
PhD Thesis

Real Time Rendering of Parametric
Surfaces on the GPU

Raquel Concheiro Figueroa

2013

Departamento de Electrónica y Sistemas

Universidade da Coruña, Spain

Departamento de Electrónica y Sistemas

Universidade da Coruña, Spain

PhD Thesis

Real Time Rendering of

Parametric Surfaces on the GPU

Raquel Concheiro Figueroa

March 2013

PhD Advisors:

Margarita Amor López

Montserrat Bóo Cepeda

Dr. Margarita Amor López

Titular de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

Dr. Montserrat Bóo Cepeda

Titular de Universidad

Dpto. de Electrónica y

Computación

Universidade de Santiago de

Compostela

CERTIFICAN

Que la memoria titulada “Real Time Rendering of Parametric Surfaces on the GPU”

ha sido realizada por Da. Raquel Concheiro Figueroa bajo nuestra dirección en el

Departamento de Electrónica y Sistemas de la Universidade da Coruña y concluye la

Tesis Doctoral que presenta para optar al grado de Doctor en Ingenieŕıa Informática

con la Mención de Doctor Internacional.

En A Coruña, a 27 de Febrero de 2013

Fdo.: Margarita Amor López

Directora de la Tesis Doctoral

Fdo.: Montserrat Bóo Cepeda

Directora de la Tesis Doctoral

Vo Bo: Juan Touriño Domı́nguez

Director del Dpto. de Electrónica y Sistemas

The Dissertation Committee for Raquel Concheiro Figueroa certifies that this is

the approved version of the following dissertation:

Real Time Rendering of Parametric Surfaces on the GPU

Committee:

President,

Member,

Member,

Member,

Secretary,

Resumen

A pesar de que el primer circuito electrónico espećıfico para acelerar la śıntesis

de la computación gráfica fue diseñado a principios de los años ochenta, hubo que

esperar hasta 1999 para que la Nvidia Geforce 256 popularizara el término GPU

(Graphics Processing Unit). Desde este primer chip gráfico que procesaba un mı́nimo

de diez millones de poĺıgonos por segundo, hasta las GPUs actuales que ofrecen una

solución competitiva para la computación masivamente paralela, ha habido una

continua investigación y un crecimiento ininterrumpido. En los últimos años, la

computación gráfica se ha expandido a muchas y muy diversas áreas cient́ıficas y

tecnológicas, lo que ha impulsado la mejora de la arquitectura de la GPU con el

objetivo de proporcionar la śıntesis de modelos complejos y realistas.

Tradicionalmente, la estructura de las GPUs está orientada a triángulos y ha

sido espećıficamente diseñado para procesar y sintetizar mallas de triángulos. Sin

embargo, se ha demostrado que este enfoque es una solución insuficiente para la

śıntesis de modelos complejos, ya que, entre otras cosas, el bus que conecta CPU

y GPU puede llegar a ser un cuello de botella en las aplicaciones que suponen un

intercambio masivo de información.

Con el objetivo de minimizar los inconvenientes detectados en las GPUs orien-

tadas a triángulos, esta tesis propone una nueva estructura de GPU orientada a su-

perficies paramétricas. Aunque en este momento hay implementaciones comerciales

que proporcionan, en mayor o menor medida, cierta flexibilidad para la evaluación de

superficies paramétricas, ninguna de ellas ha sido diseñada para soportar la śıntesis

directa de superficies paramétricas sin ninguna conversión a mallas de triángulos.

La elección de superficies paramétricas viene motivada porque éstas proporcio-

nan una representación compacta, lo que minimiza los requerimientos de memoria y

vii

viii

permite obtener un modelo más continuo y suavizado que una malla de triángulos.

Además de todo esto, las caracteŕısticas matemáticas de estas superficies propor-

cionan propiedades muy interesantes en el campo de la computación gráfica ya que,

por ejemplo, simplifican la animación y la colisión debido a que usando superficies

paramétricas menos puntos deben ser controlados que con la śıntesis de poĺıgonos.

De todas formas, el aspecto más relevante para el uso de superficies paramétricas

viene de la mano de los nuevos campos de aplicación en distintas áreas cient́ıficas y

tecnológicas. En estas áreas, la exactitud del modelo representado es especialmente

relevante lo que supone un gran impulso hacia el desarrollo de modelos complejos

basados en superficies paramétricas, puesto que éstos pueden ser descritos de una

forma más precisa mediante ecuaciones que por medio de una malla de triángulos.

El esquema tradicional para la śıntesis de superficies paramétricas, se basa en la

evaluación y subdivisión de las superficies paramétricas en la CPU, donde se genera

una malla de triángulos que posteriormente será sintetizada en la GPU. Esta tesis

va un paso más allá y propone diferentes esquemas para la evaluación y śıntesis de

estas superficies directamente en la GPU. Inicialmente, se proponen diferentes esque-

mas para la śıntesis de las superficies Bézier, entre los que podemos encontrar una

propuesta para una subdivisión no adaptativa con dos alternativas: Vertex Shader

Tessellation (VST) y Geometry Shader Tessellation (GST); otra propuesta para una

implementación completamente adaptativa (DABT) basada en la generación de una

malla más adaptada a las condiciones del modelo y que permite renderizar modelos

de alta calidad con un menor número de primitivas de salida; y por último una pro-

puesta de una subdivisión semi adaptativa que sintetiza las mejores caracteŕısticas

de las dos propuestas anteriores con el objetivo de obtener una subdivisión adapta-

tiva pero con una evaluación más eficiente. Por otro lado, y como actualmente los

dispositivos móviles son los dispositivos más habituales con capacidad para śıntesis

gráfica, esta tesis incluye un diseño para la śıntesis de modelos de superficies Bézier

(VSTHD) en las GPUs implementadas en estos dispositivos.

En último lugar, se ha propuesto una nueva estructura de GPU para la śıntesis

de superficies NURBS en tiempo real. Un profundo análisis de las caracteŕısticas

hardware para la generación de nuevas primitivas ha detectado que las actuales

GPUs no son adecuadas para la śıntesis de superficies NURBS. Por ese motivo,

Rendering Pipeline for NURBS Surface (RPNS) se propone como una novedosa

ix

solución para la śıntesis de superficies NURBS en la GPU sin ningún pre-proceso ni

ninguna subdivisión previa.

El desarrollo de esta tesis sigue las ĺıneas de metodoloǵıas clásicas; incluyendo

planificación, diseño, análisis, evaluación y viabilidad de las implementaciones pro-

puestas. Su principal objetivo es contribuir con propuestas que hagan viable una

estructura de la GPU orientada a la śıntesis de superficies paramétricas en vez de

mallas de triángulos. Además, se ha realizado un profundo análisis para resaltar las

limitaciones de las GPUs orientadas a triángulos y las propuestas aqúı recogidas se

han adaptado para explotar las caracteŕısticas hardware de este tipo de arquitec-

turas.

En primer lugar, se desarrolló un estudio cuidadoso del estado del arte en el

campo de las GPU, espećıficamente de las capacidades de śıntesis de modelos com-

plejos. Como resultado de este análisis se detectaron las principales debilidades de

este tipo de arquitecturas, y posteriormente se han propuesto diseños orientados

a minimizar los problemas previamente detectados. Es por eso, que esta tesis se

centra en la śıntesis de modelos complejos con superficies paramétricas, ya que es-

ta representación soluciona, entre otros problemas, la degradación del rendimiento

debido al cuello de botella del bus CPU-GPU, permite hacer un uso más eficiente

de la memoria de la GPU gracias a que tienen una representación más compacta, y

además, proporcionan una representación más exacta ya que se describe el modelo

mediante ecuaciones matemáticas. Hay que destacar que esta tesis se ha enfocado

tanto a superficies Béziers como a superficies NURBS. Las primeras porque debido

a la rigidez y simplicidad de su representación matemática son adecuadas para ser

evaluadas en la arquitectura de las GPUs actuales enfocadas a triángulos, y las se-

gundas porque sus caracteŕısticas matemáticas las hacen especialmente indicadas

para la representación de modelos complejos, siendo en estos momentos un estándar

de facto para el software de diseño y modelado asistido por ordenador (CAD/CAM),

lo que hace su evaluación directa en la GPU deseable.

Finalmente, resaltar que todas estos diseños han contribuido a enfatizar las ven-

tajas de la evaluación de superficies paramétricas en la GPU, proponiendo estrate-

gias, que si bien han sido diseñadas con el objetivo de lograr una implementación

hardware, han logrado la śıntesis de modelos complejos en tiempo real con una im-

plementación software adaptada a la arquitectura subyacente, superando en algunos

x

casos el rendimiento obtenido por propuestas implementadas en hardware.

Esta tesis ha demostrado que una estructura de la GPU orientada a superficies

paramétrica encaja perfectamente en la śıntesis de modelos complejos, debido a

las propiedades matemáticas de estas superficies las hacen especialmente adecuadas

para la computación gráfica. A continuación se detallan las principales caracteŕısticas

y las conclusiones más relevantes extráıdas de los diseños incluidos en esta tesis. En

primer lugar se tratan los diseños enfocados a las superficies Bézier tanto en GPUs

de escritorio como para dispositivos móviles. Posteriormente, se analiza el diseño

enfocado a superficies NURBS.

En primer lugar, esta tesis detalla una propuesta no adaptativa para la subdi-

visión de superficies Bézier en la GPU, la cual está basada en la explotación de la

coherencia espacial de la información. Cada superficie Bézier se considera como una

primitiva de entrada a la GPU y se representa por medio de sus puntos de control.

Esta propuesta se caracteriza por incluir una subdivisión y evaluación eficiente de

las superficies basada en un acceso coherente a la memoria. Se han implementa-

do dos alternativas diferentes, considerando para ello diferentes arquitecturas de la

GPU. Por un lado, VST se ha diseñado para GPUs que no tienen la capacidad de

generar primitivas en tiempo de ejecución, mientras que GST ha sido diseñado para

las GPUs que cuentan con un generador de primitivas.

VST se caracteriza por la eficiente utilización del mapa paramétrico de vértices

virtuales que permite realizar un ajuste preciso del nivel de subdivisión deseado. Los

buenos resultados obtenido por esta estrategia son debidos a una reducción de las

sincronizaciones CPU-GPU, y a una eficaz evaluación de las superficies Bézier que

permite una eficiente explotación de la localidad de los datos.

Por otro lado, GST se basa en las capacidades de la generación de primitivas

en la GPU. En este caso el mapa paramétrico de vértices virtuales se generan en

tiempo de ejecución, disminuyendo los requerimientos de almacenaje. GST realiza

una eficiente evaluación de las Bézier previamente al proceso de muestreado, reuti-

lizando la evaluación de la superficie Bézier para cada nuevo punto generado. El

principal problema de esta estrategia viene dado por la arquitectura de la GPU que

se caracteriza por restringir el número de primitivas que pueden ser generadas por

cada primitiva de entrada. Para evitar esta limitación, GST incluye un particionado

xi

en zonas que permite obtener una mayor resolución que la que teóricamente propor-

ciona la GPU. Debido a esto, la evaluación de la superficie Bézier pasa a reutilizarse

únicamente dentro de cada una de las zonas de particionado del mapa paramétrico.

Ambas alternativas muestran el impacto en el rendimiento de un shader sin

divergencia y resaltan los beneficios de la explotación de la coherencia espacial.

Esta propuesta demuestra que una evaluación basada en superficies paramétricas

puede producir una śıntesis en tiempo real de modelos complejos donde el modelo es

subdividido y sintetizado en la GPU con un nivel de detalle seleccionado en tiempo

de ejecución.

Esta tesis también analiza las ventajas y desventajas de una subdivisión adapta-

tiva, mediante Dynamic and Adaptive Bézier Tesselation (DABT). A diferencia de

la propuesta no adaptativa que genera un gran número de triángulos que no van a

contribuir a la calidad de la imagen resultante, DABT es un esquema de subdivisión

adaptativo donde el número de triángulos procesados se reduce considerablemente

sin que ello suponga ninguna pérdida de calidad en la imagen final.

DABT propone un procedimiento de subdivisión sin ninguna estructura recursiva

y donde la posición de los vértices candidatos a ser insertados pueden ser fácilmente

evaluadas a través de sus coordenadas baricéntricas. Además, el nivel de subdivisión

puede seleccionarse en tiempo de ejecución. La metodoloǵıa empleada se basa prin-

cipalmente en tres puntos: el uso de un patrón de subdivisión fijo que se encarga de

guiar el procedimiento, el uso de test locales para decidir si un vértice se inserta o no

y un procedimiento eficiente para la reconstrucción de la malla resultante. DABT

sigue una propuesta adaptativa con tres niveles de resolución por cada triángulo

procesado. En concreto, se selecciona un nivel de resolución por cada uno de los

lados de los triángulos, y cada uno de ellos se proyecta hacia el centro baricéntrico

del triángulo, ocupando una tercera parte del triángulo.

DABT se caracteriza por una subdivisión adaptativa con el objetivo de sintetizar

los menos triángulos posibles sin perder calidad en la imagen final. Sin embargo, a

pesar de sintetizar un número bastante menor de primitivas que la propuesta no

adaptativa, el rendimiento obtenido es peor, debido a la divergencia introducida

para permitir la adaptabilidad. Esta tesis resalta el impacto e inconvenientes de la

divergencia en la ejecución en la GPU. Con el objetivo de mantener las caracteŕısticas

xii

más relevantes de las propuestas completamente adaptativa y de la no adaptativa,

se ha desarrolla una propuesta semi adaptativa.

La propuesta semi adaptativa es una solución intermedia entre la propuesta no

adaptativa y la completamente adaptativa. En este caso, se intenta mantener un

cierto grado de divergencia del flujo de los algoritmos, pero sin sacrificar por ello el

rendimiento obtenido cuando no se introduce divergencia. Este esquema reduce la

divergencia con el objetivo de conseguir una utilización óptima de los recursos com-

putacionales de la GPU, aunque sigue manteniendo cierto grado de adaptabilidad.

Con todo esto, se ha diseñado una propuesta que aunque consigue sintetizar muchos

menos triángulos que la propuesta no adaptativa, consigue también reducir consid-

erablemente la divergencia introducida en la propuesta completamente adaptativa.

El esquema semi adaptativo es una versión simplificada de la estrategia com-

pletamente adaptativa y está basada únicamente en un único nivel de resolución

por triángulo. Las condiciones que determinan la inserción o no de nuevos vértices,

sólo se aplican en las posiciones candidatas localizadas en los lados originales del

triángulo grueso. Mientras tanto, la inserción de nuevos vértices en el interior del

triángulo se basa en los vértices insertados en los lados del mismo.

Aprovechando nuestras propuestas para las GPUs de escritorio hemos proyectado

una aproximación a las GPUs de los dispositivos móviles, ya que éstos son actual-

mente los dispositivos con capacidad de śıntesis gráficas más habituales. Una nueva

generación de GPUs ha sido espećıficamente diseñada para encajar en estos disposi-

tivos porque los consumidores demandan continuamente mejoras en las capacidades

de śıntesis. Estas GPUs implementan únicamente un subconjunto de las caracteŕısti-

cas disponibles en una GPU de escritorio, ya que sus caracteŕısticas hardware como

su reducido tamaño o que están alimentados por bateŕıas, no permite implemen-

tar una GPU de escritorio actual. En concreto, estas GPUs han sido diseñadas

para ofrecer una alto rendimiento gráfico, pero mientras garantizan una reducción

el consumo de potencia. Esta tesis presenta una propuesta para la subdivisión de

superficies Bézier en esos dispositivos y se propone un esquema para la śıntesis de

superficies Béziers en tiempo real, Vertex Shader Tessellation in HandHeld Devices

(VSTHD), especialmente enfocado a las caracteŕısticas de estos dispositivos, que

además de identificar los factores clave en las limitación del rendimiento y permite

identificar aquellos aspectos mejorables.

xiii

Como las GPUs implementadas en dispositivos móviles no permiten la generación

de primitivas en tiempo de ejecución, VSTHD se basa en una malla de vértices vir-

tuales al igual que VST. Sin embargo, y debido al tamaño de la memoria implemen-

tada actualmente en estos dispositivos, se han desarrollado dos variantes: Uniform

VSTHD que almacena en la memoria de variables uniformes y Texture VSTHD que

utiliza la memoria de texturas.

Por último, contemplamos también el modelado con superficies NURBS, ya que

son un estándar de facto en el software CAD/CAM. Como las superficies NURBS

son considerablemente más complejas que las Béziers, habitualmente se convierten

en superficies Béziers en la CPU y estas últimas son enviadas a la GPU para ser

sintetizadas. Sin embargo, esta tesis va un paso más allá y propone el diseño de una

nueva estructrua de GPU para una evaluación y subdivisión eficiente de superficies

NURBS en la GPU, llamado Rendering Pipeline for NURBS Surfaces (RPNS).

Este diseño se caracteriza por proponer una GPU completamente orientada a

superficies paramétricas, y consta de tres módulos: geometry, sampler and rasterizer.

Inicialmente, los KSQuads se procesan en la etapa del geometry, posteriormente en

la etapa de sampler se muestrean los KSQuads en KSDices, lo que permite un ajuste

detallado en la densidad de primitivas para evitar huecos o cracks en la imagen final,

y finalmente los KSDices son sintetizados para formar la imagen resultante.

RPNS propone dos nuevas primitivas: KSQuad, una primitiva de entrada y KS-

Dice una primitiva de śıntesis. KSQuad es una primitiva de entrada a la GPU que

mantiene las propiedades geométricas de la superficie NURBS original y proporciona

un manejo regular y flexible lo que reduce la divergencia en la evaluación. Por su

parte, KSDice es la primitiva de śıntesis propuesta en RPNS. Como es una estructura

orientada a superficies paramétricas, en lugar de sintetizar triángulos se sintetizaran

KSDice, donde cada uno de ellos es la proyección de un trozo muestreado de la

NURBS original.

Por otro lado, una de las principales aportaciones de RPNS es que incluye una

fórmula eficiente para calcular las funciones base de las superficies NURBS, lo que

era uno de los principales inconvenientes para la evaluación de superficies NURBS

en la GPU hasta este momento. Este método, llamado Stair Strategy, se basa en el

analisis de las caracteŕısticas matemáticas de las superficies NURBS y se caracteriza

xiv

por evitar una evaluación recursiva de las funciones base.

Además, técnicas de culling como el backpatch y el backface culling se han con-

templado en esta propuesta. En concreto se ha implementado una técnica de backface

culling que hemos llamado Dice Culling que se sitúa al final de la etapa de sampler

ya que se evalúa la orientación de los KSDices. Por otro lado, se han introcido dos

novedosas técnicas de backpach culling, Light Quad Culling y Strong Quad Culling.

