7
3

4
3
3
+

4
8
2

4
6
2
+

4
0
1

4
6
2
+

4
7
0

4
2
9
+

4
0
1

4
3
3
+

4
2
9

4
4
4
+

4
7
1

4
4
5
+

4
7
3

4
7
1
+

4
6
2

4
3
3
+

4
7
3

4
5
8
+

4
8
2

4
4
4
+

4
2
9

4
3
3
+

4
7
0

4
0
1
+

4
5
8

g
eo

m
ea

n

28 26 29

(a)

0

5

10

 %

 P
er

fo
rm

a
n

ce
 i

m
p

ro
v

em
en

t

 r

el
a
te

d
 t

o
 L

R
U

AVGCC

QoS-Aware AVGCC

0

5

10

15

401+444+

445+456

444+445+

456+471

401+433+

450+462

433+471+

473+482

401+444+

458+471

444+458+

462+471
geomean

(b)

0

5

10

15

 %

 P
er

fo
rm

a
n

ce
 i

m
p

ro
v
em

en
t

 r

el
a
te

d
 t

o
 L

R
U

AVGCC

QoS-Aware AVGCC

Figure 6.16: Percentage of performance improvement for QoS-Aware AVGCC and
AVGCC over the baseline using 2 (a) and 4 (b) cores.

the fact that this inhibition can be done by limiting the increase that an update

in the saturation counters means when a cache miss occurs. A harmful operation

of AVGCC is detected when its number of misses is greater than in the baseline

cache. The number of misses of the baseline cache (MBC) is estimated by tracking

the misses (SampledSetMisses) in those sets (SampledSets) working under the MRU

traditional insertion policy and which have a value for their saturation counters

greater than K − 1, as these sets cannot receive lines. Then MBC is estimated as:

MBC = CacheSets ∗ (SampledSetMisses/SampledSets) (6.1)

As for the number of misses for AVGCC (MissesWithAVGCC), it is simply col-

lected using a counter. Our design calculates a ratio called QoSRatio whose purpose

is to adjust the saturation value of the sets in order to penalize or reward them de-

pending on their behavior. It is calculated every 100000 cycles simultaneously with

the recalculation of the number of counters following the equation:

QoSRatio = MBC/max(MBC,MissesWithAV GCC) (6.2)

After the computation all the parameters are initialized and the saturation coun-

ters are updated after each miss by adding the QoSRatio, while they are decreased

6.8 Cost 137

in 1 unit after a hit as usual. Figure 6.16 (a) shows the percentage of performance

improvement over the baseline system of the Quality of Service Aware AVGCC us-

ing two cores. Our Quality of Service approach globally outperforms the original

AVGCC, as stated in the last column of the bar graph. Figure 6.16 (b) shows the

same study using 4 cores, where AVGCC did not degrade the performance of any

workload. In this case our QoS approach gets 8.1% improvement over the baseline.

6.8. Cost

In this section we evaluate the cost of ASCC, AVGCC and QoS-Aware AVGCC

in terms of storage requirements.

ASCC and AVGCC require additional hardware because of the need of a satura-

tion counter per set to monitor its behavior and one additional bit per set in order

to determine the insertion policy. Also, AVGCC needs three additional counters:

one to track the current number of counters in the cache (the D counter explained

in Section 6.4), another one to determine if all pairs of neighbor sets have a similar

value (the A counter) and a last one to check if there are more than half counters

with a low value, lower than K, in their saturation counters (B counter). Finally, the

QoS-Aware AVGCC requires a per-core storage overhead of 2 bytes for both miss

counters (SampledSetMisses and MissesWithAVGCC), 4 bits to store the QoSRa-

tio value (1.3 fixed point format) and 12 bits (assuming 4096 sets in the cache) to

count the number of sampled sets. Also, 3 additional bits are needed per saturation

counter (4.3 fixed point format). Based on this, Table 6.4 calculates the storage

required for a baseline 8-way 1MB cache with lines of 32B assuming addresses of 42

bits. Altogether, the QoS-Aware AVGCC design means a 0.35% of storage overhead

over the baseline considering the finest granularity, that is, having one counter per

set. We can also see that the storage overhead of the other set-granular cooperative

approaches means less than a 0.2% of additional storage overhead.

138 Chapter 6. Adaptive Set-Granular Cooperative Caching

Table 6.4: Baseline, ASCC, AVGCC and QoS-Aware AVGCC storage cost in a 1MB/8-
way/32B/LRU cache

Baseline ASCC AVGCC QoS-Aware AVGCC

Tag-store entry:
State(MESI+LRU) 5 bits 5 bits 5 bits 5 bits

Tag (42− log2 sets− log2 32) 25 bits 25 bits 25 bits 25 bits
Size of tag-store entry 30 bits 30 bits 30 bits 30 bits

Data-store entry:
Set size 32*8*8 bits 32*8*8 bits 32*8*8 bits 32*8*8

Additional structs per set:
Saturation Counters - 4 bits 4 bits 4+3 bits
Insertion policy bit - 1 bit 1 bit 1 bit

Total of structs per set - 5 bit 5 bits 8 bits

Adjustment mechanism:
A,B & D counters - - 12+12+4 bits 12+12+4 bits

Total - - 28 bits 28 bits

QoS-Aware mechanism:
Miss counters - - - 2+2B
QoSRatio - - - 4 bits

Total - - - 36 bits

Number of tag-store entries 32768 32768 32768 32768
Number of data-store entries 32768 32768 32768 32768

Number of sets 4096 4096 4096 4096
Size of the tag-store 120kB 120kB 120kB 120kB

Size of the data-store 1MB 1MB 1MB 1MB
Size of additional storage - 2560B 2560B+ ∼4B 4104B

Total 1144kB 1146kB (0.17%) 1146kB (0.17%) 1148kB (0.35%)

Table 6.5: Percentage of performance improvement and storage overhead of AVGCC
limiting the maximum number of set saturation counters from 128 to 2048 and AVGCC
itself related to the baseline configuration using 4 cores.