Estas técnicas de culling se caracterizan por eliminar lo antes posible aquellas re-

giones de la superficie que no van a ser visibles. Por ese motivo, se sitúan al principio

de la etapa del geometry y se dedican a comprobar si los distintos KSQuad están

orientados hacia la cámara o no.

En resumen, esta memoria presenta diseños con diferentes grados de adaptabili-

dad para la subdivisión de las superficies Bézier, contemplando también el caso de las

GPUs implementadas en los nuevos dispositivos móviles, y por último, se propone

una estructura para la śıntesis de superficies NURBS. Estas propuestas demues-

tran que incluso en las GPUs actuales orientadas a triángulos es posible sintetizar

modelos complejos de superficies Bézier y NURBS en tiempo real.

En resumen, las principales contribuciones de esta Tesis son:

1. Una nueva propuesta no adaptativa que consigue tiempo real en la śıntesis

de superficies Bézier incluso en arquitecturas previas de la GPU, las cuales

no disponen de un generador de primitivas. Esta propuesta se basa en un uso

eficiente de la memoria, en una explotación de la localidad de los datos y,

en aquellas arquitecturas con generador de primitivas, también en una reuti-

lización de la evaluación de las superficies Bézier, ya que en este caso el proceso

de muestreo es posterior a la evaluación de la superficie lo que permite reuti-

lizar estos cálculos.

2. El diseño de una técnica de particionado en zonas de la superficie paramétrica,

que permite soslayar la limitación hardware del número de primitivas que

pueden generarse. En este caso, esta restricción limitaŕıa la máxima resolución

que se puede aplicar a cada superficie Bézier, limitando por tanto la calidad

de la imagen resultante. Sin embargo, la técnica del particionado en zonas, a

pesar de complicar levemente el cálculo de la Bézier, permite obtener cualquier

nivel de resolución deseado.

xv

3. El diseño de una técnica completamente adaptativa para la evaluación de

superficies Bézier (DABT) basada en el uso de un patrón fijo de subdivisión y

en un procedimiento eficiente de reconstrucción de la malla a sintetizar.

4. Un proceso de subdivisión de triángulos sin ninguna estructura recursiva y

que permite aplicar un nivel de subdivisión por cada uno de los lados del

triángulo. Como el nivel subdivisión se calcula en base a información local al

lado, este proceso permite una gran adaptabilidad sin introducir ningún hueco

entre triángulos vecinos, ya que los lados que se solapan evalúan las mismas

condiciones de localidad.

5. Una propuesta semi adaptativa que permite realizar una evaluación adapta-

tiva mientras se minimiza la divergencia del flujo del algoritmo asociada a

este proceso adaptativo. Este técnica se caracteriza por aunar las ventajas de

una subdivisión adaptativa, en la cual se reduce el número de triángulos a

sintetizar, y las mejores condiciones de una subdivisión no adaptativa, que se

caracteriza por permitir una evaluación sin divergencia.

6. Un esquema VSTHD, para la evaluación de superficies Bézier en los disposi-

tivos móviles actuales. VSTHD está adaptado a las fuertes resticciones hard-

ware de las GPUs de estos dispositivos, ya que actualmente no implementan

ningún generador de primitivas, el tamaño de la memoria que poseen es bas-

tante limitado y tienen un número reducido de núcleos.

7. Una propuesta, RPNS, espećıficamente diseñada para la śıntesis de superficies

NURBS en la GPU. En concreto RPNS es una estructura orientada a superfi-

cies paramétricas donde no resulta necesario hacer una conversión a mallas de

triángulos. El diseño de RPNS consta de tres módulos diferenciados: geome-

try, sampler y rasterizer. En la etapa del geometry se procesa la primitiva de

entrada; en la etapa de sampler se realiza el muestreo correspondiente, y por

último en la etapa de rasterizer se sintetiza la primitiva de salida.

8. Una nueva primitiva de entrada a la GPU, llamada KSQuad que se caracteriza

por mantener las propiedades geométricas de la superficie NURBS original

mientras permite evaluar en paralelo e independientemente distintas zonas de

la misma superficie NURBS, que puede tener un nivel de detalle muy diferente.

xvi

9. Una primitiva de śıntesis llamada KSDice que permite una śıntesis directa de

superficies paramétricas sin ninguna conversión a malla de triángulos. Cada

KSDice se genera en la etapa de sampler, donde se realiza un muestreado de

la zona de la superficie NURBS representada por cada KSQuad, siendo cada

KSDice la proyección de un trozo muestreado de la superficie NURBS original.

10. Una formulación eficiente y no recursiva del cálculo de las funciones base de

las superficies NURBS, llamada Stair Strategy. Este método ha sido diseñado

pensando en las caracteŕısticas de una evaluación en una GPU, y por ello

permite evitar la recursividad de la NURBS, principal razón que dificultaba

el cálculo de estas funciones en la GPU. En concreto Stair Strategy reduce el

cálculo de las funciones base a una suma de productos que pueden ser evaluados

eficientemente en GPU.

11. Diseño e implementación de diferentes técnicas de culling que han sido situadas

en diferentes etapas de RPNS. Mientras, Dice Culling está situada al final de

la etapa de sampler y se basa en una técnica clásica de backface culling, se

han introcido dos novedosas técnicas de backpach culling, Light Quad Culling

y Strong Quad Culling.

Todas estas contribuciones se pueden resumir diciendo que el objetivo principal

de esta tesis es proponer diseños que apoyen la implementación de una GPU orienta-

da a superficies paramétricas en lugar de orientada a triángulos. Es decir, esta tesis

demuestra la versatilidad de las superficies paramétricas, aśı como lo adecuadas que

son para la śıntesis de modelos complejos. Por último, destacar que a su vez, esta

tesis contribuye con varias propuestas para la evaluación eficiente y en tiempo real

de los modelos complejos representados con superficies paramétricas en GPUs.

A padrino,

A mi familia.

Acknowledgments

It would not have been possible to write this thesis without the help and support

of the people around me, to only some of whom it is possible to give particular

mention here.

Firstly, I owe my thanks to my thesis advisors, Marga and Montse, for the

confidence they placed in me; I especially owe my deepest gratitude to Marga for her

guidance and support, every single step of the way. I would also like to acknowledge

to the GAC group, especially Emilio and the past and present members of the Lab

0.2 for their kindness and friendship, which made my experience easier over these

years.

I would also like to acknowledge Michael Doggett and the guys from the LUGG

group for their warm welcome in Sweden. Also my acknowledgements to Marisa Gil

and Xabier Martorell for being my hosts during my visit to the UPC.

Next, and foremost, there are not enough words to thank my loving family, who

have been there for me every single day of my life. Thanks to my parents, Ruth

and madrina, for giving me solid roots from which I could grow, for encouraging

me and for their unswerving love and support. I would also like to thank Dyer for

being always positive, for making me laugh and for his friendship, affection and

unequivocal support, for which my mere expression of thanks does not suffice. Also

my acknowledgements to my grandma, my aunt Loli and my cousins Rosaĺıa and

Xurxo for their outstanding support and for being a constant and active presence

in my life. Finally, I owe my thanks to my friends, Suso, Ana, Yoli, Lourdes, Marta

and to those for whom there is not enough space to give a particular mention here,

for their invaluable support, patience and friendship. Many thanks to all of you,

who have been helping me at different occasions and who, in one way or another,

have influenced this thesis.

Finally, I am thankful to the following institutions for funding this work: Com-

puter Architecture Group and the Department of Electronic and Systems at the

University of A Coruña for the human and material support, the Ministry of Ed-

xx

ucation and Science and the former Ministry of Science and Innovation of Spain

for the projects TIN2007-67537-C03-02, TIN2010-16735 and the FPI Grant BES-

2008-004533, Xunta de Galicia under the Program for Consolidation of Competitive

Research Groups ref. 2010/06, 08TIC001206P and INCITE08PXIB105161PR, par-

tially supported by FEDER funds and finally to the European Network of Excellence

on High Performance and Embedded Architecture and Compilation (HiPEAC).

For any errors or inadequacies that may remain in this work, of course, the

responsibility is entirely my own.

Raquel.

Abstract

Although the first electronic circuit specifically designed to accelerate rendering

was developed in the early 1980s, the term GPU (Graphics Processing Unit) was

popularized by the Nvidia Geforce 256 in 1999. From this first single-chip processor,

which processes a minimum of ten million polygons per second, to current GPUs,

which offer a competitive solution to massive parallel computation, there has been

continuous research and uninterrupted growth.

In recent years, the demand for computer graphics has expanded across many

scientific and engineering areas. Hence, the interactive rendering of complex and

realistic models has become a hot topic in computer graphics, supported by unstop-

pable development in the pipeline of the GPU.

Current GPU pipelines are triangle oriented and have been designed to process

and render a large amount of triangles. Nevertheless, as the CPU-GPU bus is a

habitual bottleneck, a triangle-oriented pipeline has proved to be a limited solution.

As complex models can be more precisely described by equations than by a triangle

mesh, parametric surfaces have gained ground as a new paradigm as they introduce

relevant characteristics into the representation along with the rendering of complex

models in real time. The compact representation provided by these surfaces reduces

memory consumption and, moreover, its representation provides smoother, more

continuous models than a set of triangles. Parametric surfaces can also select the

level of detail on the fly and they are invariant under an affine transformation,

thus they can be easily scalable. In addition to their mathematical characteristics,

parametric surfaces provide interesting properties in computer graphics as animation

and collision detection become simpler and faster than a set of polygons, owing to

the fact that a much smaller number of points need to be processed. Nonetheless,

parametric surfaces are usually tessellated as set of triangles in the CPU and finally

xxii

these triangles are sent down the GPU pipeline to be rendered. This dissertation goes

a step further and proposes the evaluation and tessellation of parametric surfaces

on the GPU.

This dissertation includes a deep analysis of the rendering of parametric surfaces

on the GPU focused on the mathematical characteristics of parametric surfaces with

the aim of providing an efficient strategy for rendering complex models in real time.

Two different parametric surfaces have been analyzed: Bézier and NURBS surfaces.

Bézier surfaces have been considered as an input primitive owing to their simple and

regular representation. However, as the NURBS descriptions are more suitable for

complex models, the direct rendering of NURBS models has also been analyzed in

this thesis. In conclusion, this thesis elaborates on different strategies for the real

time rendering of complex models represented as parametric surfaces.

In this thesis a set of schemes for the tessellation of Bézier surfaces on the

GPU are designed: a non-adaptive approach, a fully adaptive proposal and a semi-

adaptive approach with an intermediate degree of flexibility. The non-adaptive

proposal is based on the on-the-fly generation of the parametric grid according to

the level of resolution of each object and the camera position that determines the

refinement degree of the surface. This proposal considers each Bézier surface as the

input primitive to the pipeline, thus Bézier surfaces are tessellated and evaluated on

the GPU and the computational power of current GPUs is exploited with a com-

putational complex shader and an optimized memory access is designed. Although

a single version of the proposal is possible, generating two different variants allows

many specific details to be tweaked for optimal performance, depending on the spe-

cific GPU architecture. Therefore, a Vertex Shader Tessellation (VST) variant is

designed for GPU which could only operate on existing data, such as pipelines based

on DirectX9 Meanwhile a Geometry Shader Tessellation (GST) variant is designed

for GPUs which allows the generation and destruction of geometric primitives, such

as those based on DirectX10 or DirectX11.

With respect to the fully adaptive, Dyanamic and Adaptive Bézier Tessellation

(DABT), and semi-adaptive proposals, the aim is to reduce the number of triangles

in the final mesh while maintaining the quality of the resulting image. Surface tessel-

lation must be sufficiently fine to capture geometric and appearance details. Never-

theless, overtessellating results in an increasing surface evaluation and rasterization

xxiii

workload. Both schemes are based on a 3-stage pipeline: first, a fixed tessellation

pattern is computed to guide the adaptive procedure for the patch; next, the new

vertices obtained from the first step are conditionally inserted by applying a set of

heuristics consisting of tests local to the patch; finally, a specific scheme is employed

to represent the inserted vertices and the reconstruction methodology based on the

preprocessing of this information. The quality of the final triangle mesh is deter-

mined by both the inserted vertices and the reconstruction method employed to

generate the resulting mesh. These proposals allow all triangles generated by them

to be processed independently without introducing T-junctions or mesh cracks.

Unlike the DABT proposal, which permits multiple levels of resolution inside a

patch, the semi adaptive proposal is characterized by a lower degree of divergence,

reducing the adaptive degree of flexibility. This latter scheme is a tradeoff between a

non-adaptive tessellation scheme and a fully adaptive proposal. The objective is to

reduce the irregularity of the algorithm and the associated divergence of the DABT

in order to optimize the graphics hardware utilization.

The final chapter in this dissertation goes a step further, and a new pipeline

called Rendering Pipeline for NURBS Surfaces (RPNS) is presented. RPNS is a

novel solution for the direct rendering of NURBS surfaces on the GPU with no

previous tessellation procedure or preprocessing. A deep analysis of current GPU

pipeline evinces that the current stages for primitive generation, such as geometry

shader or tessellator, are not suitable for the direct rendering of NURBS surfaces on

the GPU. Hence, a NURBS-oriented pipeline (RPNS) has been designed according

to the geometric characteristics of NURBS surfaces. The aim is to efficiently render

each surface so that the final image has no cracks or holes, neither inside each

surface nor between neighbor surfaces, making it possible to exploit the parallelism

of the GPU to perform common operations, such as sketching on surfaces, interactive

trimming or surface intersection. RPNS is based on a new primitive called KSQuad,

which allows the direct rendering of NURBS surfaces. The design of RPNS relies

on two mainstays to achieve sound performance and high-qualilty results: adaptive

discretization of KSQuad and evaluation of NURBS surfaces with no approximation.

To test our proposals, and even though this thesis focuses principally on algo-

rithmic improvements to the rendering pipeline rather than an optimized imple-

mentation, these proposals have been implemented to measure their performance

xxiv

on current GPUs, achieving real-time rendering rates.

Contents

1. Tessellation of parametric surfaces 1

1.1. Tessellation options in current graphics cards 4

1.2. Parametric surfaces . 10

1.2.1. Bézier Representation . 11

1.2.2. Non Uniform Rational B-Splines (NURBS) 16

1.3. Thesis structure . 24

2. Non-Adaptive Tessellation 29

2.1. Structure of the Non-Adaptive tessellation proposal 30

2.2. Vertex Shader Tessellation (VST) . 33

2.2.1. Implementation Details . 36

2.3. Geometry Shader Tessellation (GST) 38

2.3.1. Implementation Details . 42

2.4. Experimental Results . 44

2.5. Conclusions . 51

3. Dynamic and Adaptive Bézier Tessellation 53

3.1. Adaptive and Dynamic Mesh Refinement 55

xxv

xxvi CONTENTS

3.1.1. Tessellation Pattern . 56

3.1.2. Strips of Vertices Representation 58

3.1.3. Adaptive Tessellation Procedure 62

3.2. Structure of Dynamic and Adaptive Bézier Tessellation 65

3.2.1. Utilization of a Fixed Pattern to Guide the Adaptive Tessel-

lation Procedure . 66

3.2.2. Selection of Tests Employed to Guide the Adaptive Tessellation 70

3.3. Implementation of the DABT Algorithm on the Geometry Shader . . 74

3.4. Results . 78

3.5. Conclusions . 82

4. Semi Adaptive Tessellation Proposal 85

4.1. Structure of the tessellation proposals 86

4.2. Semi adaptive Tessellation Strategy 88

4.3. Experimental Results . 94

4.3.1. Performance in terms of quality 96

4.3.2. Performance in terms of fps for a medium degree tessellation . 99

4.3.3. Performance in terms of fps with a high degree of tessellation . 102

4.4. Conclusions . 104

5. Rendering of Bézier surfaces on Handheld Devices 107

5.1. GPU Architectures on Mobile Devices 109

5.1.1. OpenGL ES . 114

5.2. Vertex Shader Tessellation on Handheld devices 120

5.3. Implementation details . 122

CONTENTS xxvii

5.3.1. Uniform method . 124

5.3.2. Texture VST for handheld devices 125

5.4. Experimental results . 126

5.5. Conclusions . 134

6. Rendering Pipeline for NURBS Surfaces 137

6.1. Rendering Pipeline for NURBS Surfaces 139

6.2. KSQuad Primitive . 141

6.3. KSDice: Adaptive sampling of KSQuad primitives 145

6.4. Culling techniques for NURBS surfaces 150

6.4.1. Backface culling . 151

6.4.2. Backpatch culling . 152

6.5. Explicit equations: Stair strategy . 155

6.6. RPNS with DirectX11 on current GPUs 160

6.7. Experimental Results . 164

6.8. Conclusions . 173

7. Conclusions and Future Work 175

7.1. Future Work . 180

References 183

List of Tables

2.1. Number of triangles generated (in K) for each scene 46

3.1. Number of triangles generated with the different tests presented and

Lmax = 3 . 80

4.1. Number of triangles generated (in thousands, Lmax = 3) and number

of input surfaces. 97

4.2. Number of output triangles for the three test models (in thousands). . 104

5.1. Number of surfaces and triangles generated (in K) for each scene . . 129

5.2. Vertex buffer size (in KB) for each scene 133

5.3. NDP for each scene . 133

6.1. Non-zero basis functions on knot span [xi, xi+1) for p = 5 156

6.2. Number of surfaces and KSQuad for each test model 164

6.3. #KS with different culling techniques for Killeroo model 165

6.4. #KS with different culling techniques for Head model 165

6.5. #KS with different culling techniques for Hinge model 165

6.6. #KS with different culling techniques for Car model 166

6.7. PSNR with different culling techniques for Killeroo model 166

xxix

xxx LIST OF TABLES

6.8. PSNR with different culling techniques for Head model 166

6.9. PSNR with different culling techniques for Hinge model 166

6.10. PSNR with different culling techniques for Car model 167

6.11. FPS with different culling techniques for Killeroo model 167

6.12. FPS with different culling techniques for Head model 167

6.13. FPS with different culling techniques for Hinge model 167

6.14. FPS with different culling techniques for Car model 169

6.15. Frame rate (FPS) of RPNS implementations with Dice Culling 173

List of Figures

1.1. DirectX 9 pipeline . 5

1.2. DirectX 10 pipeline . 6

1.3. DirectX 11 pipeline . 7

1.4. Tessellation structure in the DX11 pipeline 8

1.5. Comparison of two different tessellation methods (a) DirectX11 Tes-

sellation Unit (b) DiagSplit [40] . 9

1.6. Cubic Bézier curve, n = 3 . 13

1.7. Bicubic Bézier surface, n = m = 3 . 15

1.8. Cubic NURBS curve . 17

1.9. A cubic curve represented as (a) a group of Bézier curves or 20

1.10. Bi-quadratic NURBS surface . 21

1.11. Pattern to compute Ni,p . 25

1.12. Dependence of Ni,p . 26

1.13. Influence of Ni,0 . 27

2.1. Parametric space and model space for a Bézier surface 32

2.2. Samples evaluated to resolution level 1 and 2 33

2.3. Structure of the VST algorithm . 37

xxxi

xxxii LIST OF FIGURES

2.4. vertex shader pseudocode for the VST method 38

2.5. DirectX10 pipeline where the iterative procedure through the Stream

Output is remarked. 40

2.6. Structure of GST proposal . 41

2.7. Parametric map partitioning in zones 42

2.8. Structure of the GST algorithm . 43

2.9. Models employed in the test scenes (a) Teacup (b) Teapot (c) Elephant 45

2.10. VST proposal for S5 with L = 4, L = 5 and L = 6 in an Nvidia

GeForce 9800 GTX . 47

2.11. Performance of the GST alternative in an ATI 3870x2 48

2.12. Comparative for L = 4 (a) Nvidia GeForce 9800 GTX and (b) ATI

Radeon 3870 X2 . 49

2.13. Comparative for L = 4 in an ATI 5870 50

3.1. Tessellation patterns for L = {0, 1, 2, 3} 57

3.2. Tessellation Pattern employed . 59

3.3. Adaptive tessellation according to the pattern of strips of vertices . . 60

3.4. Diagonal organization . 62

3.5. Example of extreme vertex incorporation 63

3.6. Example of tessellation for a list with reused limit vertices 64

3.7. Example of tessellation for a list with reused limit vertices and incor-

porated extreme vertices . 65

3.8. Scheme of the DABT algorithm . 66

3.9. Initial coarse tessellation of the Bézier surface 67

3.10. Resolution areas inside a triangle . 68

LIST OF FIGURES xxxiii

3.11. Unified resolution Lunified=11 for a system with L = {0, 1, 2, 3} . . . 69

3.12. Example of triangle with three different resolution areas 70

3.13. Example of candidate vertices under test 71

3.14. DABT structure using the Geometry Shader 76

3.15. Access to tbuffer to recover control points 77

3.16. Models employed: (a) Teacup, (b) Teapot and (c) Elephant 79

3.17. Zoom of the tessellated teacup model obtained with the three tests:

Distance, Flat and Length . 81

3.18. Error obtained with the teacup model for Lmax = 3 and three different

quality levels . 82

3.19. FPS with tessellation level Lmax = 3 for a high quality threshold (a)

Nvidia Geforce 295 GTX (b) ATI Radeon 5870 83

4.1. Structure of the tessellation algorithms. 87

4.2. Adaptive tessellation (a) Fully adaptive pattern (b) Semi-adaptive

pattern (c) Fully adaptive tessellation and (d) Semi-adaptive tessel-

lation. 90

4.3. Examples of semi adaptive tessellations (a) No empty rows (b) Empty

row, upper row with no missing vertex (c) Empty row, upper row with

a missing vertex. 93

4.4. Models employed: (a) Teapot (b) Teacup and (c) Elephant. 95

4.5. Examples of tessellation: (a) Non adaptive (b) Semi adaptive (c) Fully

adaptive. 98

4.6. Mean absolute error obtained for the Teacups scene with Lmax = 3

for the fully adaptive and semi adaptive proposals. 99

4.7. Processing Speed in Frames per Second (Lmax = 3) (a) Teapots (b)

Teacups (c) Elephants. 100

xxxiv LIST OF FIGURES

4.8. Frame rate using higher tessellation factors (a) Teapots (b) Teacups

(c) Elephants. 103

5.1. Tegra 3 structure . 110

5.2. ULP Geforce Architecture in Tegra 3 111

5.3. Tile base deferred pipeline . 113

5.4. Mali 400 Architecture . 114

5.5. Screen split into tiles: (a) small tiles (b) large tiles 115

5.6. OpenGL ES 2.0 Graphic Pipeline . 116

5.7. OpenGL ES 2.0 vertex shader . 117

5.8. OpenGL ES 2.0 fragment shader . 118

5.9. Example of parametric maps for l = 2 123

5.10. Structure of the method . 124

5.11. Models employed in the test scenes (a) Teacup (b) Teapot 127

5.12. Screenshots of the teacup model with (a) L=1, (b) L=3 and (c) L=5 127

5.13. FPS of our proposal implementated in Mali with different levels of

resolution . 128

5.14. FPS of our proposal implementated in Tegra with different levels of

resolution . 128

5.15. Frame rate in Mali with different Nd and considering: (a) L = 1 (b)

L = 3 . 129

5.16. Frame rate comparative in Adreno, Mali and Tegra with S5pots and

different resolution levels: (a) L=1 (b) L=2 (c) L=3 (d) L=4 130

5.17. Frame rate comparative in Adreno, Mali and Tegra with S20pots and

different resolution levels : (a) L=1 (b) L=2 (c) L=3 (d) L=4 131

5.18. Performance of scene S5pots with texture access in: (a) Mali (b) Adreno132

LIST OF FIGURES xxxv

6.1. Generic structure of the rendering pipeline for NURBS surfaces based

on KSQuad . 140

6.2. KSQuad primitive defined by a knot interval 144

6.3. Head model: (a) Surfaces (b) KSQuads 146

6.4. Killeroo model rendered using as input primitives: (a) NURBS sur-

faces with a uniform tessellation per surface (b) KSQuads, which are

adaptive allowing triangles to be placed more appropriately 147

6.5. Boundary edges between surfaces (a) KSQuads with boundary edges

(b) Oversampling all boundary edges (c) Oversampling only non G1

boundary edges . 149

6.6. Backface culling . 151

6.7. Backpatch culling . 153

6.8. KSQuad-based culling (a) high degree NURBS (b) low degree NURBS155

6.9. Dependence of (a) Ni−2,5 and (b) Ni−3,5 157

6.10. Stair strategy (a) Ni−2,5 (b) Ni−3,5 . 158

6.11. Memory layout of the data structures 161

6.12. Killeroo model with the GS-based RPNS and two passes through the

GS stage . 163

6.13. Test models: (a) Killeroo (b) Head (c) Hinge (d) Car 168

6.14. Frame rate with the different culling approaches for the four test

models: (a) Killeroo (b) Head (c) Hinge (d) Car 171

6.15. Head model rendered with different screen area (a) µ = 1, (b) µ = 8

and (c) µ = 16 (d) 1 KSDice per KSQuad (e) RPNS-NU 172

Chapter 1

Tessellation of parametric surfaces

For the last thirty years, interactive graphic systems have become a hot topic

widely developed by the community with unstoppable growth. GPU (Graphics

Processing Unit) research has been supported by an increasing real-time rendering

demand for complex and realistic models across many engineering and scientific

areas, such as medicine, computer-aided design (CAD), virtual reality, video games

and computational biology. Hence, the interactive rendering of complex and realistic

images in GPUs has been a longstanding goal in computer graphics.

Real time rendering of scenes is the traditional mainstay of computer graphics.

Even though an off-line renderer that takes minutes is acceptable, real-time graphics

should synthesize frames in a few milliseconds. However, owing to the high cost of 3D

graphic operations, it is critical for GPU implementations of the real-time graphics

pipeline to be highly efficient systems. Hence, a scene is usually represented using a

low-resolution mesh in interactive graphics, and accordingly designers usually omit

complex objects from environments or approximate them coarsely using polygons

that cover many pixels on the screen.

Nevertheless, graphic designers have been demanding powerful creative control

over image generation and a realistic and detailed image synthesis. The most com-

mon complex models are designed with parametric and subdivision surfaces. Sub-

division of surfaces [16, 32, 59] is a powerful tool for modelling smooth surfaces of

arbitrary topology with complex details from coarse meshes with complex details,

and it is used in a wide range of applications, such as 3D games, movie produc-

1

2 Chapter 1. Tessellation of parametric surfaces

tion and commercial modelers from coarse meshes. Evaluating subdivision surface

involves a recursive linear interpolation to refining the coarse mesh. An approxi-

mate conversion from subdivision surfaces into parametric surfaces is viable [60, 93].

Hence, this thesis is focused in parametric surfaces. Specifically NURBS (Non-

uniform rational B-splines) surfaces are one of the most useful primitives employed

for high quality modelling, as they are de facto standard in CAD/CAM tools and

graphic software. Despite the fact that computational capability continues to in-

crease, current interactive graphics systems are still a long way off being able to

interactively synthesize realistic and detailed scenes.

Traditionally, GPUs pipelines are triangle-oriented, hence they have been de-

signed for the efficient processing of triangles and they do not work properly with

parametric surfaces. Since direct evaluation of NURBS surfaces on the GPU is

a highly complex task, they are usually converted into Bézier surfaces as a pre-

processing step and then Bézier surfaces are usually tessellated in the CPU (Central

Processing Unit) and the set of generated triangles is sent to the GPU. Obviously,

for numerous reasons, it is not practical for an interactive application to compute in

the CPU and send a high-resolution mesh representation of an entire scene to the

GPU. For example, doing so would incur substantial storage and bandwidth costs;

increase the cost of non-rendering operations, such as simulation and animation,

which do not require high-resolution meshes; and make it challenging to provide the

appropriate level of mesh detail for all possible views.

An alternative proposal for reducing triangle mesh costs is to compute Bézier

surfaces on the GPU. In this process, the NURBS surfaces are converted into Bézier

surfaces on the CPU, and then evaluated and tessellated on the GPU. As Bézier

structures are simpler than NURBS, evaluating the former is easier and faster. De-

spite this mathematical conversion being a high-consumption process unsuitable for

interactive graphics, current proposals and current GPU designs focus on this ap-

proach owing to the fact that NURBS surfaces are too complex to be processed on

the GPU on the fly.

In the literature, there have principally been two different approaches to the syn-

thesis of parametric surfaces on the GPU: tessellation and direct evaluation. The for-

mer performs the tessellation of the parametric models directly on the GPU. Recent

tessellation proposals exploit the programmable capabilities of current graphics cards

3

to achieve the real-time rendering of parametric models on the GPU [21, 33, 47, 93].

In these proposals the rendering process is performed per patch [21, 47] or per set

of patches, depending on the level of detail required [33]. In this approach the

computational cost increases with the number of patches, owing to the amount of

synchronous calls between CPU and GPU. [93] renders pixel-accurate Bézier sur-

faces using the tessellation unit of modern GPUs. Since the tessellation units added

to the current GPUs do not provide a high enough level of tessellation to generate

continuous, hole-free surfaces from a NURBS surface. Another tessellation approach

is presented in [34, 35, 84], where the tessellation of bicubic Bézier surfaces is per-

formed following a GPGPU strategy (General-Purpose Computation on GPU) using

CUDA.

A different approach to tessellating parametric surfaces is the dicing of these sur-

faces into micropolygons, small quadrilaterals each less than one pixel in size. The

starting point of this approach is the Reyes rendering system [29], based on the de-

velopment of a new and different pipeline. Even though the rendering performance

of the Reyes system is far from meeting real-time requirements, different character-

istics of this pipeline have been ported to GPUs [77, 92, 95]. Other proposals based

on the modification of the GPU pipeline for implementing micropolygon rendering

are found in [39, 41, 93].

The second approach to the synthesis of parametric models is their direct eval-

uation on the GPU [50, 55]. However, this alternative either needs to use multiple

fragment programs for the different surface degrees, [50] or presents the require-

ment of complex fragment shaders with several stages and with the parametric grid

determined on the CPU [55].

One strategy which is close to the direct evaluation of parametric surfaces is the

synthesis with Ray tracing algorithms [1, 65, 71]. These algorithms produce very

good visual results but with high timing requirements.

This chapter is organized as follows. Firstly in Section 1.1 tessellation capabilities

of current graphics card are summarized. In Section 1.2 an introduction to the

parametric surface focused on Bézier and NURBS surfaces is given. Lastly, an

overview of this thesis content is given in Section 1.3.

4 Chapter 1. Tessellation of parametric surfaces

1.1. Tessellation options in current graphics cards

In this section we briefly summarize the structure of current GPUs and the avail-

able hardware options for tessellation. The objective is to provide a brief revision

of the hardware possibilities and to summarize the working framework and the rea-

sons behind our proposals. With the tessellation procedure in mind, we shall focus

our analysis on the programmable stages and the possibilities for implementing a

tessellation procedure on them.

Until the end of 2006, the programmable vertex and pixel shaders found in the

GPUs could only operate on existing data [2, 42, 46, 88] (see Figure 1.1). The vertex

shader has traditionally been employed for vertex transformations and per-vertex

computations. No vertices can be generated or destroyed in this unit and each

vertex has no access to the information associated with another vertex. The pixel

shader is usually employed for the computation of each fragment’s color. Neither of

these two units could be employed for generating/destroying geometry in a direct

way. The scene changed a few years ago with the introduction with DirectX 10

(see Figure 1.2) of a new programmable unit, the geometry shader [9, 72, 91]. The

geometry shader allows the generation and destruction of geometry data on the

graphics processor introducing, with this characteristic, an incredible range of new

possibilities. In consequence, computer graphics algorithms that were traditionally

condemned to have limitations in their GPU implementation can be reconsidered

again for an efficient GPU implementation. Clear examples are mesh simplification

[30] and mesh tessellation [62].

The geometry shader works with primitives (point, line segment, or triangle) and

the output number of primitives may be higher or lower than the input number.

Adjacent information is available so that for each triangle the information of the

three neighbouring triangles can be accessed. However, the main drawback is the

limitation on the number of output primitives per invocation, as currently only 1024

32-bit values can be output [9, 72]. The intermediate results processed by the vertex

shader or the geometry shader can either be sent back to the pipeline through stream

out, allowing iterative processing, or sent directly to the rasterization stage.

1.1 Tessellation options in current graphics cards 5

Memory

Pixel
Shader

Vertex
Shader

Input
Assembler

Output
Merger

Rasterizer

v2

v0

v1
v3

v4
v5

Figure 1.1: DirectX 9 pipeline

With DirectX11 three new stages (hull shader, tessellator unit and domain

shader) were introduced to support programmable tessellation (see Figure 1.3) [15,

63, 90]. These new stages are inserted between the vertex and the geometry shader.

The hull shader and the domain shader are programmable stages, whereas the unit

where the real data expansion takes place, the tessellator, is a configurable stage.

As is shown in Figure 1.4, the hull shader is invocated once for each input primitive;

in the figure is invocated once for each Bézier patch. It is the first stage of the tessel-

lation procedure and it configures tessellator and domain shader execution. Hence,

the hull shader generates two different outputs to guide the tessellation procedure:

one is sent to the domain shader while the other is sent to the tessellator. Both

outputs include the tessellation factors which are generated on the fly in the hull

shader. More specifically, from the hull shader the DirectX11 tessellator receives six

independent tessellation factors, one for each domain edge and two for the internal

axes of the patch. This new tessellation unit [90] offers a high performance solution,

but with reduced flexibility in its current implementation, as it applies a fixed or

6 Chapter 1. Tessellation of parametric surfaces

Memory

Stream
Output

Geometry
Shader

Pixel
Shader

Vertex
Shader

Input
Assembler

Output
Merger

Rasterizer

Buffer

v1

v2

v0

v1

v2

v0

Figure 1.2: DirectX 10 pipeline

a semi-regular tessellation pattern (see Figure 1.4). Once these factors are set, the

edges and the inside of the patch are uniformly tessellated in the parametric domain

(see Figure 1.4). Finally, the domain shader receives the parametric coordinates

from the tessellator as well as the input primitive and the tessellator factors from

the hull shader. According to the recived data, these parametric coordinates are

evaluated in the domain shader; i.e. they are invocated once for each paramet-

ric coordinate generated in the tessellator. In [93] an implementation of a tight

estimator of the variance between the screen projection of the exact surface and

its triangulation is proposed using the GPU tessellation engine. This tessellation

unit also supports regular fractional tessellation, and some works, such as [6, 67],

add a non-uniform, fractional tessellation to achieve a more uniform screen-space

triangle area. Nevertheless, this scheme does not provide enough support for free

adaptive tessellation, and the independent primitive process requires special care by

1.1 Tessellation options in current graphics cards 7

Memory

Stream
Output

Pixel
Shader

Vertex
Shader

Input
Assembler

Output
Merger

Rasterizer

Buffer

Hull
Shader

Domain
Shader

Tessellator

Geometry
Shader

v1

v2

v0

v1

v2

v0 v12

v01

v02

v1

v2

v0 v12

v01

v02

Figure 1.3: DirectX 11 pipeline

application developers to prevent cracks.

In DiagSplit proposal [40], a modification of the DirectX11 hardware structure

is proposed to allow greater adaptability, though still keeping a uniform strategy

per surface patch. The DiagSplit algorithm [40] generates view-dependent adap-

tive tessellation with a recursive approach, where sub-patches are created with the

8 Chapter 1. Tessellation of parametric surfaces

HS input:
- bicubic Bézier
patch control
points

HS output:
- Tessellation factors

Tessellation output:
-parametric coordinates

DS input (from tessellator):
- parametric coordinate
(one vertex for each execution)

DS output:
-one tessellated
and evaluated vertex

HS output:
-bicubic Bézier patch
control points.
-Tessellation factors

edge factors: {4,3,6,2}
internal factors:{5,2}

Tessellator

Hull
Shader

Domain
Shader

Figure 1.4: Tessellation structure in the DX11 pipeline

evaluation of edges if non-uniform tessellation is required. DiagSplit performs a

non-uniform tessellation along an edge by applying a recursive process: first, the

edge is partitioned at its parametric midpoint, and then seven factors are used, one

for each edge of the two sub-patches. This proposal, however, is a long way off

obtaining an adaptive tessellation inside the patch as the interior of each sub-patch

or patch is uniformly diced according to the tessellation factor of their edges.

Figure 1.5 depicts how a patch is partitioned into triangles with the DirectX11

tessellation unit compared to the DiagSplit proposal. In this example it is assumed

1.1 Tessellation options in current graphics cards 9

4

3

6

2

(a)

1

3

3

2

22

2

subpatch l subpatch r

(b)

Figure 1.5: Comparison of two different tessellation methods (a) DirectX11 Tessel-
lation Unit (b) DiagSplit [40]

that the left side of the patch has a greater complexity and needs a higher tessel-

lation factor. Figure 1.5(a) shows the patch after being tessellated by DirectX11

using the factors {4, 3 ,6, 2} for the edges and {5, 2} inside the patch, resulting

in a mesh of triangles with similar shape and size. In Figure 1.5(b), the partition-

ing proposed in DiagSplit is applied. In an intitial step the patch is partitioned

into two sub-patches (sub-patch l and sub-patch r). Each sub-patch is subsequently

split according to four tessellation factors, {1, 3, 3, 2} and {2, 2, 2, 2}, respectively.