Design % Speedup Additional Storage

AVGCCMax128 6.8% 83B
AVGCCMax256 6.5% 163B
AVGCCMax512 6.4% 323B
AVGCCMax1024 6.7% 643B
AVGCCMax2048 7.1% 1284B

AVGCC 7.8% 2564B

6.9 Analysis 139

6.8.1. Limiting the maximum number of counters

As we could see in Section 6.4, it is not necessary to have one counter per

set in order to get the best overall results with ASCC. Thus, we performed some

experiments limiting the maximum number of counters in AVGCC in order to further

reduce the storage overhead. Table 6.5 shows the performance obtained and the

storage overhead over the baseline limiting the maximum number of counters from

128 to 2048 (our baseline has 4096 sets) using the multiprogrammed workloads for

4 cores. We can observe that AVGCC keeps a high degree of improvement even

needing a negligible storage overhead related to the baseline.

6.9. Analysis

6.9.1. Impact of varying cache parameters

In this section we evaluate how the performance of AVGCC varies with respect

to the main parameters of the cache.

Table 6.6 shows the percentage of reduction in the number of off-chip accesses,

measured taking in account all the accesses from every core, achieved by the AVGCC

as well as the per-core storage overhead it involves as the cache size varies between

1MB and 4MB. We can observe that the improvements are smaller from the 2MB

cache on because the miss rate decreases as the cache size increases.

Table 6.7 shows the percentage of reduction in the number of off-chip accesses

achieved by AVGCC, as well as the storage overhead it involves, as the associa-

tivity varies from 8 ways through 32 ways for the fixed baseline cache size. The

performance improvement provided by AVGCC decreases due to two reasons. First,

the increased associativity reduces the baseline miss ratio due to the elimination of

conflict misses. Second, as the number of lines per set increases, the finest granu-

larity that AVGCC can manage, a single set, is larger. Restricting the granularity

hurts the performance of some workloads, as seen in Table 6.1. Still, AVGCC keeps

a high degree of improvement for large associativities, while its storage overhead

drops strongly.

140 Chapter 6. Adaptive Set-Granular Cooperative Caching

Table 6.6: Cost-benefit analysis of AVGCC as a function of the cache size.
Cache size % Average reduction in off-chip accesses (4 / 2 cores) Storage Overhead

1MB 27% / 14% 0.17%
2MB 12% / 9% 0.17%
4MB 12% / 9% 0.17%

Table 6.7: Cost-benefit analysis of AVGCC as the associativity varies.
Ways % Average reduction in off-chip accesses (4/2 cores) Storage Overhead

8 27%/14% 0.17%
16 22%/12% 0.13%
32 20%/11% 0.08%

Table 6.8: Cost-benefit analysis of AVGCC varying the line size.
Line size % Average reduction in off-chip accesses (4/2 cores) Storage Overhead

32 27%/14% 0.17%
64 22%/12% 0.09%
128 18%/9% 0.05%

Table 6.8 shows the percentage of reduction in the number of off-chip accesses

achieved by AVGCC, as well as the storage overhead it involves, as the line size varies

from 32 bytes to 128 bytes in the entire cache memory hierarchy, remaining the other

basic parameters as in the baseline cache. The average improvement obtained by

AVGCC decreases as the line size increases because most of the benchmarks have

a high spatial locality (7 out of the 13 benchmarks notably reduce their miss rate

increasing the line size, while only 2 degrade their performance). Also, as in the

case of the increase in associativity, the growth in the line size limits the minimum

amount of cache resources that AVGCC can track and manage independently, which

is harmful for some workloads. Still, the storage overhead of AVGCC drops much

more than the improvements it brings, making it even more effective in relative

terms.

6.9.2. Multithreaded experiments

We have performed experiments with multithreaded applications in order to

evaluate our proposals in environments where sets tend to have a uniform demand

in all caches. For these experiments we have used benchmarks from the SPLASH2

and PARSEC suites running them during 10 billion instructions (most of them

6.9 Analysis 141

0

5

10

ba
rn

es

ch
ol

es
ky

ff
t

fm
m lu

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l
bl

ac
ks

ch
ol

es
ca

nn
ea

l

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

st
re

am
cl

us
te

r
sw

ap
tio

ns
ge

om
ea

n

3515 20 2019 35 20

0

5

10

%
 R

ed
uc

ti
on

 in
 e

xe
cu

ti
on

 t
im

e
 r

el
at

ed
 t

o
L

R
U

DSR
DSR+DIP
ECC
ASCC
AVGCC

Figure 6.17: Percentage of reduction in execution time over the baseline for ECC, DSR,
DSR+DIP, ASCC and AVGCC running multithreaded applications with four threads.

until completion) and using the large input set for PARSEC and the appropriate

input set for SPLASH2 using 4 threads. Most of these benchmarks are not hard

memory demanding so we have reduced the L2 capacity to 512KB to get meaningful

results. Figure 6.17 shows the percentage of reduction in execution time over the

baseline using 4 threads. We can see that ECC performs well in this environment,

even though it only outperforms DSR again. AVGCC gets a 6% of throughput

improvement over the baseline, ASCC a 5%, DSR+DIP 4.5%, ECC 4% and DSR

3.5%. In this environment the spilling of lines can benefit even the receiver caches,

which may need the line in the near future, so our policies aim to take advantage of

this behavior as well.

6.9.3. Interaction with Prefetching

Furthermore, we added a 16KB stride prefetcher to each LLC in the multipro-

grammed experiments obtaining similar results. Namely, ASCC outperformed the

baseline by 6% and 5.5% and AVGCC by 6.4% and 7.6% in the 2 and 4 core config-

urations, respectively. Prefetchers reduce the miss rate in the LLC, but this is done

at the expense of consuming more bandwidth. This way, the impact of our policies

is slightly reduced by the presence of prefetchers in the 2-core configuration. The

reduction that the presence of the prefetchers implies in the advantages provided

142 Chapter 6. Adaptive Set-Granular Cooperative Caching

by ASCC and AVGCC is negligible in the 4-core CMP because as the number of

cores increases the bandwidth savings provided by these techniques are much more

critical, particularly as the prefetchers consume more bandwidth.

6.9.4. AVGCC behavior

In this section measurements on the internal behavior of AVGCC are compared

to those of other techniques in order to better understand how it achieves its results.

We performed experiments on two parameters, the number of spillings and hits per

spilled line. In the 2-core experiments AVGCC performed on average 13% fewer

spills than the second best approach (DSR+DIP henceforth) and 60% fewer than

the worst one (ECC). Also, its ratio of hits per spilling was 28% larger than that of

the second best policy. Regarding the 4-core experiments, AVGCC performed 28%

fewer spillings than the following best approach, and 70% fewer than the worst case.

Also, its ratio of hits per spilling was 36% greater than the one of the DSR+DIP

approach.

From these results we infer that AVGCC is not only able to achieve a higher

ratio of hits per spilled line, but it also needs fewer spillings to get it. This means

that AVGCC performs fewer useless spillings by relying, among other points of the

design, on the neutral state of the sets.

6.10. Summary

In this chapter the Adaptive Set-Granular Cooperative Caching (ASCC), a new

design aimed at last-level caches in CMP private configurations with a good cost-

benefit relation, has been presented. This cache detects the different degrees of

demand of the sets in each cache in order to balance their working set by spilling

lines to other caches where the set is underutilized. When the sharing of resources

does not suffice, ASCC modifies the cache insertion policy in order to deal with

the problem of capacity. Furthermore, we propose Adaptive Variable-Granularity

Cooperative Caching (AVGCC), which is able to adapt the granularity with which

the sets should be profiled and managed. Also, this design has been improved with

6.10 Summary 143

a Quality of Service mechanism.

As far as we know this is the first approach that uses spills for sharing resources

using a set level metric. It is also the first one able to adapt its granularity depending

on the behavior of the cache and capable of coordinating a spilling mechanism with

a local policy to tackle capacity misses. Finally, it demonstrates the benefits of

operating portions of the cache, groups of sets in this case, neither as spillers nor as

receivers of lines, that is, not participating in the spilling mechanism.

In a 4-core system running multiprogrammed workloads, AVGCC achieved a

performance improvement of 7.8% with respect to the baseline. Also, it clearly

outperformed recent proposals both in terms of speedup and fairness, while having

a very small storage overhead. We have even proposed a model which only needs 5

bits to get a 4% of improvement. The 27% average memory latency reduction and

29% power consumption reduction it provided in these tests are also remarkable.

Similar results were obtained in experiments with multithreaded applications.

Chapter 7

Conclusions and Future Work

7.1. Conclusions

In order to neutralize the gap between processor and memory speeds, modern

processors rely on large last-level caches (LLC). The importance of cache manage-

ment has become even more critical because of the growing bandwidth requirements

of CMPs, the increasing working sets of many emerging applications, and the smaller

cache size available for each core as the number of cores on a single chip continues

to increase. This PhD Thesis, “Cache Design Strategies for Efficient Adaptive Line

Placement”, analyzes some of the problems related to the management of caches and

the common harmful behaviors they experience, and proposes simple and effective

solutions to them that substantially improve the performance and power consump-

tion of computers. A common characteristic of all the designs proposed in this

dissertation is that they are fine-grained both in terms of analysis of the behavior

of the cache and the enforcement of policies to improve its performance. This fine

granularity is achieved nevertheless with very light additional hardware structures

and very small changes to the standard design of caches.

This Thesis proves that the harmful effects derived from one of the inefficiencies

commonly found in cache memories, the non-uniformity of the distribution of the

memory references among the cache sets, can be reduced by displacing lines from

cache sets which are not able to hold their particular working set to other underuti-

145

146 Chapter 7. Conclusions and Future Work

lized ones. The Set Balancing Cache (SBC) [60] associates both kinds of cache sets,

in order to balance the load among them and thus reduce the miss rate, by relying

on a cost-effective metric called Set Saturation Level, which measures the degree to

which a set is able to hold its particular working set. This value, which indicates

the degree of pressure on a set, is provided by a counter per set called saturation

counter which is increased when a miss occurs and decreased with every hit. This

metric has proved successful at setting the most suitable role, namely source or des-

tination, of a given set in the associations. An initial static SBC design (SSBC),

which only allows displacements between preestablished pairs of sets, achieved an

average reduction of 9.2% of the miss rate, or 14% computed as the geometric mean.

This led to average IPC improvements between 2.7% and 3.7% depending on the

type of configuration tested. Furthermore, a low-cost and efficient structure, called

Destination Set Selector (DSS), is proposed in order to provide the best set available

in the cache during an association request, which yields near-optimal selections. An

improved dynamic extension of the SBC (DSBC), that tries to associate each highly

saturated set with the less saturated cache set available by using the DSS, obtained

an average reduction of 12.8% of the miss rate, 19% computed as the geometric

mean. This led to average IPC improvements between 3.5% and 5.25% depending

on the type of memory hierarchy tested. Furthermore, the SBC designs proved con-

sistently to be better than increasing the associativity, both in terms of area and

performance, as well as implying negligible storage overheads, less than 0.6% related

to the baseline cache.

This dissertation also confirms that another one of the problems usually found

in cache memories, thrashing, which appears when lines with a certain degree of

locality are evicted to make room for other temporary ones, can be alleviated by

applying a suitable insertion policy. This insertion policy must be able to discard

temporary data as soon as possible while retaining the most important part of the

working set in the cache. This kind of policy can be combined with the DSBC design

presented in this Thesis, to decrease the pressure on the cache sets when the dis-

placements of lines between sets to reduce conflict misses do not suffice. This Thesis

analyzes the reasons for the suboptimal behavior of the simultaneous application of

DSBC and DIP [53] and proposes in a reasoned way an integrated design of these

policies that allows them to cooperate effectively: the Bimodal Set Balancing Cache