As shown, DirectX11 tessellator provides a configurable tessellation factor where

this tessellation process cannot be modified inside the patch; consequently it is not

suitable for the tessellation of surface with a high degree of variability inside the sur-

face, such as NURBS surfaces. DiagSplit provides a more configurable and recursive

tessellation procedure, with a regular tessellation pattern inside each patch.

10 Chapter 1. Tessellation of parametric surfaces

Broadly speaking, the tessellation of surfaces in the DirectX11 pipeline is known

for the lack of flexibility of sampling schemes in the tessellation unit, as well as for

the independent evaluation of each sample in the domain shader.

1.2. Parametric surfaces

Curves and surfaces are mathematically represented either explicitly, implicitly

or parametrically [42]. As coefficients of many parametric functions introduce con-

siderable geometric significance, the parametric form is more natural for designing

and representing shape in a computer. Hence, the present thesis is concerned with

parametric representation; more specifically, Béziers and NURBS surfaces are con-

sidered.

Parametric representation is extremely flexible as each of the coordinates on the

curve or on the surface is represented separately as an explicit function, so they are

axis independent. Although not strictly necessary, a function defined in the interval

[a, b] is usually normalized to [0, 1].

Despite the advantageous characteristics of parametric surfaces, several typical

operations, such as determining the intersection of two parametric curves or finding

the distance from a point to a curve, are considerably more difficult in a parametric

representation.

Although many surfaces can be analytically represented, there are also many

surfaces for which an analytical description does not exist. In this case, surfaces are

represented in a piecewise fashion, where each individual patch is joined together

along the edges to create a complete surfaces. Within this context, a patch is a

curve or surface which represent a piece of the model and it is joined together with

another patches to represent the whole model.

As parametric curves and surfaces are created as a join of patches, continuity is

a relevant factor to curve or surface smoothness. Specifically, two different kinds of

continuity associated to parametric curves and surfaces can be defined: geometric,

G, and parametric continuity, C. According to geometric continuity, a curve or

surface has a G0 continuity at the join if two curves or surface segments are joined

1.2 Parametric surfaces 11

together at their respective end point. Meanwhile, the resulting curve is G1 if the

slope of the tangent vectors at the join are geometrically equals;

Like geometric continuity, if two curves or surfaces are joined together, the re-

sulting curve or surface is said to have C0 continuity at the join. However, the curve

or surface is said to be C1 continuous if the tangent vectors at the join have the same

direction and the same magnitude. Hence, parametric continuity is more restrictive

than geometric continuity.

If the resulting curve or surface is C1 at the join, there is a smooth transition

from one curve or surface segment to the next. However, if the curve or surface is

only G1 at the join, there is a more abrupt transition.

In the next, the most usual parametric representation, Bézier and NURBS, are

detailed.

1.2.1. Bézier Representation

In this section a brief introduction to the Bézier representations is presented

[37, 38, 79, 82]. Bézier representations are a special case of NURBS and they are

commonly used owing to their regular structure and simplicity. For reasons of clarity

we start the presentation by introducing Bézier curves and we subsequently extend

the description to Bézier surfaces.

Bézier curves

A Bézier curve is specified by giving a set of coordinate positions, called control

points, which indicate the general shape of the curve, as shown in Figure 1.6. These

control points are then fitted with piecewise continuous parametric polynomial func-

tions. Mathematically, a parametric n-degree Bézier curve is defined by:

P (t) =
n∑

i=0

BiJn,i(t), 0 ≤ t ≤ 1 (1.1)

where Bi are the control points and Jn,i are the classical n-degree Bernstein poly-

nomials defined by:

12 Chapter 1. Tessellation of parametric surfaces

Jn,i(t) =

(
n

i

)
(1− t)(n−i)ti (1.2)

where n is the degree of the Bézier basis function. These functions decide the extent

to which a particular control point controls the surface at a particular parametric

value t. Only n + 1 control points and the n-degree Bernstein polynomials are

required for the computation of each point of the curve.

The equation for a Bézier curve can be also expressed in matrix form:

P (t) = [T][N][G] (1.3)

where [T] = [tn tn−1 . . . t1 t0], the geometry of the curve is represented as [G]T =

[B0 B1 . . . Bn], and the [N] matrix is defined by:


(
n
0

)(
n
n

)
(−1)n

(
n
1

)(
n−1
n−1

)
(−1)n−1 . . .

(
n
n

)(
n−n
n−n

)
(−1)0

.(
n
0

)(
n
1

)
(−1)1

(
n
1

)(
n−1
0

)
(−1)0 . . . 0(

n
0

)(
n
0

)
(−1)0 0 . . . 0


For example, for n = 3 the matrix form is:

P (t) = [T][N][G] = [t3 t2 t1 1]


−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



B0

B1

B2

B3


First of all, Bernstein basis functions properties derived from Equation 1.2 are

detailed:

1. The basis functions are real.

2. Non-negativity:

Ji(u) ≥ 0 ∀ i and 0 ≤ u ≤ 1 (1.4)

1.2 Parametric surfaces 13

B0

B1

B2

B3

Figure 1.6: Cubic Bézier curve, n = 3

3. Partition of unity:
n∑

i=0

Ji(u) = 1 ∀ 0 ≤ u ≤ 1 (1.5)

4. J0(u) = Jn(1) = 1.

5. Symmetry: for any i, the set of polynomials Ji(u) is symmetric with respect

to u = 1
2
.

6. Recursive definition: Ji(u) = (1 − u)Ji(u) + uJi−1(u); defining Ji(u) ≡ 0 if

i < 0 or i > n.

Next, properties summarize the geometric characteristics of Bézier curves:

1. The degree of the polynomial defining the curve segment is one less than the

number of control polygon points.

2. The curve generally follows the shape of the control polygon.

3. The first and last points on the curve are coincident with the first and last

points of the control polygon; i.e., P (0) = B0 and P (1) = Bn.

4. The tangent vectors at the ends of the curve have the same direction as the

first and last polygon spans, respectively.

5. Convex hull property: the curve is contained within the convex hull of the

control polygon; i.e., within the largest convex polygon defined by the control

14 Chapter 1. Tessellation of parametric surfaces

polygon vertices. In Figure 1.6, the convex hull is shown by the dashed line

and an imaginary straight line from the start point to the last point.

6. Variation diminishing property: As a Bézier curve follows its control polygon

rather closer and does not wiggle more than its control polygon, no straight line

intersects the Bézier curve more times than it intersects the control polygon.

Bézier surfaces

Likewise, the shape of a (n,m)-degree Bézier surface is controlled by a set of

control points through the equation:

Q(u, v) =
n∑

i=0

m∑
j=0

Bi,jJn,i(u)Jm,j(v), 0 ≤ u, v ≤ 1 (1.6)

where Jn,i(u) and Jm,j(v) are the Bernstein basis functions in the u and v parametric

directions and Bi,j are the vertices of a polygonal control net. Again, the number

of control points in the u and v directions are n+ 1 and m+ 1, respectively. As an

example, Figure 1.7 shows a bicubic Bézier surface, n = m = 3.

In matrix form, a Bézier surface is given by:

Q(u, v) = [U][N][B][M]T [V] (1.7)

For the specific case of a bicubic Bézier surface, the matrix form is given by:

Q(u, v) = [u3 u2 u 1]


−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3



−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



v3

v2

v

1


(1.8)

1.2 Parametric surfaces 15

Figure 1.7: Bicubic Bézier surface, n = m = 3

As a Bernstein basis is used for surface blending functions, many properties of

the Bézier surfaces are known. Below, several properties are summarized:

1. Non-negativity:

Ji,n(u) ≥ 0 ∀ i, n and 0 ≤ u ≤ 1 (1.9)

2. Partition of unity:
n∑

i=0

Ji,n(u) = 1 ∀ 0 ≤ u ≤ 1 (1.10)

3. Ji,n(0) = Jn,n(1) = 1

4. Symmetry: for any n, the set of polynomials Ji,n(u) is symmetric with respect

to u = 1
2
.

5. Recursive definition: Ji,n(u) = (1 − u)Ji,n−1(u) + uJi−1,n−1(u); we define

Ji,n(u) ≡ 0 if i < 0 or i > n.

The following properties summarize the geometric characteristics of Bézier sur-

faces:

1. The degree of the surface in each parametric direction is one less than the

number of control net vertices in that direction.

16 Chapter 1. Tessellation of parametric surfaces

2. The continuity of the surface in each parametric direction is two less than the

number of control net vertices in that direction.

3. The surface generally follows the shape of the control net.

4. Only the corner points of the control net and the resulting Bézier surface are

coincident.

5. The surface is contained within the convex hull of the control net.

6. The surface is invariant under an affine transformation.

It is interesting to note that there is no known variation diminishing property

for Bézier surfaces [80].

1.2.2. Non Uniform Rational B-Splines (NURBS)

In this section an introduction to NURBS surfaces is presented. A more detailed

review can be found in [37, 38, 79, 82]. In order to clarify the explanation, we start

by introducing NURBS curves and then go on to extend the description to NURBS

surfaces.

NURBS are de facto standard to CAM/CAD applications. According to [79], the

main reason for the widespread acceptance and popularity of NURBS representation

is their common mathematical form for representing and designing both standard

analytic shapes and free-form curves and surfaces. Moreover, they provide the flex-

ibility to design a large variety of shapes by manipulating the control points and

weights. NURBS evaluation is reasonably fast and computationally stable and they

are invariant under scaling, rotation, translation and shear as well as parallel and

perspective projection. NURBS are genuine generalizations of non-rational B-spline

forms as well as rational and non-rational Bézier curves, and a powerful geometric

tool kit, including knot insertion, refinement, removal, degree elevation and split-

ting, has been designed. Furthermore, NURBS have clear geometry interpretations,

making them particularly useful for designers.

1.2 Parametric surfaces 17

B0 B1

B2
B3

B4

B5

B6

Figure 1.8: Cubic NURBS curve

NURBS Curves

A pth-degree NURBS curve (see Figure 1.8) is defined by:

C(u) =

n∑
i=0

Ni,p(u) wiBi

n∑
i=0

Ni,p(u)wi

, a ≤ u ≤ b (1.11)

where n + 1 is the number of control points, Bi are the control points, wi are the

weights and the Ni,p(u) are the pth-degree B-spline basis functions defined on the

non-periodic (and non-uniform) knot vector.

U = {0, · · · , 0︸ ︷︷ ︸
p+1

, xp+1, · · · , xm−p−1, 1, · · · , 1︸ ︷︷ ︸
p+1

}
(1.12)

where m = n + p + 1. Unless otherwise stated, we assume that a = 0, b = 1 and

wi > 0 for all i.

18 Chapter 1. Tessellation of parametric surfaces

The basis function Ni,p of degree p is defined for the parametric u direction as

Ni,p(u) =
u− xi
xi+p − xi

Ni,p−1(u) +
xi+p+1 − u
xi+p+1 − xi+1

Ni+1,p−1(u) (1.13)

with

Ni,0(u) =

{
1 if xi ≤ u < xi+1

0 otherwise
(1.14)

The knot vectors are non-decreasing sequences of real numbers that make a

partition on the parametric domain. This partition defines the relation between

different ranges of the parametric coordinates, known as knot spans or knot intervals,

with the control points. Since basis functions are non-zero only in part of the domain,

the functions Ni,p−1 and Ni+1,p−1, used for the computation of Ni,p, are non-zero for

p knot spans, overlapping for p− 1 knot spans.

Figure 1.8 shows a cubic NURBS curve defined by its control point net B =

{B0, B1, B2, B3, B4, B5, B6}, its knot vector U = {0, 0, 0, 0, 1
4
, 1
2
, 3
4
, 1, 1, 1, 1} and the

curve weights are equal to 1.

First of all, basis function properties derived from Equation 1.21 are explained:

1. Step function: Ni,0 is a step function, equal to zero everywhere except on the

half-open interval u ∈ [xi, xi+1).

2. For p > 0, Ni,p is a linear combination of two (p− 1)-degree basis functions.

3. Non-negativity: Basis functions are positive and real functions for each knot,

degree and parametric position:

Ni,p(u) ≥ 0 ∀i, p and u ∈ [0, 1] (1.15)

4. Partition of unity:
n∑

i=0

Ni,p(u) = 1 ∀ u ∈ [0, 1] (1.16)

5. Local support: Ni,p(u) = 0 for u /∈ [xi, xi+p+1). Furthermore, in any given knot

span, at most p+ 1 of the Ni,p(u) are non-zero (in general Ni−p,p(u), ...Ni,p(u)

are non-zero in [xi, xi+1)).

1.2 Parametric surfaces 19

6. All derivatives of Ni,p(u) exist in the interior of a knot span, where it is a

rational function with non-zero denominator. At a knot, Ni,p(u) is p−k times

continuously differentiable, where k is the multiplicity of the knot.

The following properties summarize the geometric characteristics of NURBS

curves:

1. The control polygon represents a piecewise linear approximation to the curve;

this approximation is improved by knot insertion or degree elevation. As a

general rule, the lower the degree the closer a curve follows its control polygon.

2. A curve C(u) with degree p, number of control points n + 1 and number of

knots m+ 1 are related by:

m = n+ p+ 1 (1.17)

3. C(0) = B0 and C(1) = Bn.

4. Affine invariance: an affine transformation is applied to the curve by applying

it to the control points; NURBS curves are also invariant under perspective

projections, a fact which is important in computer graphics.

5. Strong convex hull property: if u ∈ [xi, xi+ 1), then C(u) lies within the

convex hull of the control points Bi−p, · · · , Bi.

6. C(u) is infinitely differentiable on the interior of the knot spans and is p − k
times differentiable at a knot of multiplicity k.

7. Variation diminishing property: no plane has more intersections with the curve

than with the control polygon.

8. A NURBS curve with no interior knots is a rational Bézier curve, since the

Ni,p(u) reduce to the Bi,n(u). So, NURBS curves contain non-rational and

rational Bézier curves as a special case, as shown in Figure 1.9. In this Figure,

the same curve which is drawn as a set of Bézier curves in Figure 1.9(a) is also

drawn as a NURBS Curve in Figure 1.9(b).

20 Chapter 1. Tessellation of parametric surfaces

B'
0

B'
1

B'
2

B'
4

B'
5

B'
6

B'
7 B'

8

B'
9

B'
10

B'
11

B'
12

Bézier0
Bézier2

Bézier1

Bézier3

B'
3

(a)

B0

B1

B2

B3 B4

B5

B6

(b)

Figure 1.9: A cubic curve represented as (a) a group of Bézier curves or
(b) a NURBS Curve

9. Local approximation: if the control point Bi is moved, or the weight wi is

changed, it affects only that portion of the curve on the interval u ∈ [xi, xi+p+1)

This property is highly important for interactive shape design, as control point

movement and weight modification can be used to attain local shape control.

NURBS Surface

A NURBS surface (see Figure 1.10) is obtained as the tensor product of two

NURBS curves, and is defined by its degree, a set of weighted control points, and a

knot vector. Thus, using two independent parameters u and v, the NURBS surface

of degree (p, q), respectively in both parametric directions, is given by the equation:

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v) wi,jBi,j

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v) wi,j

, 0 ≤ u, v ≤ 1 (1.18)

where Bi,j are the control points, wi,j are the weights, n + 1 and m + 1 are the

number of control points in u and v parametric directions, respectively, and Ni,p

and Nj,q are the non-rational B-spline basis function defined on two knot vectors of

1.2 Parametric surfaces 21

B0,0

B0,4 B4,4

B4,0

Figure 1.10: Bi-quadratic NURBS surface

p+ n+ 1 and q +m+ 1 elements, respectively:

U = {0, · · · , 0︸ ︷︷ ︸
p+1

, xp+1, · · · , xr−p−1, 1, · · · , 1︸ ︷︷ ︸
p+1

}
(1.19)

V = {0, · · · , 0︸ ︷︷ ︸
q+1

, yq+1, · · · , ys−q−1, 1, · · · , 1︸ ︷︷ ︸
q+1

}
(1.20)

where r = n+ p+ 1 and s = m+ q + 1

The basis function Ni,p of degree p is defined for the parametric u direction as

Ni,p(u) =
u− xi
xi+p − xi

Ni,p−1(u) +
xi+p+1 − u
xi+p+1 − xi+1

Ni+1,p−1(u) (1.21)

with

Ni,0(u) =

{
1 if xi ≤ u < xi+1

0 otherwise
(1.22)

Analogously, the basis functionNj,p of degree q is defined for the parametric direction

q.

Figure 1.10 shows a bi-quadratic NURBS surface and its control net, where

B = {B0,0, · · · , B0,4, · · · , B4,0, · · · , B4,4}, U = V = {0, 0, 0, 1
3
, 2
3
, 1, 1, 1} and weights

22 Chapter 1. Tessellation of parametric surfaces

equal to 1.

The important properties of the functions Ni,j(u, v) are summarized as follows:

1. Non-negativity: Ni,j(u, v) ≥ 0 ∀ i, j, u and v.

2. Partition of unity:

n∑
i=0

m∑
j=0

Ni,j(u, v) = 1 ∀ (u, v) ∈ [0, 1]× [0, 1] (1.23)

3. Local support: Ni,j(u, v) = 0 if (u, v) is outside the rectangle given by [xi, xi+p+1)×
[yj, yj+q+1).

4. In any given rectangle of the form [xi0 , xi0+1)× [yj0 , yj0+1), at most (p+1)(q+1)

basis functions are non-zero, in particular the Nl,m(u, v) for i0 − p ≤ l ≤ i0

and j0 − q ≤ k ≤ j0 are non-zero.

5. Extreme: if p > 0 and q > 0, then Ni,j(u, v) attains exactly one maximum

value.

6. Differentiability: interior to the rectangles formed by the u and v knot lines,

all partial derivatives of Ni,j(u, v) exist. At a u knot (v knot) it is p−k (q−k)

times differentiable in th u (v) direction, where k is the multiplicity of the

knot.

Following properties summarize the geometric characteristics of NURBS surfaces:

1. The control net forms a piecewise planar approximation to the surfaces; as is

the case for curves, the lower the degree the better the approximation.

2. Curve degree in parametric direction u, v (p, q), number of control points in

each direction (n+ 1,m+ 1) and number of knots (r+ 1, s+ 1) are related by:

r = n+ p+ 1 s = m+ q + 1 (1.24)

3. Corner point interpolation: S(0, 0) = B0,0, S(1, 0) = Bn,0, S(0, 1) = B0,m and

S(1, 1) = Bn,m.

1.2 Parametric surfaces 23

4. Affine invariance: an affine transformation is applied to the surface by applying

it to the control points.

5. Strong convex hull property: assume wi,j ≥ 0 ∀ i, j. If (u, v) ∈ [xi0 , xi0+1)×
[yj0 , yj0+1), then S(u, v) is in the convex hull of the control points Bi,j,i0− p ≤
i ≤ i0 and j0 − q ≤ j ≤ j0.