(BSBC) [61]. This extended design deals with conflict and capacity misses simul-

7.1 Conclusions 147

taneously by using the Set Saturation Level (SSL) as the unique metric to control

both behaviors. Therefore, this Thesis also demonstrates the usefulness of the SSL

metric to detect problems of capacity in the cache as well as problems of unbalance

among the working sets of different sets. This way, the BSBC means only a 0.6% of

additional storage related to the baseline cache. Simulations using benchmarks with

varying characteristics show that, when properly integrated with our BSBC design,

the joint application of the DSBC and BIP policies goes from being often one of the

worst approaches to being the best one. For example in a 2MB, 8-way second level

cache DIP+DSBC jointly reduces the miss rate by 8.3% in relative terms, while

DSBC and DIP reduce it by 12% and 10% respectively. With BSBC the relative

miss rate reduction almost doubles to 16%. This leads also the BSBC to get the

largest IPC improvement, 4.8% on average for this configuration, compared to the

3% that a straight DSBC+DIP implementation provides. The other policies tested,

DSBC, DIP and probabilistic escape LIFO lay in between. Hence, this dissertation

shows that the coordination of different policies aimed to deal with different kinds of

inefficiencies can be managed using cost-effective metrics and provides much larger

gains that the independent application of such policies. Additionally, we have also

shown that BSBC is directly applicable to shared caches, where it has performed

well, achieving 10% of miss rate reduction on average and 3% of throughput im-

provement. This is even better than some techniques specifically designed to work

on this kind of platforms, like PIPP [84]. The DSBC has been also evaluated in

shared caches, reducing the baseline miss rate by 7.8% on average and achieving

throughput improvements of up to 10%. Despite these positive results, techniques

that include support for thread-awareness, like TADIP [27], have performed better in

our experiments considering a shared LLC when the number of cores increases. This

suggests the importance of giving particular treatments to different access streams

in the cache.

Moreover, this Thesis shows that the idea of treating different access streams

according to their individual behavior can be successfully applied to first-level caches

by dynamically adjusting cache resources devoted to instructions and data, the two

main streams that appear at these levels, depending on their particular demand.

We propose the Virtually Split Cache (VSC), the first approach which is aware of

the different locality instructions and data have and that allocates resources for

both depending on their demand at a bank level. We have proposed two alternative

148 Chapter 7. Conclusions and Future Work

designs to track the different requirements instructions and data demand. The first

approach, the Shadow Tag VSC, uses shadow tags to decide whether assigning one

more bank for instructions or data increases performance. The second approach, the

Global Selector VSC, uses a common saturation counter to make instructions and

data fight a duel for resources. Shadow Tag VSC achieved 3.7% IPC improvement

and 13% and 10% of miss rate and power consumption reduction related to a split

baseline, respectively. Global Selector VSC got 3.2% IPC improvement and 11%

miss rate reduction needing only 4 bits of additional storage, while achieving 8% of

power consumption reduction as well. Furthermore, both VSC approaches proved to

work well in multicore environments. The Shadow Tag VSC and the Global Selector

VSC outperformed a 4-core baseline configuration in terms of throughput by 4.5%

and 3.7% on average, respectively.

Further, this dissertation focuses on shared LLCs, where the behaviors analyzed

in the preceding chapters, namely unbalances among cache sets, thrashing and the

existence of different access streams, can also be found. The Thread-Aware Bimodal

Set Balancing Cache (TABSBC), which measures the degree of pressure that each

application applies to each set in the cache using the Set Saturation Level, was

introduced in a sensible way. This design tackles thrashing in shared caches by

including a new insertion policy, called BIP-C. It implies a notable improvement

with respect to the original BIP [53] in these caches, as it protects lines from early

displacements due to other threads. When TABSBC estimates an application is

experiencing a bad cache behavior, it first tries to displace lines of the problematic

application from oversubscribed sets to underutilized sets applying the Set Balancing

Cache techniques. When this fails or it is not possible, it resorts to the BIP-C

insertion policy for the problematic application, which has proven to be suitable to

reduce capacity misses. TABSBC provides its underlying mechanisms with thread-

awareness support in a coordinated and sensible way. Despite its fine-grained nature

both in terms of measurement and modification of the cache behavior, and the

variety of policies that it can apply, TABSBC cost is very reasonable; around 1%

or less in representative configurations. Large simulations using a wide range of

workloads have indicated that TABSBC consistently achieves the best overall results

in comparison with recent techniques. This is due to two key characteristics that

distinguish it clearly from all the other thread-aware techniques we are aware of. The

first one is the small granularity at which it can take and apply decisions, as opposed

7.1 Conclusions 149

to the global decisions of other approaches. The second one is its coordinated

approach to reduce conflict and capacity misses that can balance load among sets.

This latter issue is largely ignored by the other proposals specifically designed for

shared caches, which only focus on the workload inside each set. We think that it is

of the upmost importance to identify the dead blocks in the cache and make the best

usage of them. This requires changes to the placement policy like the ones explored

here. For the same reasons, TABSBC scales very well as the number of cores that

share the cache increases.

Finally, this dissertation reasserts the fact that a common way to increase perfor-

mance in CMPs is to provide private LLCs with shared capacity by spilling lines be-

tween them. We propose Adaptive Set-Granular Cooperative Caching (ASCC) [62],

which is able to track the state and apply different policies to each set in a cache.

This is a much finer granularity than previous proposals, which apply the same pol-

icy to the whole cache. It performs spillings and applies a suitable insertion policy, if

spillings are not enough to fight capacity problems, relying on the SSL of each cache

set. A new insertion policy, SABIP, specifically designed to tackle capacity problems

and be aware of displacements in environments where spillings are performed, was

proposed. Also, a neutral state for individual sets within a spilling environment was

introduced. The benefits of operating portions of the cache neither as spillers nor

as receivers of lines, that is, not participating in the spilling mechanism, was suc-

cessfully demonstrated. ASCC achieved 6.4% and 5.7% performance improvement

running 2 and 4 cores, respectively, which translated into 18% and 21% average

memory latency reductions. Its storage overhead was estimated at 0.17% related to

the baseline. Furthermore, this dissertation proposes the idea of dynamically adjust-

ing the granularity to which different policies are applied in the cache depending on

its behavior. Adaptive Variable-Granularity Cooperative Caching (AVGCC) is the

first approach able to adapt its granularity depending on the behavior of the cache to

apply the ASCC policies. In a 4-core system running multiprogrammed workloads,

AVGCC achieved a performance improvement of 7.8% with respect to the baseline.