6. Local modification: if Bi,j is moved, or wi,j is changed, it affects the surface

shape only in the rectangle [xi, xi+p+1)× [yj, yj + q + 1).

7. Non-rational B-spline and Bézier and rational Bézier surfaces are special case

of NURBS surfaces. The same example of cubic curves shown in Figure 1.9

can be extended to cubic surfaces.

8. Differentiability: S(u, v) is p− k (q− k) times differentiable with respect to u

(v) at a u knot (v knot) of multiplicity k.

It should be noted that there is no known variation diminishing property for

NURBS surfaces [80].

Note that the computation of the p-degree basis functions detailed in Equation

1.21 is a recursion relation of a degree p, which depends on lower-order basis func-

tions down to order 1. These basis functions generate a truncated triangle basis

table as illustrated in Figure 1.11. This pattern is based on a list of important prop-

erties of the NURBS basis functions, which determine the many desirable geometric

characteristics of NURBS curves and surfaces. Specifically, two different features of

the NURBS basis functions should be considered in order to analyze the recursivity

of this basis function: the dependence of a basis function (see Figure 1.12) and its

influence (see Figure 1.13).

According to the local support property, Ni,j = 0 if u is outside the knot interval

[ui, ui+p+1). Hence, a basis function Ni,p of degree p is computed as a combination of

Ni,p−1, Ni+1,p−1, two basis functions of p−1-degree, and subsequently, this recursion

is repeated until the order 1 is reached. Therefore, Ni,p is a combination of p + 1

basis functions of order 1, {Ni,0, Ni+1,0, · · · Ni+p,0} (see Figure 1.12).

On the other hand, in any given knot span [ui, ui+1) the only non-zero zeroth

degree function is Ni,0. Consequently, in the same given knot span [ui, ui+1) at most

24 Chapter 1. Tessellation of parametric surfaces

p + 1 of the basis functions are non-zero, namely the functions Ni−p,p · · ·Ni,p, as

illustrated in Figure 1.13.

1.3. Thesis structure

The real-time tessellation of parametric surfaces is the mainstay of this thesis.

As parametric surfaces, and specifically NURBS surfaces, are fairly flexible and

compact, they are considered a standard in graphic design for the rendering of com-

plex models. In this dissertation, different proposals for tessellating parametric sur-

faces based on different hardware capabilities are presented. As parametric surfaces,

specifically Bézier surfaces, are a new trend as tessellation primitives in computer

graphics, the initial chapters of this thesis focused on them. Another parametric

primitive, NURBS surface is also considered. NURBS curves and NURBS surfaces

are genuine generalizations of non-rational B-spline forms as well as rational and

non-rational Bézier curves and surfaces. As more complex models can be codified

in a NURBS representation, they are the standard in computer aided design.

Bézier surfaces are the more common examples of parametric surfaces in graphics

rendering. In recent years, they have become new trendy primitives owing to their

flexibility and simplicity. Hence, current graphics pipeline has been specifically

designed for tessellating Bézier surfaces. However, this dissertation analyzes the

rendering of Bézier surfaces in simpler pipelines, even with high performance. Hence,

different techniques for evaluating Bézier surfaces in real time, exploiting different

hardware features, are described (see Chapters 2, 3, 4 and 5). The present thesis

goes an step further and also suggests the design of adaptive hardware units for

tessellating Bézier surfaces.

Chapter 2 introduces two non-adaptive tessellation proposals for Bézier surfaces:

VST and GST. Both proposals synthesize the Bézier models on the GPU. VST

tessellates Bézier surfaces in the vertex shader as well as minimizing the CPU-

GPU transfers. VST tessellation is guided by a pre-computed parametric grid of

virtual vertices and it optimizes the GPU memory accesses to increase data locality.

However, GST generates the parametric grid in the geometry shader on the fly,

requiring neither pre-computation nor storage of predefined grids. Furthermore, the

1.3 Thesis structure 25

Ni,0

Ni,1

Ni+1,0

Ni+2,0

Ni+1,1

Ni+2,1

Ni,2

Ni+1,2

Ni+2,2

Ni,p-2

Ni+1,p-2

Ni+2,p-2

Ni,p-1

Ni+1,p-1

Ni,p

Ni+p-3,2

Ni+p-2,2

Ni+p-2,1

Ni+p-1,1

Ni+p-1,0

Ni+p,0

.

.

.

.

.

.

.

.

.

. . .

Figure 1.11: Pattern to compute Ni,p

GPU memory is not a limiting factor in model tessellation. This work has been

published in [20], [21], [22] and [23].

Chapter 3 focuses on the adaptive tessellation of Bézier surfaces. Adaptive and

Dynamic Mesh Refinement (ADMR) as well as Dynamic and Adaptive Bézier Tes-

sellation (DABT) are summarized; there is an in-depth analysis of geometry tessel-

lation and geometry adjacency capabilities are detailed. ADMR is based on three

mainstays: firstly the tessellation is guided by a tessellation pattern according to a

local test, with no pre-computed pattern; secondly, inserted vertices are organized in

strips; and, finally, the triangle mesh is generated by linking inserted vertices on the

fly. Nevertheless, DABT extends ADMR to the tessellation of parametric surface

and it introduces a higher adaptively. DABT does not just have one fixed tessel-

lation level across the whole patch, but three: one for each triangle side. Hence,

DABT reduces the number of processed triangles without reducing the quality of

the final rendering. Furthermore, three different tests have been considered to guide

26 Chapter 1. Tessellation of parametric surfaces

Ni,0

Ni,1

Ni+1,0

Ni+2,0

Ni+1,1

Ni+2,1

Ni,2

Ni+1,2

Ni+2,2

Ni,p-2

Ni+1,p-2

Ni+2,p-2

Ni,p-1

Ni+1,p-1

Ni,p

Ni+p-3,2

Ni+p-2,2

Ni+p-2,1

Ni+p-1,1

Ni+p-1,0

Ni+p,0

.

.

.

.

.

.

.

.

.

. . .

Ni+p-1,2

Ni-1,2

Ni-1,p-2

Ni-2,p-2

Ni-1,p-1

Ni-2,p-1

Ni-3,p-1

Ni-1,p

Ni-2,p

Ni-3,p

Ni+1,p

Ni+2,p

Ni+2,p-1

Ni+3,p-1

Ni+3,p-2

Ni+4,p-1

Ni+4,p-2

Ni+p,2

Ni+p,1

Ni+p+1,0

Figure 1.12: Dependence of Ni,p

this tessellation process: distance between mesh and ideal surface, flatness of the

mesh and size of the triangles. This work has been published in [10], [24] and [25].

Chapter 4 details a semi adaptive proposal based on Chapter 2 and Chapter 3.

Regarding adaptive tessellation, the semi adaptive approach is midway between the

non-adaptive strategy and the fully adaptive strategy. The semi adaptive strategy

is characterized by a regular grid pattern as well as a level of resolution per triangle.

In this tessellation procedure, local tests evaluate the candidate positions located

in the edges of the coarse triangle. Finally, a reconstruction of generated triangles

links vertices in two consecutive rows. This work has been submitted to [28].

Chapter 5 describes a new method for rendering Bézier surfaces on the GPU

1.3 Thesis structure 27

Ni,0

Ni,1

Ni+1,0

Ni+2,0

Ni+1,1

Ni+2,1

Ni,2

Ni+1,2

Ni+2,2

Ni-1,1

Ni-1,2

Ni-2,2

Ni-1,p

Ni,p

Ni-p+1,p

Ni-p,p

Ni-1,p-1

Ni,p-1

Ni-p+1,p-1

.

.

.

Ni-p+2,p-1

.

.

.. . .
Ni-1,p-2

Ni,p-2

Ni-p+2,p-2

.

.

.

Ni-p+3,p-2

Ni+3,0

Ni-1,0

Ni-2,0

Ni-3,0

Ni-2,1

Ni-3,1

Ni-3,2

Ni-4,2

Ni-p+1,p-2

Ni-p,p-1

Ni+1,p-2

Ni+1,p-1

Figure 1.13: Influence of Ni,0

of handheld devices. This proposal is based on VST detailed in Chapter 2. No

other Bézier proposals detailed in this thesis can be selected as the baseline, since

they are all implemented in GPU pipelines that are more complex than the one

implemented in modern handheld devices. As this proposal has been designed for

handheld devices, hardware constraints were considered. In fact, Bézier evaluation

and rendering have been designed as a benchmark for testing hardware features.

This work has been published in [83] and submitted to [27].

Finally, another type of parametric surfaces, NURBS surfaces, are considered

as they are the standard in CAD/CAM applications. NURBS are more complex

than Bézier surfaces, thus NURBS surfaces are habitually converted into Bézier

surfaces before the rendering process. As parametric surfaces are the vogue, they

have been considered in the design of the latest generation of GPUs. Therefore,

current GPUs allow the tessellation and direct evaluation of bicubic Bézier surface

28 Chapter 1. Tessellation of parametric surfaces

on the fly, however, they are not flexible enough for the tessellation and evaluation

of NURBS.

Chapter 6 introduces a new proposal for tessellating and evaluating NURBS

surfaces on the GPU with no previous computation. The rendering Pipeline for

NURBS Surfaces (RPNS) is based on the geometric characteristics of NURBS sur-

faces and it also details the entire process through the GPU pipeline in order to

obtain real-time rendering on the GPU. RPNS proposes a new primitive, KSQuad

which maintains the main geometric properties of NURBS surfaces. The adaptive

discretization of KSQuad and the stair strategy to explicit evaluation are the key

points of RPNS. Culling and sampling processes have also been considered. This

work has been submitted to [26].

Chapter 2

Non-Adaptive Tessellation

Bézier representations have been widely employed as a standard way of designing

complex scenes with high-quality results. In many applications involving CAD/-

CAM, virtual reality, animation and visualization, object models are described in

terms of Bézier surfaces. The excellent mathematical and algorithmic properties

[79, 82], combined with successful industrial applications, have contributed to the

popularity of this representation. One of the main advantages of this representa-

tion is its compactness and, as a consequence, the low storage and transmission

requirements of the resulting models. Additionally, graphics designers can produce

animations in a simpler and faster way as fewer points need to be controlled than for

triangle meshes. On the other hand, these representations are easily scalable so a

surface can be converted into a triangle mesh with few or many triangles, depending

on the required level of detail (LOD).

There are currently two main approaches to the synthesis of parametric surfaces:

tessellation on the CPU or on the GPU. In the former, these representations are

tessellated into triangles in the CPU before being sent to GPU to be displayed.

This strategy presents a number of disadvantages that could reduce the system

performance: the amount of information to be sent from CPU to GPU and the

increment in the storage requirements in the GPU associated with the triangle mesh.

The second approach performs the tessellation of the parametric models directly on

the GPU [21, 33, 47]. In these proposals the tessellation level is selected per patch

[21, 47] or per set of patches [33].

29

30 Chapter 2. Non-Adaptive Tessellation

This chapter describes a non-adaptive proposal for tessellating Bézier surfaces

into high-quality meshes which accurately represent complex surfaces and contain

no artefacts, such as T-junctions or cracks. Furthermore, in order to achieve real-

time rendering, the tessellation is performed on the GPU and two alternatives have

been designed to tweak many specific details for optimal performance, depending

on the GPU architecture. The VST (Vertex Shader Tessellation) alternative has

been designed for a GPU without primitive generator, such as GPUs implemented in

handheld devices. VST consists in using a parametric map of virtual vertices [11, 47]

with an efficient exploitation of the information stored on the GPU. More specifi-

cally, a technique that permits the optimization of the memory usage of the GPU

to increase the data locality exploitation is proposed. This strategy allows the mini-

mization of draw calls and the CPU-GPU communications. Nevertheless, our second

alternative, GST (Geometry Shader Tessellation) has been designed based on the

capabilities of a primitive generator on the GPU. Therefore, it is based on the on-

the-fly generation of the parametric grid; thus, as the tessellation can be executed

on-the-fly, it avoids the pre-computation and storage of predefined grids in the local

memory. Therefore, the GPU memory does not limit the level of resolution per

surface. Both designs have being tested under different GPU platforms and good

results in terms of quality and timing requirements have been obtained for both.

As result of our analysis, we conclude that the adequate exploitation of the GPU

capabilities is close to permitting the real-time rendering of parametric models, even

for very complex scenes.

This work has been published in [20], [21], [22] and [23].

2.1. Structure of the Non-Adaptive tessellation

proposal

In this chapter we present our proposal for the evaluation of Bézier surfaces on the

GPU based on the exploitation of spatial coherence of data within each surface. This

proposal considers each Bézier surface as the input primitive to the pipeline; thus,

Bézier surfaces are tessellated and evaluated on the GPU instead of the evaluation

of independent samples. Furthermore, we provide a computationally complex but

2.1 Structure of the Non-Adaptive tessellation proposal 31

efficient shader which exploits the computational power of current GPUs as well as

optimized memory access.

The representation of a Bézier surface Q(u, v), 0 ≤ u, v ≤ 1 (see Equation 1.6)

is based on the utilization of two parametric values defined in a normalized interval

[0, 1]. In our non-adaptive proposal, the tessellation is performed on the GPU and

this implies the evaluation of the surface equation Q(u, v) for different parametric

values (u, v) (see Figure 2.1). The resulting points are vertices that are connected in

order to build the triangles of the final mesh. For the sake of clarity we work with

a simple algorithm that performs a uniform subdivision of the parametric space in

the two dimensions. More specifically and for a tessellation level l, 2l+1 parametric

values in each dimension are considered. The grid of parametric values P l to be

evaluated are:

P l =


(u1, v1) · · · (u1, v2l+1)

(u2, v1) · · · (u2, v2l+1)
...

. . .
...

(u2l+1 , v1) · · · (u2l+1 , v2l+1)

 (2.1)

where

ui, vi =
i− 1

2l+1 − 1

with i ∈ {1, · · · , 2l+1}.

For a resolution level l, the grid of parametric values to be evaluated P l is made

up of 2l+1×2l+1 samples (see Figure 2.2). The resolution level to be applied to each

Bézier surface is selected by the application taking into account different factors such

as screen space error, model complexity or computational requirements. Taking this

into account, a system of L grids of parametric values for the different resolution

levels {P 1, P 2, · · · , PL} can be computed a priori, L being the highest resolution

level.

Here we should stress that our proposal takes advantage of the constant result

of [N][B][M]T for every point in the surface and that every control point [B] is only

accessed once, transforming the Equation 1.7 into

Q(u, v) = [U][A][V] 0 ≤ u, v ≤ 1 (2.2)

32 Chapter 2. Non-Adaptive Tessellation

Parametric Space Model Space

Figure 2.1: Parametric space and model space for a Bézier surface

with [A] = [N][B][M]T . Note that while in our proposal the [A] matrix is computed

only once per surface, the most advanced tessellation units recently included with

DirectX11 would evaluate the [B] matrix once per sample. Features and performance

of this GPU pipeline will be analyzed in the following chapters.

Our proposal exploits two different alternatives for the tessellation. The first

is based on the exploitation of the vertex shader (VST, Vertex Shader Tessellation

see Section 2.2). In this case, and due to the impossibility of generating geome-

tries, the utilization of techniques based on virtual vertices [11, 47] is the key for

a multi-resolution application. This idea is based on the pre-computation of a set

of parametric maps on the CPU. The selection and evaluation of the final vertices,

according to the resolution level selected, is performed on the vertex shader. This

alternative allows the information stored in the GPU to be used and exploited effi-

ciently. The geometry shader is not required in this strategy.

The second alternative is based on the generation of primitives on the GPU

(GST, Geometry Shader Tessellation see Section 2.3). In this case, the surface

tessellation is performed on the geometry shader. The resolution level can be selected

on-the-fly and the generated geometry can be fed back to the standard pipeline

through the stream-out unit. This alternative reduces storage requirements and

geometry capabilities for primitive generation are exploited. Despite the limitations

and drawbacks of the geometry shader unit, promising results have been obtained

with our application and tests performed.

2.2 Vertex Shader Tessellation (VST) 33

Grids

22 x 22

samples

23 x 23

samples

Control points Tessellated and
evaluated mesh

Resolution
level 1

Resolution
level 2

Figure 2.2: Samples evaluated to resolution level 1 and 2

2.2. Vertex Shader Tessellation (VST)

VST is a tuning alternative that optimizes the utilization of GPU resources and

a series of performance features. In this alternative, L-grids {P 1, P 2, · · · , PL} are

computed and stored in the GPU to be selected and employed for the different

surfaces of the model. Taking into account that this alternative is based on the

storage of pre-computed information, an analysis of the storage requirements and the

consequent implications should be performed. Specifically, the memory requirements

for the application are:

M =
L∑
l=1

MP l +M[Bs] ×NS

where MP l is the memory requirements for the grid, P l, of resolution level l and NS

is the number of surfaces in the scene. M[Bs] includes the amount of memory used

for the control points of each surface. For a (n, n)-degree surface this amount is:

34 Chapter 2. Non-Adaptive Tessellation

M[Bs] = 3× (n+ 1)× (n+ 1)

However, the utilization of a single system of grids limits the speed of the appli-

cation. If a unique system of grids stored in memory is accessed by all surfaces in

the scene, a sequential procedure is forced. This means that for each frame there are

as many Draw Primitive calls as surfaces NS, so the performance decreases owing to

the amount of calls. Therefore, the amount of synchronizations, NDP , per frame is

NDP = NS. As only one surface is computed per Draw Primitive call, GPU paral-

lelism is not exploited. Additionally, a large amount of synchronous calls adversely

affects performance as a Draw Primitive is a slow operation.

Therefore, VST uses several copies of the system of grids of parametric values to

process more surfaces per draw call; i.e. several copies of {P 1, P 2, · · · , PL} are used.

By way of an example, Figure 2.2 shows the evaluation of two input Bézier surfaces

that are tessellated with a different resolution level. The utilization of different

copies of the grid systems permits the simultaneous evaluation of the two surfaces,

with the consequent increment in the processing speed.

To evaluate the number of surfaces that can be processed per Draw Primitive call

the storage requirements of the application have to be evaluated. In our application,

and due to the global memory latency, the control points [Bs] of the surfaces are

stored in the texture memory. This memory is cached, so if there is a cache miss,

the information is obtained from global memory, with the consequent delay. The

desirable framework is storing all surface control points in the texture memory and

performing one single draw call. But when the storage requirements exceed the

texture cache capacity, the performance decreases due to the latency of the global

memory in each cache miss. Taking this into account, we have developed a technique

whereby the number of draw calls is selected as a trade-off between two objectives:

minimizing the number of draw calls and assuring that the storage requirements per

draw call do not exceed the texture memory capabilities. As a result, VST performs

NDP draw calls, processing and rendering Nd surfaces per call:

NDP =
NS

Nd

2.2 Vertex Shader Tessellation (VST) 35

with 1 ≤ Nd ≤ NS. Thus, the required amount of memory is

M =
L∑
l=1

MP l ×Nd +M[Bs] ×NS

In detail, and to obtain an optimum application in terms of speed, the following

transmission and storage requirements have to be verified:

1. The data transfer between CPU and GPU has to be minimized. In VST the

information required (parametric grids and control points of the surfaces) is

sent once to the GPU. The information is efficiently stored and re-employed

for optimum performance.