Also, it clearly outperformed recent proposals both in terms of speedup and fair-

ness, while having a very small storage overhead, less than 0.2%. The 27% of average

memory latency reduction and 29% of power consumption reduction it provided in

these tests are also remarkable. Similar results were obtained in experiments with

multithreaded applications. Finally, this dissertation shows that providing a given

150 Chapter 7. Conclusions and Future Work

design with Quality of Service (QoS) support does not always imply obtaining an

average performance degradation. An extended AVGCC design, called QoS-Aware

AVGCC, outperformed the baseline system by 8.1% despite meaning only a 0.35%

of storage overhead.

7.2. Future Work

The ideas proposed in this dissertation can also be combined with other existing

techniques or used for other cache related optimizations, such as reducing power

consumption by deactivating underutilized cache blocks.

In this Thesis we have explored the feasibility of using information at the set

level to adopt decisions on cache management. Future directions for research in-

clude tuning the size and limits of saturation counters as well as exploring other

metrics to obtain a more accurate picture of the state of the cache, as other related

techniques [85] do.

Although we have applied fine-grained metrics to choose the insertion policy for

sets, using a global ε to guide the operation of the BIP insertion policy and its

variations may not be optimal. Exploring the possibility of applying local values to

the ε parameter for the proposed policies, in the different regions depending on their

state, can increase performance as the application of policies at a finer structure level

has successfully demonstrated in this dissertation.

Studying the different behavior in terms of performance at a set level in the

VSC, or even finer granularities like line level, as well as exploring other metrics and

mechanisms to track instructions and data requirements is an open line of research.

Also we are planning to extend the main idea underlying the VSC design, that is,

controlling the allocation of resources in the first-level cache to particular streams

independently, in SMT processors at a thread level.

As future work in shared LLCs, the cooperative implementation of other poli-

cies to reduce misses can be explored. Reductions of the hardware required by our

TABSBC can also be studied, for example by grouping the observation and man-

agement of nearby sets by applying the concept of variable granularity introduced

7.2 Future Work 151

in Chapter 6.

Furthermore, the study of ASCC behavior in clusters of cores to keep a feasible

degree of scalability, and the shaping of these clusters by matching complementary

SSL values in different caches, may be tackled.

Appendix A

Appendix

A.1. SBC additional experiments

A.1.1. Master-Slave SBC

We have implemented an extended version of the DSBC, called Master-Slave

SBC, where destination sets that become highly saturated can be recursively associ-

ated without breaking its original association (unless the break condition is fulfilled).

As a result, a given set can play the role of source and destination within different

associations at the same time. To achieve this, every single set has two entries in the

Association Table (see Section 2.4.1), one devoted to each possible role within an as-

sociation, which indicate its associated sets. Note that when a certain set plays the

role of source set it can only displace native lines. Results for the two-level baseline

configuration are shown in Table A.1, while results for the three-level configuration

are depicted in Table A.2. Simulations were performed under the same conditions

as in Chapter 2.

The improvement obtained in comparison with the original DSBC (3.5% and

5.25% average IPC improvement related to the two-level and three-level configura-

tions, respectively) is almost negligible.

153

154 Chapter A. Appendix

Table A.1: IPC improvement of the Master-Slave SBC over the two-level baseline con-
figuration.

bzip2 milc namd gobmk soplex hmmer sjeng libquantum omnetpp astar geomean
4.4% 4.2% 0.1% 0.1% 3.4% 3.6% 0.1% 2.2% 17% 4% 3.8%

Table A.2: IPC improvement of the Master-Slave SBC over the three-level baseline
configuration.

bzip2 milc namd gobmk soplex hmmer sjeng libquantum omnetpp astar geomean
4.4% 4.5% 3.5% 4.4% 5.4% 4.4% 4.1% 4% 16% 4.9% 5.5%

A.1.2. DSBC with Extra Tags

We have experimented with another extended design of the DSBC where each

set has two extra tags in the Association Table (AT). These tags identify lines

that have been displaced from the set to another one. The value of two tags was

chosen according to the average number of displacements observed in the previous

experiments (2.15, see Section 2.8.3), so that this number of tags suffices for many

associations while not increasing too much the cost of the design.. It also needs a

counter, which indicates the number of displaced lines to the destination set. The

operation of this extended design is the following:

When a new association is committed, the tag of the line which is displaced to

the destination set is replicated in one of the two extra tags of the AT (in the

entry corresponding to the source set), the other one remaining invalid. also,

the counter of displaced lines is set to 1.

A subsequent displacement would update the other extra tag and increase the

counter.

If a new displacement happens and there is no extra tag free, the counter is

increased.

Every time a cache set is accessed, all tags, including the two extra in the AT,

are checked. If the counter is equal to or greater than 3 or the requested line

is found in the extra tags a second search is needed.

A.2 TABSBC additional experiments 155

If a displaced line in a destination set is evicted, the counter of the source set

is decreased, and one of its tags is invalidated if it corresponded to the evicted

line.

As we can see the purpose of this design extension is to avoid secondary accesses

under a miss in the source set of a destination. Tables A.3 and A.4 show the IPC

improvement in the two-level and three-level configurations, respectively.

The percentage of improvement is slightly better than that of the Master-Slave

approach but still quite low in comparison with the original DSBC.

A.2. TABSBC additional experiments

A.2.1. TABSBC using the RRIP replacement policy

The Re-Reference Interval Prediction (RRIP) [28] technique achieves good per-

formance benefits by modifying the traditional cache replacement policy. Victim

lines are selected depending on their recent behavior using a 2-bit counter to indi-

cate the degree of reuse of each line. New lines are inserted with a reuse value of 2 or

3 depending on which option is performing better in the cache according to the set

dueling mechanism. A line is selected for eviction only if its counter has a value of 3.

If no such line exists, the counters for all lines in the current set are increased until

one counter reaches that value. When a block is touched, its counter is set to zero

(applying the Hit Priority approach, which is the one used in our experiments as it

achieved the best results in [28]). Although a technique with thread-aware support

has been proposed (TA-DRRIP, which uses set dueling to dynamically determine

which option the application should apply in the presence of other applications), its

efficiency is reduced when the number of applications sharing a LLC increases since

a given core may evict a recently inserted line owned by a different core.

We have extended the original TABSBC design by applying RRIP as the re-

placement policy instead of the traditional LRU one. This way, the behavior of this

version of TABSBC is listed next:

Displaced lines must have a degree of reuse equal to 3.

156 Chapter A. Appendix

Table A.3: IPC improvement of DSBC with Extra Tags over the two-level baseline
configuration.

bzip2 milc namd gobmk soplex hmmer sjeng libquantum omnetpp astar geomean
4.1% 5% 0.2% 0.2% 3.8% 4% 0.5% 2.3% 15.5% 5.2% 4%

Table A.4: IPC improvement of DSBC with Extra Tags over the three-level baseline
configuration.

bzip2 milc namd gobmk soplex hmmer sjeng libquantum omnetpp astar geomean
4.5% 4.5% 4% 5% 4.4% 5% 4% 4.5% 14.5% 5.2% 5.6%

New lines are inserted with a degree of reuse equal to 2, if the set is applying the

traditional MRU insertion, or 3, if the set is dealing with capacity problems.

Tables A.5 and A.6 show the performance improvement, measured in terms of

throughput, and miss rate reduction of this version running 2 cores, respectively.

The same study is performed in Tables A.7 and A.8 running 4 cores. Experiments

were performed under the same conditions as in Chapter 5.

This design achieves a slight improvement related to TABSBC, which had ob-

tained 4% IPC improvement and 12% miss rate reduction running two cores.

As for the 4-core experiments, the improvement obtained related to TABSBC,

5% performance improvement and 15% miss rate reduction, is a little bit higher

than in the two-core ones.

A.2 TABSBC additional experiments 157

Table A.5: Performance improvement of TABSBC with RRIP running two cores.

MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8
4.7% 7.9% 9.6% 6.4% 1.3% 5.2% 2.8% 4.7%
MW9 MW10 MW11 MW12 MW13 MW14 MW15 MW16

1% 6.3% 1.6% 6.2% 1% 1.2% 4% 1.5%

geomean 4.1%

Table A.6: Miss rate reduction of TABSBC with RRIP running two cores.

MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8
24% 14% 17% 7% 5.1% 5% 31% 24%

MW9 MW10 MW11 MW12 MW13 MW14 MW15 MW16
1% 17% 2.6% 24% 5.8% 5.4% 8% 12.3%

geomean 12.4%

Table A.7: Performance improvement of TABSBC with RRIP running four cores.

401+444+
445+456

401+445+
456+471

401+433+
450+462

433+471+
473+482

401+444+
458+471

444+458+
462+471

geomean

1.4% 3% 7.5% 14% 3% 5.4% 5.6%

Table A.8: Miss rate reduction of TABSBC with RRIP running four cores.

401+444+
445+456

401+445+
456+471

401+433+
450+462

433+471+
473+482

401+444+
458+471

444+458+
462+471

geomean

7% 20% 21% 22% 17% 19% 17.5%

Bibliography

[1] Model number methodology for the AMD Opteron 4100 and 6100 series pro-

cessors, 2010. pages 128

[2] A. Agarwal and S. D. Pudar. Column-associative caches: A technique for

reducing the miss rate of direct-mapped caches. In Proc. 20th Annual Intl.

Symp. on Computer Architecture, pages 179–190, May 1993. pages 5, 6, 18, 24,

72, 80

[3] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Mart́ınez. Scavenger:

A new last level cache architecture with global block priority. In 40th Annual

IEEE/ACM Intl. Symp. on Microarchitecture, pages 421–432, December 2007.

pages 5, 6, 19

[4] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive selective

replication for CMP caches. In MICRO, pages 443–454, 2006. pages 10, 117

[5] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.

IBM Systems journal, pages 78–101, 1966. pages 4

[6] B. Calder, D. Grunwald, and J. S. Emer. Predictive sequential associative cache.

In Proc. of the Second Intl. Symp. on High-Performance Computer Architecture,

pages 244–253, February 1996. pages 5, 6, 18, 24, 72, 80

[7] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In

ISCA, pages 264–276, 2006. pages 9, 13, 117

[8] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiproces-

sors. In ICS, pages 242–252, 2007. pages 8, 10, 90, 117

159

160 BIBLIOGRAPHY

[9] M. Chaudhuri. Pseudo-LIFO: The foundation of a new family of replacement

policies for last-level caches. In MICRO 42: Proceedings of the 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture, pages 401–

412, 2009. pages 7, 9, 48, 59, 66, 89, 91, 103

[10] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for

high-performance energy-efficient non-uniform cache architectures. In Proc. of

the 36th Annual IEEE/ACM Intl. Symp. on Microarchitecture, pages 55–66,

December 2003. pages 6, 31

[11] Digital Equipment Corporation. Digital semiconductor 21164 alpha micropro-

cessor product brief, March 1997. pages 25, 31

[12] H. Dybdahl and P. Stenström. An adaptive shared/private nuca cache parti-

tioning scheme for chip multiprocessors. In HPCA, pages 2–12, 2007. pages

8

[13] H. Dybdahl, P. Stenström, and L. Natvig. A cache-partitioning aware replace-

ment policy for chip multiprocessors. In HiPC, pages 22–34, 2006. pages 73,

89

[14] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching in

scalar processors. In MICRO, pages 102–110, 1992. pages 5

[15] R. Golla. Niagara 2: A highly threaded server-on-a-chip, 2006. pages 128

[16] A. González, C. Aliagas, and M. Valero. A data cache with multiple caching

strategies tuned to different types of locality. In International Conference on

Supercomputing, pages 338–347, 1995. pages 5, 8

[17] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing quality of

service in chip multi-processors. In MICRO, pages 343–355, 2007. pages 8, 90

[18] E. G. Hallnor and S. K. Reinhardt. A fully associative software-managed cache