2. The storage requirements associated with the grids of parametric values should

not exceed the global memory capabilities. Taking into account that the global

memory is used for more purposes, not all the space is available for the grids

storage, only a fraction thereof. Specifically, in our application the grids are

stored in a vertex buffer, but exceeding the recommended capabilities would

result in limitations for other utilizations and could affect resource swapping.

As result the following condition has to be verified:

L∑
l=1

MP l ×Nd < per ·MGPU

MGPU being the GPU global memory size and per a percentage value that

depends on each GPU.

3. The storage of the control points associated to the Bézier surfaces to be pro-

cessed per draw call should not exceed the capabilities of the texture memory;

i.e., M[Bs]×Nd < MT being MT the texture memory size. Therefore, the cache

properties of the texture memory are efficiently exploited and the data loaded

to this memory are fully processed for all surfaces to be rendered in a draw

call before being replaced.

4. The number of draw calls (NDP) should be minimized owing to their fixed-cost

overhead [2]. The basic idea of our batching strategy is to combine many small

transfers into one large one to optimize the data communication procedure.

36 Chapter 2. Non-Adaptive Tessellation

The analysis of the storage requirements, along with the recommended number

of draw calls according to our tests, is included in the results section.

2.2.1. Implementation Details

In this subsection, we summarize the details of our VST kernel implementation.

The kernel processes bicubic Bézier surfaces and exploits the capabilities of the

DirectX 10 Microsoft’s HLSL [66].

The VST algorithm is shown in Figure 5.10 and it consists of two stages: Prepro-

cessing Stage and Synthesis Stage. In the Preprocessing Stage two tasks are carried

out: the control points (Task 1) and the grids of virtual vertices P l, 1 ≤ l ≤ L (Task

2) are sent from CPU to GPU. In the Synthesis Stage the LOD per surface is selected

(Task 3) and the Bézier surfaces is tessellated (Task 4) and rendered on the GPU.

While the Pre-processing Stage is processed once per scene, the Synthesis Stage can

be performed multiple times per data set for successive frames f (see feedback in

the figure). The tasks to be carried out and their optimizations are explained below.

In Task 1, the Bézier surfaces control points [Bs], 1 ≤ s ≤ NS are sent from CPU

to GPU. Unlike previous proposals [11, 47], in our application the information is sent

only once from CPU to GPU and stored in the texture memory. This improvement,

a key point in our proposal, is possible thanks to the improved storage capabilities of

current graphics cards. As a consequence, VST reduces CPU-GPU communication.

The control points of the surface [Bs] are stored in three float 4×4 arrays [Bs
x, B

s
y, B

s
z],

one per coordinate. As texture memory provides better performance that constant

or global memory, these data are stored in a texture buffer (tbuffer) [66]. Therefore,

the texture memory has less restrictive access patterns and it hides memory latency

accesses. Furthermore, tbuffer allows the simultaneous access to different variables

packed in the same buffer, thus improving performance.∑L
l=1MP l × Nd virtual vertices grids are sent to GPU and stored in the Vertex

Buffer [66] in Task 2; thus, the vertex buffer accelerates the synthesis of geometries.

As geometries are stored in the vertex shader following a specific pattern which

contains connectivity information, no Index Buffer is required.

During the synthesis stage and for each frame NDP draw calls are performed.

2.2 Vertex Shader Tessellation (VST) 37

Grid
generation

LOD
selection

dp,l

Sampling
grid

Bézier
patches

evaluation

VertexShader

Rasterizer

CPU

CPU GPU

GPU
SYNTHESIS STAGE

PREPROCESSING STAGE

1

2

3
4

2

Control
points

A

f

Figure 2.3: Structure of the VST algorithm

In each call Nd surfaces are selected to be tessellated and rendered. Following a

similar strategy to previous proposals [33, 47], Nd surfaces grouped in the same

draw call are represented with the same level of detail l. As a consequence, the

mesh connectivity can be directly extracted from the systems of grids and no Index

Buffer is required, with the consequent advantages in terms of time and storage

requirements. Note that the classification into groups of Nd surfaces could imply

small adjustments of the real levels of details in some surfaces. However, small

variations of the levels of detail are not noticeable, while a considerable reduction

in the timing requirements is achieved with this simplification. In summary and

according to the surfaces selection strategy in terms of their level of detail, Task 3

sends the level of detail l and an index DP which identify the set of surfaces to be

rendered in that draw call.

Finally, Task 4 is executed in the vertex shader of the GPU and Equation 2.2

38 Chapter 2. Non-Adaptive Tessellation

1 VS OUTPUT DefaultVS(VS INPUT P l)
2 {
3 float4x4 [N]= { -1, 3, -3, 1,
4 3, -6, 3, 0,
5 -3, 3, 0, 0,
6 3, 0, 0, 0, }
7 u = P l.x; v = P l.y;
8 s = P l.z × dp×Nd;
9 float1x4 [U]=(u3, u2, u, 1);
10 float1x4 [V]=(v3, v2, v, 1);
11 float4x4 {[Bs

x],[B
s
y],[B

s
z]} = read from texture (s);

12 float3 vertex = mul([U], [N],[Bs], [N], [V]);
13 return vertex;
14 }

Figure 2.4: vertex shader pseudocode for the VST method

is evaluated. Due to its efficiency in a GPU implementation, VST employs a direct

evaluation strategy instead of the de Casteljau algorithm [88].

Figure 2.4 shows the simple vertex shader pseudocode of VST for the bicubic

surface evaluation. The input parameters of the vertex shader (line 1) are the grid

parametric values P l, which will be employed in the evaluation. Note that the Nd

surfaces have the same level of detail l and the same group identification indexed by

DP . The (u, v) parametric values are stored in P l coordinates x and y while the z

coordinate stores a surface index {0, · · · , Nd−1}. In consequence, the identification

of each surface can be performed directly (line 8). To evaluate Equation 1.7 (line 12)

[U] and [V] are calculated (lines 9 and 10), the control points of the surface are read

from the texture memory (line 11), and the basis function coefficients (lines 3 to 6)

are employed. As a result, the vertices of the final tessellated mesh are obtained

(line 12). As will be shown in the results section, the simplicity of the strategy and

the efficient management of the information storage are key points for the real-time

rendering of high-quality models.

2.3. Geometry Shader Tessellation (GST)

In this section, we include our second alternative. This is based on the exploita-

tion of the geometry shader for the Bézier surface tessellation (GST). The objective

2.3 Geometry Shader Tessellation (GST) 39

is to exploit the geometry shader capabilities for geometry generation. This, in

contrast to the VST, permits the generation of geometry without the need to use a

virtual vertex strategy. As a result, the storage requirements are reduced and the

new capabilities of current graphics cards are exploited.

The key idea of GST is the on-the-fly computation of the P l values for each

input surface. As a consequence, no pre-computed grids are employed and the

storage requirements are reduced since only the control points of the surfaces are

required. Although the possibilities of the geometry shader as a geometry generator

are promising, current implementations still have strong limitations [2]. Specifically,

current versions permit the generation of 1024 32-bit elements per input primitive.

In our implementation, this limits the number of triangles to be generated per

Bézier surface and, in consequence, the maximum resolution level to be generated.

Specifically, the maximum resolution level allowed is l = 3; i.e., 24×24 triangles can

be generated. In future graphics cards we expect this limitation to be reduced or

eliminated, with the consequent benefits for our technique.

The method currently employed to obtain a higher level of detail is an iterative

execution of the geometry shader for each surface. GST is based on the geometry

shader output which can be stored in output stream and feedback as input for the

rendering pipeline (see Figure 2.5). However, the inherent timing costs of iterative

procedures render the reduction in the number of iterations relevant. The mainstay

of GST is to reduce this number of iterations using an efficient method to increase

the highest level of detail that can be managed per iteration.

The key idea of GST for increasing the resolution level is partitioning the para-

metric map into zones and the parallel evaluation of these zones on the geometry

shader. That is, the P l grid (see Equation 2.1) with 2l+1× 2l+1 parametric values is

partitioned and the corresponding parametric values groups processed in parallel in

the geometry shader. Considering groups of m×m parametric values the P l matrix

of values can be rewritten as a system of sub-matrices:

P l =


P l
[1,1] · · · P l

[1,Nzv]
...

. . .
...

P l
[Nzu,1] · · · P l

[Nzu,Nzv]

 (2.3)

40 Chapter 2. Non-Adaptive Tessellation

Memory

Stream
Output

Geometry
Shader

Pixel
Shader

Vertex
Shader

Input
Assembler

Output
Merger

Rasterizer

Buffer

v1

v2

v0

v0

v1

v2

Figure 2.5: DirectX10 pipeline where the iterative procedure through the Stream
Output is remarked.

Nzu and Nzv are the number of zones in u and v directions, respectively:

Nzu =
2l+1

m
; Nzv =

2l+1

m

The structure of GST is schematically depicted in Figure 2.6. Two geometry

shader kernels are devoted to two tasks: zone identification and tessellation per

zone.

The first task partitions the parametric grid into zones. As indicated in Equa-

tion 2.3 the P l matrix is generated with a set of sub-matrices P l[i, j], where i =

1, · · · , Nzu and j = 1, · · · , Nzv. In GST the first shader calculates the parametric

map through the identification of the first element of each sub-matrix, (u(i·m)+1, v(j·m)+1)).

Once this value is calculated, the remaining parametric values can be generated with

simple incremental operations. As indicated in the figure, the possibility of an it-

2.3 Geometry Shader Tessellation (GST) 41

Computation of
P iteration t

l

z

Computation of
Q(u,v)

[B]s

S t=1/l
GS

No

Yes

Memory

[s, u , v , t]i j
[s, u , v , l]i j

Figure 2.6: Structure of GST proposal

erative process is considered. As a result, the first shader generates four values per

zone [s, u(i·m)+1, v(j·m)+1, t], where s is the surface index and t indicates the iteration

number. Due to the limitations of the geometry shader (only 1024 32-bit data can

be generated per input primitive) only up to 1024/4 = 256 zones can be processed

in each step of the iterative algorithm. In consequence, the resolution level that can

be obtained with GST per iteration is 2l
GS ·m× 2l

GS ·m, with m = 4, lGS = 4.

The second shader performs the surface evaluation (Equation 2.2) for the points

assigned to each zone. The zones will be managed by the geometry shader as isolated

input primitives, thus the vertices located in the border among zones are evaluated

more than once. This means that cracks between contiguous zones can be avoided.

Consequently, the matrices are of size (m+ 1)× (m+ 1) with an overlap of elements

between matrices with consecutive indices:

P l[i, j] =

 (u(i·m)+1, v(j·m)+1)) · · · (u(i·m)+1, v(j·m)+(m+1)))
...

. . .
...

(u(i·m)+(m+1), v(j·m)+1)) · · · (u(i·m)+1, v(j·m)+(m+1)))

 (2.4)

An example of the parametric map generation is depicted in Figure 2.7 where

42 Chapter 2. Non-Adaptive Tessellation

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

zone 1,1 zone 1,2 zone 1,3

zone 2,1 zone 2,2 zone 3,1

Figure 2.7: Parametric map partitioning in zones

m = 4. In this case, each zone has 5× 5 elements with an overlap of points between

neighbouring zones. For example, zones labeled as (1,1) and (1,2) in the figure share

the following points: {(u1, v5), (u2, v5), (u3, v5), (u4, v5), (u5, v1), (u5, v2), (u5, v3),

(u5, v4)}.

Here we should stress that GST uses a regular grid in the (u, v) parametric

directions and could exploit the GPU vector computation capabilities by computing

sixteen points of the Bézier surface simultaneously, Q(uc+k, vj+k) with 0 ≤ k < 4.

2.3.1. Implementation Details

In this subsection, the details of our GST kernel implementation are summa-

rized. The kernel processes bicubic Bézier surfaces and exploits the capabilities

of the DirectX 10 Microsoft’s HLSL [66]. The structure of the implementation is

schematically depicted in Figure 2.8. Similarly to VST, the algorithm has two stages:

Preprocessing Stage and Synthesis Stage. In the Preprocessing Stage two tasks are

performed: the control points (Task 1) and the surface indices (Task 2) are sent from

CPU to GPU. In the Synthesis Stage, the LOD per surface is selected (Task 3), the

parametric map partitioned into zones (Task 4), and the corresponding tessellated

surface sections are evaluated (Task 5) and finally rendered on the GPU. As for

2.3 Geometry Shader Tessellation (GST) 43

Index
generation

LOD
selection Bézier

patches
evaluation

GeometryShader

Rasterizer

CPU

CPU GPU

GPU
SYNTHESIS STAGE

PREPROCESSING STAGE

1

2

3
5

2

Control
points

A

f

1, 2 ... S

VertexShader

Bézier
patches

tessellation

GeometryShader

4

VertexShader

l,s

Figure 2.8: Structure of the GST algorithm

the VST algorithm, while the Preprocessing Stage is performed once per scene, the

Synthesis Stage can be performed multiple times per data set for successive frames

f . We now to on to explain these tasks and the optimizations thereof.

In Task 1, the control points of the Bézier surfaces [Bs], 1 ≤ s ≤ NS are sent

from CPU to GPU. These control points are stored in the GPU’s texture buffer

(tbuffer) as three arrays [Bs
x, B

s
y, B

s
z].

Task 2 is required to generate the vertex buffer. This simple vertex buffer com-

prises a surface index which is required by the geometry shader for the surfaces

identification. The geometry shader receives the surface indices as input, which is

then used to recover the corresponding control points from the texture memory.

44 Chapter 2. Non-Adaptive Tessellation

During the synthesis stage, each Bézier surface is selected and processed on the

geometry shader to generate a triangle mesh according to the desired level of detail

specified by the application. Surface index and level of detail are sent from CPU to

GPU in Task 3. Hence, this proposal minimizes transmission requirements between

CPU and GPU.

The partitioning of the parametric map into zones is associated with Task 4. This

simple kernel, to be executed on the geometry shader, generates as output a tuple

[s, u(i·m)+1, v(j·m)+1, t]; i.e., the surface identifier s, the zone identifier (first parametric

coordinate of each submatrix), and an iteration index t. As has previously been

indicated, up to 256 tuples can be generated in each iteration of the algorithm. For

a higher resolution, an iterative process can be executed (see feedback in the figure).

Finally, Task 5 includes the evaluation of the Bézier surfaces for values associated

with each zone of the parametric map. As the new vertices are generated using the

gometry shader, the memory requirements are minimized. Note that two buffers

are required for the passes of the geometry shader to hold the stream-out results

[70]. In this manner, the shader can ping-pong between them using an initial buffer

for input and a second one for output on odd-numbered passes, and vice versa on

even-numbered passes.

As will be shown in next section, the utilization of the geometry shader for the

direct tessellation of the Bézier surfaces on the GPU is a promising technique.

2.4. Experimental Results

In this section we present the results of the evaluation of VST and GST. We

have implemented both algorithms by exploiting the capabilities of the DirectX 10

Microsoft’s HLSL [66]. Comparisons in terms of performance with the algorithm

presented in [47], employed as a benchmark test in recent publications, are also

included. We have run our implementations on a Intel Core 2 2.4 GHz with 2 GB

of RAM and on two different GPUS: GeForce 9800 GTX and ATI Radeon 3870 X2.

VST and GST are evaluated in different scenes that are composed of replicated

versions of a small set of models. The models (Teacup, Teapot and Elephant) em-

ployed are depicted in Figure 2.9 at different resolution levels. The final images have

2.4 Experimental Results 45

L1 L4 L6

(a)

(b)

(c)

Figure 2.9: Models employed in the test scenes (a) Teacup (b) Teapot (c) Elephant

a screen resolution of 1280×1024 pixels. In Table 2.1 we include the results obtained

for 16 of those scenes, denoted as Si, with i = 1, · · · , 16. Column Ns shows the num-

ber of Bézier surfaces while column N1
T indcates the number of triangles generated

for the coarsest level of detail; i.e., L = 1. Columns N4
T and N6

T show the number

of triangles generated with L = 4 and L = 6 for a non-adaptive tessellation; i.e.,

all surfaces were tessellated with the same level of detail. Columns N4
T Adpt. and

N6
T Adpt. show the mean number of triangles generated for an adaptive tessellation

proposal with L = 4 and L = 6; i.e., when the resolution level of each surface is up

to 4 or 6 respectively. In the adaptive approach, the same LOD is applied to the

whole model and it is modified on the fly according to the model position respect to

the viewpoint. In this case, the resolution of each surface is selected on the basis of

its position in the scene with a varied set of viewpoints. Note that complex scenes

46 Chapter 2. Non-Adaptive Tessellation

Scene Ns N1
T N4

T N4
T Adpt. N6

T N6
T Adpt.

S1 26 0.46 48.80 25.49 819.05 432.66
S2 32 0.56 60.06 34.39 1008.06 554.98
S3 260 4.57 488.01 254.86 8190.51 3815.56
S4 320 5.63 600.62 343.95 10080.63 5206.89
S5 520 9.14 976.02 509.72 16381.02 6935.26
S6 640 11.25 1201.25 687.90 20161.25 9454.31
S7 780 13.71 1465.02 764.59 24571.52 9259.56
S8 811 14.26 1522.21 1241.23 25548.08 14923.50
S9 960 16.88 1801.88 1031.84 30241.88 12856.10
S10 1040 18.28 1952.03 1019.45 32762.03 10801.40
S11 1280 22.50 2402.50 1375.79 40322.50 15142.10
S12 1300 22.85 2440.04 1274.31 40952.54 11495.80
S13 1600 28.13 3003.12 1719.74 50403.13 16525.70
S14 2600 45.70 4880.08 2548.62 81905.08 38865.80
S15 3200 56.25 6006.25 3439.48 100806.25 30826.25
S16 8110 142.56 15222.09 12421.30 255480.84 55340.50

Table 2.1: Number of triangles generated (in K) for each scene

with a high number of surfaces were used.