design. In Proc. 27th annual Intl. Symp. on Computer architecture, pages 107–

116, June 2000. pages 6, 31

[19] E. Herrero, J. González, and R. Canal. Elastic cooperative caching: an au-

tonomous dynamically adaptive memory hierarchy for chip multiprocessors. In

ISCA, pages 419–428, 2010. pages 9, 117, 121, 129

BIBLIOGRAPHY 161

[20] M. D. Hill. Aspects of cache memory and instruction buffer performance. PhD

thesis, 1987. pages 2

[21] HP Labs. CACTI 6.5. http://www.hpl.hp.com/research/cacti/. pages 31, 37,

60, 79, 80, 82

[22] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system:

predicting and optimizing memory behavior. SIGARCH Comput. Archit. News,

30(2):209–220, 2002. pages 5

[23] M. C. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. L1 data cache decompo-

sition for energy efficiency. In ISLPED, pages 10–15, 2001. pages 73

[24] Intel Corporation. Intel core i7 processor extreme edition and intel core i7

processor datasheet, 2008. pages 31

[25] R. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. R.

Hsu, and S. K. Reinhardt. QoS policies and architecture for cache/memory in

CMP platforms. In SIGMETRICS, pages 25–36, 2007. pages 8, 90

[26] A. Jaleel. Memory characterization of workloads using instrumentation-driven

simulation. Retrieved on December 18, 2008, from http://www.glue.umd.

edu/~ajaleel/workload/. pages 11, 17

[27] A. Jaleel, W. Hasenplaugh, M. K. Qureshi, J. Sebot, S. C. S. Jr., and J. S.

Emer. Adaptive insertion policies for managing shared caches. In PACT, pages

208–219, 2008. pages xi, 9, 66, 70, 89, 91, 93, 100, 103, 147

[28] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer. High performance cache

replacement using re-reference interval prediction (RRIP). In ISCA, pages 60–

71, 2010. pages 7, 9, 48, 58, 91, 103, 155

[29] J. Jeong and M. Dubois. Cost-sensitive cache replacement algorithms. In

HPCA, pages 327–337, 2003. pages 5, 7

[30] T. L. Johnson, D. A. Connors, M. C. Merten, and W. mei W. Hwu. Run-time

cache bypassing. IEEE Trans. Computers, 48(12):1338–1354, 1999. pages 8

[31] T. L. Johnson and W. mei W. Hwu. Run-time adaptive cache hierarchy man-

agement via reference analysis. In ISCA, pages 315–326, 1997. pages 8

162 BIBLIOGRAPHY

[32] D. Joseph and D. Grunwald. Prefetching using markov predictors. In ISCA,

pages 252–263, 1997. pages 5

[33] N. Jouppi and N. Wilton. CACTI: An enhanced cache access and cycle time

model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996. pages

75

[34] N. P. Jouppi. Improving direct-mapped cache performance by the addition of

a small fully-associative cache prefetch buffers. In Proc. 17th Intl. Symp. on

Computer Architecture, pages 364–373, June 1990. pages 5, 42

[35] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational

behavior to reduce cache leakage power. In ISCA, pages 240–251, 2001. pages

8

[36] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi. Using dead blocks as

a virtual victim cache. In Proc. 19th Intl. Conf. on Parallel Architectures and

Compilation Techniques, pages 489–500, 2010. pages 89, 104

[37] S. M. Khan, Y. Tian, and D. A. Jiménez. Sampling dead block prediction for

last-level caches. In MICRO, pages 175–186, 2010. pages 89, 91

[38] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using prime numbers for

cache indexing to eliminate conflict misses. In Proc. 10th Intl. Symp. on High

Performance Computer Architecture, pages 288–299, February 2004. pages 5,

18

[39] M. Kharbutli and Y. Solihin. Counter-based cache replacement and bypassing

algorithms. IEEE Trans. Computers, 57(4):433–447, 2008. pages 8

[40] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache struc-

ture for wire-delay dominated on-chip caches. In ASPLOS, pages 211–222, 2002.

pages 3

[41] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In ISCA,

pages 81–88, 1981. pages 5, 79

[42] R. Kumar and D. M. Tullsen. Compiling for instruction cache performance on

a multithreaded architecture. In MICRO, pages 419–429, 2002. pages 73

BIBLIOGRAPHY 163

[43] A. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block correlating

prefetchers. In ISCA, pages 144–154, 2001. pages 72

[44] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block corre-

lating prefetchers. In ISCA, pages 144–154, 2001. pages 5

[45] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C.-S. Kim. On

the existence of a spectrum of policies that subsumes the least recently used

(lru) and least frequently used (lfu) policies. In SIGMETRICS, pages 134–143,

1999. pages 7

[46] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A new approach

for eliminating dead blocks and increasing cache efficiency. In MICRO, pages

222–233, 2008. pages 72

[47] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D. yuan Chen.

The performance of runtime data cache prefetching in a dynamic optimization

system. In MICRO, pages 180–190, 2003. pages 73

[48] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness

in SMT processors. In ISPASS, pages 164–171, 2001. pages 66, 102

[49] S. McFarling. Combining branch predictors, 1993. pages 31

[50] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history

buffer. In HPCA, pages 96–105, 2004. pages 5

[51] J. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memory reference behav-

ior with adaptive cache topology. In Proc. of the 8th Intl. Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, pages

240–250, October 1998. pages 6, 20

[52] M. K. Qureshi. Adaptive spill-receive for robust high-performance caching in

CMPs. In HPCA, pages 45–54, 2009. pages 9, 13, 117, 121, 123

[53] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J. S. Emer. Adaptive

insertion policies for high performance caching. In Proc. 34th Intl. Symp. on

Computer Architecture, pages 381–391, June 2007. pages xi, xii, 7, 9, 12, 35,

36, 47, 48, 49, 50, 51, 69, 73, 91, 92, 100, 113, 122, 129, 146, 148

164 BIBLIOGRAPHY

[54] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches.