First, and for the VST alternative, the number of draw calls NDP were ana-

lyzed. As an example of our analysis, Figure 2.10 shows the frames per second in

scene S5 for different NDP and L values, considering GeForce 9800 GTX. Similar

behaviour was obtained for all the scenes tested. As can be observed in the fig-

ure, the number NDP has a strong influence on the algorithm’s performance. For

example, the obtained speedup is 1.42 with L = 5 for NDP = 4, and up to 1.31

with L = 6 for NDP = 8. Initially, and for a small number of NDP , the frames per

second are increased. The good performance in terms of frames per second is due to

the reduction in global memory accesses and the efficient utilization of the texture

memory. The good results are associated with the exploitation of data locality and

the scheduling strategy employed. For larger NDP values, this trend changes owing

to the overhead of each draw call. With respect to the dependence, with the value

L, for larger L values the best frames-per-second values are obtained for larger NDP

values. According to Wloka’s rule [2], this is due to the larger number of polygons

per surface and the rasterization costs that become the standard GPU pipeline in

2.4 Experimental Results 47

1 2 4 8 16 32 64
0

20

40

60

80

100

NDP

L=4

L=5

L=6

F
P
S

Figure 2.10: VST proposal for S5 with L = 4, L = 5 and L = 6 in an Nvidia GeForce
9800 GTX

the bottleneck of the application.

With respect to GST, Figure 2.11 shows the influence of the number of iterations

in the performance, due to GST partitioning the parametric maps into zones. The

influence of the feedback process is analyzed. With L = 1 only one geometry shader

stage is computed, while L = 2 computes two passes through the geometry shader.

As can be seen in the figure, the feedback process through the GPU pipeline reduces

the performance dramatically. In both, L = 1 and L = 2, the computational power

of the GPU core is underused; however, the performance with L = 2 is considerable

reduced. This gap in the performance is due to the fact that L = 2 iterates two

passes through the GPU pipeline and a geometry shader stage is computed twice

for each Bézier surface (Task 4 and Task 5 in Figure 2.8). The same trend can be

observed for L = 4 (see Figures 2.11 and 2.12). However, as both, L = 2 and L = 4,

pass twice through the GPU pipeline (geometry shader is executed twice) there is a

smaller gap when comparing L = 2 and L = 4 than with L = 1 and L = 2. In this

48 Chapter 2. Non-Adaptive Tessellation

0 2000 4000 6000 8000
0

100

200

300

0 2000 4000 6000 8000
0

100

200

300

F
P
S

L=1
L=2
L=4

NS

Figure 2.11: Performance of the GST alternative in an ATI 3870x2

case, as L = 4 evaluates and renders a greater amount of primitives than L = 2,

because L = 2 renders about a 5% of the primitives of L = 4, and consequently

lower performance is obtained in L = 4.

Figure 2.12 depicts the performance obtained with L = 4 in two different GPUs

architectures considering the same number of triangles. As a first step in our analy-

sis, we compare our designs with the proposal presented in [47] - our baseline, as it

is one of the most classical algorithms in surface tessellation. Our proposal clearly

achieves better performance in all cases and in all architectures.VST and GST obtain

good performance in terms of FPS, allowing real time adaptive tessellation, includ-

ing a large tessellation with a high number of triangles. For example, as shown in

Table 2.1 and in Figure 2.12 for 9.14 K input triangles (scene S5), 976.02 output

triangles are generated in a non-adaptive tessellation, where more than a hundred

output triangles are generated for each input triangle. Considering the performance

113.8 fps for VST and 10.04 for GST are obtained with GeForce 9800GTX while

74.163 and 49.886 fps are obtained with VST and GST, respectively in ATI Radeon

3870 X2. In this case, as indicated in Table 2.1, the number of triangles generated

with an adaptive approach is 509.72 K. On the other hand, GST performs worse

than VST, although in the latter case a greater amount of memory is used. As in all

2.4 Experimental Results 49

0 2000 4000 6000 8000
0

50

100

150

200

0 2000 4000 6000 8000
0

50

100

150

200

F
P
S

VST
GST
[47]

NS

(a)

0 2000 4000 6000 8000
0

50

100

150

200

250

0 2000 4000 6000 8000
0

50

100

150

200

250

F
P
S

VST
GST
[47]

NS

(b)

Figure 2.12: Comparative for L = 4 (a) Nvidia GeForce 9800 GTX and (b) ATI
Radeon 3870 X2

50 Chapter 2. Non-Adaptive Tessellation

0 2000 4000 6000 8000
0

1000

2000

3000

0 2000 4000 6000 8000
0

1000

2000

3000

F
P
S

VST
GST
Tess

NS

Figure 2.13: Comparative for L = 4 in an ATI 5870

cases we compare equivalent systems with the same resolution level, the differences

in performance seems to stem from the limitation of the geometry shader. More

specifically, for L = 4 the computation of two geometry shaders (two stages) is

required to obtain the desired resolution level.

Furthermore, both GPUs, Nvidia and ATI, are from the first generation of graph-

ics cards with a geometry shader stage, where a non-optimal implementation of the

geometry shader is included, whereas the next generation of GPU has been pro-

vided with an improved geometry shader implementation, as shown in Figure 2.13.

This ATI 5870 GPU offers a better geometry shader implementation than previ-

ous versions, thus the GST alternative obtains a better performance than the VST

one. Moreover, in this case both alternatives demonstrate better performance than

the tessellator stage included with DX11. A different computation scheme is consid-

ered in DX11 implementation, as the Bézier surface has to be evaluated for each new

sample, instead of reusing the computation, as this non-adaptive proposal does. Fur-

thermore, this ATI card includes two hardware tessellators(one for high tessellation

factors and the other for low tessellator factors), and as rendered models are quite

compact, they select a similar tessellator factor for their surfaces. Consequently, the

selected hardware tessellator is the bottleneck of this rendering.

2.5 Conclusions 51

In summary, the results demonstrate that both proposals obtains a good perfor-

mance on current GPU.

2.5. Conclusions

In this chapter we have presented a non-adaptive proposal for the tessellation

of Bézier surfaces on the GPU based on the exploitation of spatial coherence, with

two different alternatives considering different GPU features. The first alternative,

VST, performs the tessellation by exploiting the vertex shader as a vertex coordinate

evaluator, while the second one, GST, exploits the capabilities of the geometry

shader as a primitive generator.

VST is based on the utilization of virtual vertex strategy and a system of multi-

resolution parametric maps. The utilization of this system of maps to evaluate

the final coordinates of the virtual vertices allows multiple surfaces to be processed

in parallel. Additionally, and in order to exploit the data locality and reduce the

number of global memory accesses, an analysis of the optimum number of surfaces

to be processed in parallel was performed.

With respect to the second alternative, GST, it is based on the exploitation of

the geometry shader as a primitive generator. Due to the current limitations of the

shader, in terms of number of primitives generated per input primitive, GST is based

on the utilization of a smaller primitive: a parametric map section. This strategy

leads to an increment in the output resolution while keeping all the advantages of a

direct implementation.

We have obtained highly satisfactory results in terms of timing requirements for

complex scenes, with VST being slightly superior to GST.

Chapter 3

Dynamic and Adaptive Bézier

Tessellation

Non-adaptive tessellation has a number of different drawbacks. These include

producing an excessive amount of triangles without increasing the quality of the

final mesh, and not generating sufficient triangles in highly complex areas. The

best solution is a high-quality adaptive tessellation that can be run on the fly and

characterized with a high degree of freedom in the tessellation pattern generation.

A desirable adaptive subdivision strategy adapts the tessellation pattern depending

on a certain measure, such as view-dependent parameters or flatness [5, 31].

There are two main approaches to performing the adaptive tessellation on the

GPU [12, 34, 35, 62, 76, 85] with DirectX10. The first solutions [12, 62] are based

on the computation and storage of a set of tessellation patterns on the GPU and the

selection of the correct pattern for each triangle of the incoming mesh at run time.

The disadvantage of the proposal is that the number of available patterns is lim-

ited and must be pre-computed, reducing the adaptability of potential tessellations

patterns. The second group proposals [34, 35, 76, 85] perform a per primitive view-

dependent adaptive tessellation with a fixed pattern where the same tessellation

pattern is applied to everything.

Previous proposals in the bibliography work with more flexible adaptive subdi-

vision strategies [5, 31]. These proposals were oriented towards early GPUs with a

lower degree of programmability. For this reason the adaptive tessellation was de-

53

54 Chapter 3. Dynamic and Adaptive Bézier Tessellation

signed not to be programmed but to be implemented in an additional specific hard-

ware unit. The adaptive tessellation algorithms employed are based on recursive

tessellation strategies, where each edge of the triangle is conditionally subdivided

into two in each iteration. Owing to this recursive structure, the mesh has to be

reconstructed after each iteration, resulting in irregular memory access patterns and

complex control flow or hardware implementations.

In this chapter we present a new method for adaptively tessellating Bézier sur-

faces on the GPU. Our Dynamic and Adaptive Bézier Tessellation (DABT) is based

on the Adaptive and Dynamic Mesh Refinement (ADMR) [10] tessellation scheme for

triangle meshes. Tessellation is performed according to a local test to generate prim-

itives dynamically. The refinement procedure does not require the pre-computation

of any refinement pattern. The resulting adaptive procedure is efficient, simple and

generates the tessellation pattern of each triangle dynamically. The non-recursive

strategy simplifies mesh reconstruction, avoids irregular memory access patterns,

and uses simple control flow to make it a good candidate for guiding the evolution

of tessellation algorithms on future graphics cards.

However, DABT has been designed to tessellate parametric surface meshes with

a higher level of adaptively. So, DABT extends the capabilities of the proposal pre-

sented in [10] as different levels of resolution inside the patch are allowed. Further-

more, DABT permits the minimization of the number of triangles to be processed

without reducing the quality of the final images. In our method, the tessellation

level is not fixed for the full patch and can be locally changed as a function of dif-

ferent speed/quality parameters. The adaptive tessellation procedure is guided by

local tests that avoid cracks between adjacent patches. More specifically, in this

chapter we work with three tests that analyze different properties as guidance for

the tessellation: distance between mesh and ideal surface, flatness of the mesh and

size of the triangles.

This chapter is organized as follows: firstly, in Section 3.1 the Adaptive and

Dynamic Mesh Refinement scheme is detailed. In Section 3.2 our Dynamic and

Adaptive Tessellation of Bézier surfaces procedure is presented. In Section 3.3 the

implementation we performed to test our proposal is detailed. The results obtained

are included in Section 3.4. Finally, in Section 3.5 the main conclusions are high-

lighted.

3.1 Adaptive and Dynamic Mesh Refinement 55

Experimental results and methodology have been published in [10], [24] and [25].

3.1. Adaptive and Dynamic Mesh Refinement

In this section we describe the proposal, ADMR [10], for performing adaptive

tessellation on GPUs. This proposal was originally developed for the adaptive tes-

sellation of triangle meshes as the result of the collaboration of different research

groups: GAC at UDC, GAC at USC and Graphics Group at Lund University. We

have subsequently developed the DABT algorithm by extending, improving and

adapting the ADMR algorithm to the of case of Bézier surfaces. The ADMR strat-

egy is to tessellate the mesh by computing the tessellation pattern on the fly for each

incoming triangle without employing any pre-computed pattern. The objective is

a freely adaptive tessellation of triangle meshes where the resolution and number

of triangles generated per incoming triangle can be selected as a trade-off between

quality and computational requirements.

The ADMR method performs the tessellation on an independent triangle basis,

so the procedure can be applied to any triangle mesh. The coarse mesh is transmitted

from CPU to GPU and the tessellation is performed completely on the GPU without

the supervision of the CPU. The proposal can be implemented in current GPUs by

exploiting their geometry shader capabilities. However, the simplicity and good

results obtained make it a good candidate for integration into future graphics cards

as a tessellation unit.

The tessellation pattern is computed on the fly and any local test can be em-

ployed to guide the tessellation. The tests employed for the tessellation can be freely

selected; for example, tests based on camera position, normal analysis, displacement

map analysis, curvature analysis, etc. could be implemented [5, 31]. Note that a

combination of tests can be applied before inserting each candidate position. This

increases the flexibility of the tessellation technique, as a wide range of different

criteria can be simultaneously employed in each area of the mesh. Additionally, the

adaptive tessellation procedure can be guided by any tests local to the edges or to

the full triangle, or could be extended to the neighbor triangles. For example, for a

geometry shader implementation the subdivision quality can be enriched by exploit-

56 Chapter 3. Dynamic and Adaptive Bézier Tessellation

ing the data accessibility available [9, 25]. The candidate vertices to be inserted are

checked and conditionally inserted.

The tessellation is guided by a fixed tessellation pattern, where each vertex loca-

tion is tested and conditionally inserted. Once the inserted vertices are calculated,

the next step is to connect the vertices to construct a new mesh. The tessellation

should generate triangles covering the surface with no holes or cracks.

ADMR is based on the representation and management of these tessellation

decisions. More specifically, the method we employ is based on the classification

and organization of the new vertices into strips. The representation and utilization

of these strips of vertices permits the construction of an adaptive tessellation in a

simple, efficient way without requiring a recursive procedure.

In summary, the ADMR proposal is based on three key ideas: the tessellation

pattern employed, the representation of inserted vertices and an efficient tessellation

procedure based on this representation. We now go in to present each key point of

our proposal.

3.1.1. Tessellation Pattern

Tessellation algorithms with a recursive nature have a number of disadvantages.

With these strategies each triangle is recursively subdivided and the mesh has to

be reconstructed and stored after each iteration. This results in complex meshing

algorithms with irregular memory access patterns that are not adequate for either

a direct GPU implementation on the geometry shader or for a specific hardware

implementation. Hence, the ADMR method employs a non-adaptive tessellation

pattern as a basis for the adaptive case. The resolution level of this pattern can

be selected, for example, by using a view point criteria and is applied to the entire

mesh. Once the tessellation level of the pattern is selected only the positions in this

tessellation pattern are evaluated for conditional insertion at each position.

Figure 3.1 shows the tessellation patterns for four different levels of resolution

L = {0, 1, 2, 3}. The original coarse triangle is depicted with bold lines and the

sampling points corresponding to the candidate vertices with a cross. The paramet-

ric coordinates (uB, vB) of the sampling point associated with a candidate vertex

3.1 Adaptive and Dynamic Mesh Refinement 57

V1

V3V2

V1

V3V2

V1

V3V2

V1

V3V2

L=0 L=1

L=2 L=3

Figure 3.1: Tessellation patterns for L = {0, 1, 2, 3}

VB that lies on the Bézier surface are computed through its barycentric coordinates

with:

(uB, vB)(wi, wj, wk) = wi × (u1, v1) + wj × (u2, v2) + wk × (u3, v3)

where (u1, v1), (u2, v2) and (u3, v3) are the parametric coordinates of the vertices

of the initial coarse triangle and (wi, wj, wk) are the barycentric coordinates of the

candidate vertex. The barycentric values are in the interval [0, 1] and verify wi =

i×δw, wj = j×δw and wk = k×δw with i, j, k = {0, · · · , L+1} and δw = 1
L+1

.The

tessellation is performed in the parametric domain, so to obtain the Euclidean space

coordinates of the vertex VB Equation 1.8 is evaluated.

The positions associated with this non-adaptive pattern are classified into strips

of candidate vertices. Figure 3.2 shows the tessellation pattern we employ for five

strips of vertices. The original coarse triangle is depicted with a bold line and the

triangles generated for the non-adaptive case with dashed lines. In our ADMR

proposal, the vertices (indicated with labels in the figure) are evaluated and are

conditionally inserted depending on the result of a specific test.

This tessellation methodology is generic and can be applied to any number of

58 Chapter 3. Dynamic and Adaptive Bézier Tessellation

strips, where this number is selected according to the resolution desired. The ad-

vantages of this simple tessellation methodology are multiple. First, the tessellation

has a non-recursive structure and for each triangle, once its tessellation level is se-

lected, the locations of the candidate vertices are determined. On the other hand,

the positions of the final vertices to be inserted can easily be evaluated through their

barycentric coordinates. In the case of a hardware implementation, the barycentric

coefficients could be stored to be applied in run time. Moreover, the tessellation pro-

cedure is not limited to specific pre-stored patterns, but can be determined on the

fly, depending on the tessellation level selected and the tessellation test employed.

The lack of recursiveness and the simplicity of the algorithm make it suitable for

including a full adaptive tessellation unit based on our tessellation strategy on a

GPU.

3.1.2. Strips of Vertices Representation

In our ADMR proposal the adaptive tessellation is generated once the vertices are

conditionally inserted. Our tessellation algorithm, explained below, is based on the

efficient management of the tessellation pattern representation. This representation,

dealt with in this section, is based on the classification of the inserted vertices in

strips. This simple representation, together with the efficient management thereof,

leads to a simple tessellation algorithm, as will be shown in the remainder of this

chapter.

Let us represent the strips of vertices as, Sv, a tuple of s lists Sv = (Sv1, · · · , Svs)
corresponding to the s strips. Each list includes the vertices inserted in each strip;

i.e., vertices that comply with the tessellation criterion. Non-inserted vertices are

not included in the list and their positions are empty. We define a limit vertex as

one on the edge of the original triangle with a vertex on the left edge of the triangle

being an opening limit vertex and on the right edge of the triangle a closing limit

vertex. We also define an extreme vertex as the first/last vertex in a strip when

there is no opening/closing limit vertex. By way of example, with a non-adaptive

tessellation with five strips (see Figure 3.2) the system of lists is:

3.1 Adaptive and Dynamic Mesh Refinement 59

Figure 3.2: Tessellation Pattern employed

Sv1 = {1}
Sv2 = {2,3}
Sv3 = {4, 5,6}
Sv4 = {7, 8, 9,10}
Sv5 = {11, 12, 13, 14,15}

where each list Svi includes the vertices j in the i− th strip, with j = 1, · · · , n being

n <= i. The limit vertices in each strip are indicated in bold typeface.

An example with an adaptive tessellation is shown in Figure 3.3 where vertices

5, 6, 7, 9 and 10 are inserted. In this case the strips of vertices are represented

according to the following lists:

Sv1 = {1}
Sv2 = {}
Sv3 = {5,6}
Sv4 = {7, 9,10}
Sv5 = {11,15}

The limit vertices for this example, indicated in bold typeface, are: 1 in the first

strip, none in the second strip, 6 in the third strip, 7 and 10 in the fourth strip, and

11 and 15 in the last strip. On the other hand, vertex 5 is an extreme vertex. As

will be shown below, the identification of limit and extreme vertices will be the key

60 Chapter 3. Dynamic and Adaptive Bézier Tessellation

Figure 3.3: Adaptive tessellation according to the pattern of strips of vertices

to our reconstruction algorithm.

To avoid generating overlapping triangles, when the tessellation procedure is

applied two modifications are introduced into the representation. These updatings

are expounded in the following two subsections.