In MICRO, pages 423–432, 2006. pages 8, 73, 89, 90, 91, 92

[55] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way cache: Demand-

based associativity via global replacement. In Proc. 32st Intl. Symp. on Com-

puter Architecture, pages 544–555, June 2005. pages 6, 11, 17, 19, 20, 31, 117,

119

[56] P. Racunas and Y. N. Patt. Partitioned first-level cache design for clustered

microarchitectures. In ICS, pages 22–31, 2003. pages 73

[57] M. V. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient hardware hashing

functions for high performance computers. IEEE Transactions on Computers,

46(12):1378–1381, 1997. pages 84

[58] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,

P. Sack, K. Strauss, and P. Montesinos. SESC simulator, January 2005.

http://sesc.sourceforge.net. pages 30, 79, 102, 128

[59] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. On high-bandwidth

data cache design for multi-issue processors. In MICRO, pages 46–56, 1997.

pages 77

[60] D. Rolán, B. B. Fraguela, and R. Doallo. Adaptive line placement with the Set

Balancing Cache. In Proc. 42nd IEEE/ACM Intl. Symp. on Microarchitecture,

pages 529–540, December 2009. pages x, 49, 69, 73, 117, 119, 146

[61] D. Rolán, B. B. Fraguela, and R. Doallo. Reducing capacity and conflict misses

using Set Saturation Levels. In Proc. 17th Intl. Conf. on High Performance

Computing, December 2010. pages xi, 73, 117, 119, 146

[62] D. Rolán, B. B. Fraguela, and R. Doallo. Adaptive set-granular cooperative

caching. In HPCA, pages 213–224, 2012. pages xiii, 149

[63] A. Samih, Y. Solihin, and A. Krishna. Evaluating placement policies for manag-

ing capacity sharing in cmp architectures with private caches. TACO, 8(3):15,

2011. pages 9

BIBLIOGRAPHY 165

[64] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and associativity.

In MICRO, pages 187–198, 2010. pages 6, 18

[65] A. Seznec. A case for two-way skewed-associative caches. In Proc. 20th Annual

Intl. Symp. on Computer Architecture, pages 169–178, May 1993. pages 5, 7,

18

[66] A. J. Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982. pages

2

[67] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous

multithreading processor. In ASPLOS, pages 234–244, 2000. pages 66, 102

[68] K. So and R. N. Rechtschaffen. Cache operations by MRU change. IEEE Trans.

on Computers, C-37(6), June 1988. pages 2

[69] G. S. Sohi and M. Franklin. High-bandwidth data memory systems for super-

scalar processors. In ASPLOS, pages 53–62, 1991. pages 75, 77

[70] S. Srikantaiah, M. T. Kandemir, and M. J. Irwin. Adaptive set pinning: man-

aging shared caches in chip multiprocessors. In ASPLOS, pages 135–144, 2008.

pages 8, 90, 91

[71] S. Srikantaiah, E. Kultursay, T. Zhang, M. Kandemir, M. Irwin, and Y. Xie.

Morphcache: A reconfigurable adaptive multi-level cache hierarchy. In HPCA,

pages 231–242, 2011. pages 10, 117

[72] S. T. Srinivasan, R. D.-C. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs.

criticality. In ISCA, pages 132–143, 2001. pages 7

[73] C.-L. Su and A. M. Despain. Cache design trade-offs for power and performance

optimization: a case study. In ISLPD, pages 63–68, 1995. pages 75, 77

[74] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache

memory. The Journal of Supercomputing, 28(1):7–26, 2004. pages 89

[75] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy. Power4

system architecture. In IBM Journal of Research and Development, 2007. pages

80

166 BIBLIOGRAPHY

[76] J. Torrellas, C. Xia, and R. L. Daigle. Optimizing the instruction cache per-

formance of the operating system. IEEE Trans. Computers, 47(12):1363–1381,

1998. pages 73

[77] G. S. Tyson, M. K. Farrens, J. Matthews, and A. R. Pleszkun. A modified

approach to data cache management. In MICRO, pages 93–103, 1995. pages 8

[78] T. Wada, S. Rajan, and S. Przybylski. An analytical access time model for on-

chip cache memories. IEEE Journal of Solid-State Circuits, 27(8):1147–1156,

August 1992. pages 75

[79] D. Weiss, J. Wuu, and V. Chin. The on-chip 3-MB subarray-based third-level

cache on an itanium microprocessor. IEEE journal of Solid State Circuits,

37(11):1523–1529, November 2002. pages 25, 31

[80] M. Wilkes. Slave memories and dynamic storage allocation. IEEE Transactions

on Computers, EC-14:270–271, 1965. pages 2

[81] W. A. Wong and J.-L. Baer. Modified lru policies for improving second-level

cache behavior. In HPCA, pages 49–60, 2000. pages 8

[82] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. S. Jr., and J. S.

Emer. Ship: signature-based hit predictor for high performance caching. In

MICRO, pages 430–441, 2011. pages 89

[83] C.-J. Wu and M. Martonosi. Characterization and dynamic mitigation of intra-

application cache interference. In ISPASS, pages 2–11, 2011. pages 112

[84] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-partitioning of multi-

core shared caches. In ISCA, pages 174–183, 2009. pages xi, 9, 66, 70, 89, 91,

103, 147

[85] D. Zhan, H. Jiang, and S. C. Seth. STEM: Spatiotemporal management of

capacity for intra-core last level caches. In MICRO, pages 163–174, 2010. pages

7, 73, 117, 119, 150

[86] C. Zhang. Balanced cache: Reducing conflict misses of direct-mapped caches.

In Proc. 33rd Intl. Symp. on Computer Architecture, pages 155–166, June 2006.

pages 6, 72

BIBLIOGRAPHY 167

[87] C. Zhang, X. Zhang, and Y. Yan. Two fast and high-associativity cache

schemes. IEEE MICRO, 17:40–49, 1997. pages 6, 18, 72, 80

[88] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity while

hiding wire delay in tiled chip multiprocessors. In ISCA, pages 336–345, 2005.

pages 8