Reuse of limit vertices

The first modification, reuse of limit vertices from previous strips, is required

when a limit vertex is missing in the current strip. For each non-empty list, when

no opening/closing limit vertex is included, the limit vertex in the previous strip is

copied. Note that only opening limit vertices can be employed for opening positions

and closing limit vertices for closing positions with the unique exception of vertex 1

that can be employed for both purposes. By way of example, the extended lists for

the tessellation pattern of Figure 3.3 becomes (limit vertices reused are indicated

with a hat):

Sv1 = {1}
Sv2 = {}
Sv3 = {1̂, 5,6}
Sv4 = {7, 9,10}
Sv5 = {11,15}

(3.1)

3.1 Adaptive and Dynamic Mesh Refinement 61

That is, the third strip is extended with the reuse of vertex 1 as an opening limit

vertex.

Incorporation of extreme vertices

For the second modification we add an additional notation. We enrich the vertex

classification with the definition of two kinds of diagonals in the tessellation pattern:

opening diagonals Do and closing diagonals Dc. For the example of Figure 3.4 with

five strips, there are three diagonals of each type:

Do
1 = {−, 3, 5, 8, 12} Dc

1 = {−, 2, 5, 9, 14}
Do

2 = {−,−, 6, 9, 13} Dc
2 = {−,−, 4, 8, 13}

Do
3 = {−,−,−, 10, 14} Dc

3 = {−,−,−, 7, 12}

where Dj[i] is the vertex of Strip i in diagonal Dj, with i = 1, 2, · · · , s. This

classification of the diagonals is used in the ADMR tessellation procedure.

The second modification is the incorporation of new vertices in non-empty strips

with no opening or closing vertex in Svi and Svi−1 with i > 2. For these strips an

additional vertex is conditionally incorporated. For the situation with no opening

vertices the procedure is as follows: first the opening diagonal Do
j that includes the

extreme vertex in Svi−1, that is, Svi−1[1] ∈ Do
j , has to be identified. Additionally,

the opening diagonal strip, that is, Svi[1] ∈ Do
k, also has to be identified. If Do

j is

on the left of Do
k, i.e. j < k, a vertex has to be incorporated into the current Svi in

the position indicated by the diagonal associated to the extreme vertex above Do
j [i].

Similarly, for closing vertices, if the closing diagonal of the extreme vertex of

Svi−1, D
c
j , is on the right of the closing diagonal of the extreme vertex of current

strip, Dc
k, that is j < k, a vertex has to be incorporated into the current strip in the

position indicated by the diagonal of the extreme vertex above Dc
j [i].

As an example let us consider the tessellation pattern indicated in Figure 3.5(a).

In this example we find one example of an extreme vertex incorporation when the

third and fourth strips are analyzed. In this case the original list of vertices are:

Sv3 = {5, 6} and Sv4 = {9}. The upper strip has a closing limit vertex, vertex 6,

and no opening limit vertex. The lower strip has no opening or closing limit vertex.

62 Chapter 3. Dynamic and Adaptive Bézier Tessellation

Figure 3.4: Diagonal organization

As both strips have no opening limit vertices the left extreme vertices have to be

analyzed. The diagonal of the left most extreme vertex above, vertex 5, is Do
1 and

it is on the left of the Do
2 associated to the left most extreme vertex below, vertex 9.

This indicates that an extreme vertex has to be incorporated into Sv4 in the position

associated to Do
1[4], i.e. position 8. This insertion is depicted in Figure 3.5(b) where

the new vertex is indicated with a circle. Taking into account this new configuration

the resulting lists of vertices are:

Sv1 = {1}
Sv2 = {1̂, 3}
Sv3 = {1̂, 5,6}
Sv4 = {1̂, 8, 9, 6̂}
Sv5 = {11, 12, 13, 14,15}

(3.2)

Note that there is no mark to distinguish an incorporated extreme vertex from

an original vertex.

3.1.3. Adaptive Tessellation Procedure

In this section we present the adaptive tessellation algorithm. The tessellation

procedure works by processing pairs of consecutive strips of vertices. The method is

3.1 Adaptive and Dynamic Mesh Refinement 63

(a) (b)

Figure 3.5: Example of extreme vertex incorporation

based on the utilization of the lists of vertices presented so far. Using these lists of

vertices a simple and efficient tessellation procedure is obtained. In the following we

present our meshing algorithm that permits the encoding/reconstruction of triangles.

In the method we propose the triangles are generated by joining the vertices be-

tween consecutive strips (parent-children relation) taking into account the following

rules:

Two consecutive vertices in the same strip are connected (sibling relation).

Two identical vertices are not considered for connection.

A reused opening/closing limit vertex has a limited connection with the fol-

lowing non empty strip. More specifically, it can only be connected with a

non-reused opening/closing limit vertex.

Each non-reused vertex of each strip, considered as parent, is connected with

consecutive children in the following strip. The following parent is connected

with another group of consecutive children. There is an overlap of one common

child between two consecutive parents.

The application of these rules to each pair of extended vertex lists generates the

final tessellation. For the sake of clarity, let us once again consider the example of

64 Chapter 3. Dynamic and Adaptive Bézier Tessellation

Figure 3.6: Example of tessellation for a list with reused limit vertices

Figure 3.3 and its extended list of vertices indicated in Equation 3.1. The resulting

tessellation generated by our proposal is shown in Figure 3.6. The procedure for

generating this tessellation is as follows. For the analysis of the first two strips,

{1} and {1̂, 5,6}, vertex 1 is connected with vertices 5 and 6. The following set

of two strips are {1̂, 5,6} and {7, 9,10}. As vertex 1 is a reused vertex, it is only

connected with vertex 7. After this, vertex 5 is the first non-reused parent vertex,

so it is connected with a set of consecutive children {7, 9}. After this, vertex 6 is

the last parent and is connected with the remaining children with an overlap of one

vertex with the previous set of children; i.e., with {9, 10}. In the last set of strips,

{7, 9,10} and {11,15}, vertex 7 is connected with child 11 in the following strip,

vertex 9 with children 11 and 15 and vertex 10 with the last child. The distribution

of children among parents was selected to produce good results in terms of quality.

For the example of Figure 3.5 with the list of strips of vertices indicated in

Equation 3.2 the resulting tessellation is indicated in Figure 3.7. The incorporated

extreme vertex 8 is equivalent to any other internal vertex. In consequence, the

tessellation procedure can be applied directly. If vertex 8 were not inserted, an

undesirable triangle (1,5,9) would be generated. Note that the reuse of limit vertices

allows the two strips tessellation philosophy to be preserved for triangles with larger

extensions. Note also that two identical vertices do not imply any real connection

3.2 Structure of Dynamic and Adaptive Bézier Tessellation 65

Figure 3.7: Example of tessellation for a list with reused limit vertices and incorpo-
rated extreme vertices

as the reused vertices play the same role as the original vertex.

3.2. Structure of Dynamic and Adaptive Bézier

Tessellation

In this section we present our Dynamic and Adaptive Bézier Tessellation (DABT)

proposal. Our strategy performs the adaptive tessellation of the Bézier surface

by computing the tessellation pattern on the fly without employing a set of pre-

computed patterns. The objective is a freely adaptive tessellation inside each patch

where the resolution and number of triangles generated can be selected as a trade-off

between quality and computational requirements.

Non-adaptive subdivision strategies can generate meshes with a high number of

triangles that do not always contribute to the increment of the quality of the final

image. The objective of our adaptive subdivision proposal is to reduce the number

of triangles with no discernible loss in the quality of the final surface. The DABT

follows a similar strategy to the ADMR algorithm, but increasing its flexibility in

terms of the adaptivity of the tessellation. More specifically, the DABT does not

apply a fixed resolution for the whole surface, thus enriching the possibilities of its

predecessor.

66 Chapter 3. Dynamic and Adaptive Bézier Tessellation

Tessellation
Pattern

Test
Unit

Mesh
Unit

Initial
triangle

Sampling
points

Inserted
vertices

Final
triangles

Figure 3.8: Scheme of the DABT algorithm

Specifically, like ADMR, our DABT method is based on three different key pro-

posals: the utilization of a fixed tessellation pattern that guides the adaptive tessella-

tion, the application of local tests, and an efficient meshing procedure to reconstruct

the resulting mesh once the tests are applied. Figure 3.8 schematically shows these

three key cores of the algorithm. As can be observed in the figure, a non-adaptive

tessellation pattern is employed to guide the procedure and each candidate vertex

can be conditionally inserted in the positions specified by this pattern. The vertices

to be finally inserted are determined by local tests. And once the decisions are per-

formed, the new vertices have to be organized to reconstruct a high quality triangle

mesh. This tessellation procedure is based on the classification of the inserted ver-

tices into strips and the efficient management of the resulting list of vertices. The

objective in mind is to generate the triangle structure directly from the irregular

pattern obtained with the evaluation of the subdivision tests.

In the following each key point of our strategy is presented.

3.2.1. Utilization of a Fixed Pattern to Guide the Adaptive

Tessellation Procedure

The objective of the proposal is to exploit the large number of cores available in

current GPUs. With this objective in mind, the model’s patches are initially tessel-

lated and the coarse triangles employed as input primitives for the application. Once

the initial coarse mesh is obtained (see Figure 3.9 by way of example), the DABT

method computes the real-time adaptive tessellation of the resulting triangles.

For the ADMR proposal, once the surface resolution level is determined, the

3.2 Structure of Dynamic and Adaptive Bézier Tessellation 67

T1 T2

T3
T4

T5 T6

T7 T8

T9 T10
T11 T12

T13 T14

T15
T16

T17 T18

Figure 3.9: Initial coarse tessellation of the Bézier surface

candidate vertex locations can be evaluated directly. Those positions associated with

the original coarse edges have to be coherently processed by the neighbor triangles

sharing each edge. This can be assured with the assignation of the same resolution

level to neighbor triangles and the application of local tests to guide the adaptive

tessellation. With this uniform approach, once the tessellator level is selected for a

given surface L, triangles are subdivided according to the pattern for that resolution

level.

In manner similar to the ADMR proposal, the DABT algorithm employs fixed

tessellation patterns from ADMR (see Figure 3.1) to guide the adaptive tessellation

procedure. To enrich the adaptative capabilities of the algorithm, the DABT in-

cludes a method for assigning different resolution levels to neighbor triangles. With

this non-uniform approach, the resolution level can be selected dynamically and

modified along the patch. As neighbor triangles could have different resolution lev-

els, the direct application of the fixed tessellation pattern methodology would result

in the generation of cracks. For this reason, the DABT algorithm permits the appli-

cation of multiple resolution levels inside a triangle. More specifically, a resolution

level is selected for each triangle edge so that one triangle may have three resolution

levels. In order to apply three levels per triangle, each one would be applied to one

third of the triangle, as indicated in Figure 3.10. By way of example, the resolution

level associated with edge {V1, V2} is applied to the area labeled with E1,2.

Specifically and in order to follow a row computation strategy, an unified resolu-

tion is selected and employed. For a system with resolution levels L = {0, · · · , Lmax},
the unified resolution level corresponds with the least common multiple of {0, · · · ,

68 Chapter 3. Dynamic and Adaptive Bézier Tessellation

V1

V3V2

E 1,2 E1,3

E2,3

Figure 3.10: Resolution areas inside a triangle

Lmax + 1} minus 1. As an example, let us consider a system with resolutions

L = {0, 1, 2, 3} as indicated in Figure 3.1; in this case the unified resolution level is

Lunified = 11. The barycentric weights employed for the candidate vertices for each

resolution are:

w1 =
{

1
2

}
w2 =

{
1
3
, 2
3

}
w3 =

{
1
4
, 1
2
, 3
4

}
being wL the weights employed for level L. The unified system of weights is:

w11 =

{
1

12
,
1

6
,
1

4
,
1

3
,

5

12
,
1

2
,

7

12
,
2

3
,
3

4
,
5

6
,
11

12

}
where w1

0 = w3
1 = w12

5 , w2
0 = w12

3 , w2
1 = w12

7 , w3
0 = w12

2 and w3
2 = w12

8 . As a result, a

unified system of weights and rows can be employed for any resolution level. Figure

3.11 shows the tessellation pattern for Lunified = 11. In fact, the test unit processes

only those points associated with the resolution level selected. In the figure the

points corresponding to L=1 (lines s7 and s13), L=2 (lines s5, s9 and s13) and L=3

(lines s4, s7, s10 and s13) are indicated with circles.

Figure 3.12 shows a triangle where three different resolution levels coexist. In

this example the area E1,2 follows a tessellation pattern L = 3 that means that three

3.2 Structure of Dynamic and Adaptive Bézier Tessellation 69

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

Figure 3.11: Unified resolution Lunified=11 for a system with L = {0, 1, 2, 3}

rows of candidate vertices have to be analyzed. Area E1,3 is subdivided according

to a tessellation pattern L = 2; i.e., two rows of candidate vertices have to be

considered. Finally, E2,3 is tessellated with a resolution level L = 1. In this case

and according to the tessellation pattern corresponding to this area (see Figure 3.1)

only one candidate vertex has to be evaluated. All the candidate vertices have to be

evaluated and conditionally inserted on the basis of results from specific tessellation

tests.

The advantages of the tessellation methodology employed are multiple. First,

the tessellation has a non-recursive structure. On the other hand, the positions of

the candidate vertices can easily be evaluated through their barycentric coordinates.

The tessellation procedure is not limited to specific pre-computed patterns, but can

be determined on the fly according to the tessellation level selected. And finally,

the resolution level can be dynamically changed so that no fixed resolution level per

surface is required.

70 Chapter 3. Dynamic and Adaptive Bézier Tessellation

V1

V3V2

Figure 3.12: Example of triangle with three different resolution areas

3.2.2. Selection of Tests Employed to Guide the Adaptive

Tessellation

Once the resolution levels per triangle are determined and the sampling points

identified, the candidate vertices are conditionally inserted according to the result of

specific tessellation tests (see Figure 3.8). The objective of the adaptive tessellation

is to generate detailed structures only on those areas where a high resolution is re-

quired, while keeping the coarse structures in those areas where a higher tessellation

does not imply any increment in the quality of the final image.

We have evaluated different tests to guide the tessellation procedure. Through

the utilization of different quality thresholds, these tests measure the increase in

quality of the mesh if a given vertex is inserted. From among the tests evaluated

we have selected three tests according to their sound results in terms of simplicity

and quality obtained. The first test is based on a distance mesh-surface analysis,

the second on the study of the curvature of the surface, while the third is based on

length evaluations. The three tests compute the analysis of the surface properties

and can be applied in combination with other tests. We now go on to explain the

three tests individually.

3.2 Structure of Dynamic and Adaptive Bézier Tessellation 71

V1

V2

V3

VS1

VB1

VB2

VS2

Figure 3.13: Example of candidate vertices under test

Distance test

This test analyzes the distance between the triangle mesh and the Bézier surface.

More specifically the distance between a sampling point on the triangle mesh and

the corresponding point on the Bézier surface is analyzed. If the distance is small

enough, the triangle mesh is considered a good approximation of the surface, so no

vertex is inserted. On the contrary, if the distance is large, the vertex is introduced

as this will increase the quality of the final image.

To apply this test, the barycentric coordinates of the candidate vertex are ob-

tained. These coordinates are employed to compute the parametric coordinates of

the vertex and, by using Equation 1.8, the coordinates of the candidate vertex VB

on the Bézier surface. Additionally the barycentric coordinates are also employed

for computing the coordinates of the corresponding sampling point VS on the coarse

triangle by interpolating the position of the original vertices of that triangle. Once

both sets of coordinates have been computed, the test is given by:

distance = [|VS − VB| > tdistance]

where tdistance is a quality threshold that is selected according to the quality/timing

requirements of the application. Figure 3.13 shows an example of application. In

this example, the analysis of the distance between the candidate vertices VB1 and VB2

and the corresponding points on the coarse mesh, VS1 and VS2 could lead to different

insertion decisions. In this case, vertex VB1 would be inserted as the distance between

VB1 and VS1 is larger than the threshold and its inclusion would contribute to the

quality of the final image. However, the insertion of vertex VB2 would not provide

enough additional detail to the final image, so it would not be inserted.

72 Chapter 3. Dynamic and Adaptive Bézier Tessellation

As will be shown in the results section, this test produces good results in terms

of quality of the final mesh and, in this sense, is adequate for guiding the adaptive

tessellation. As a drawback, the test is based on the analysis of the candidate

vertices (VB). This means that the coordinates of all candidate vertices have to be

obtained for the testing procedure. Consequently, the computational cost associated

with the vertices not finally inserted is an important drawback of the test.

Vector deviation flat test

The objective of this test is to employ the curvature of the surface as a parameter

for guiding the tessellation procedure. With this test candidate vertices on flat

areas are not considered for insertion as the quality of the surface would not be

incremented. To check the curvature of the surface a simple vector deviation flat

test [36] can be employed.

In order to reduce the costly computation of all candidate vertices, our flatness

test follows a per edge philosophy. In our proposal each candidate position associ-

ated with the coarse edges is analyzed and the decision performed is applied to all

candidate positions of the same row and resolution area (see Figure 3.10). Thus,

with this technique the curvature of the surface is estimated only for the sampling

points on the edges of the coarse triangle and the results of the tests are employed

in the interior of the triangle

For this test the curvature of the surface on the positions corresponding to the

evaluation of the triangle edges is analyzed. For an edge with extreme points V1 and

V2 and for a position VB under test, the curvature in this position is tested. With

this objective, the test computes the normalized vector |V1−V2| and the dot product

of this vector with |VB − V1| and |VB − V2|. The deviation between the vectors that

point to the new vertex and the edge vector are analyzed as an estimation of the

curvature in this point. More specifically, the test consists of the following steps:

1. Calculation and normalization of vectors A = |V1 − V2|, B = |VB − V1| and

C = |VB − V2|.

2. Computation of the unsigned dot products |BA| and |CA|

3.2 Structure of Dynamic and Adaptive Bézier Tessellation 73

3. Comparison between the dot products and a threshold, tflat. If one of them

is smaller than the threshold, the new vertex is inserted. The test can be

represented by the equation:

flat = (|BA| < tflat) OR (|CA| < tflat)

This test has the same drawback as the distance test analyzed above. The

coordinates of each candidate vertex VB are calculated for testing purposes. For

those vertices not finally inserted, this information is not longer useful. However,

and even though the computational costs associated with each point under test are

higher, the global costs are lower as only the candidate positions located on the

triangle edges are really tested.

Length test

In geometric design applications, rather than using a very high degree surface to

approximate a very complex surface, it is more common to break the surface up into

several simple surfaces. The usual way to make larger and complex surfaces is to

connect up a set of low degree Bézier surfaces. The test we have employed exploits

this typical low degree/curvature of the Bézier surfaces. More specifically, the test

is based on the utilization of the length of the coarse triangle edges as a measure of

the curvature of the Bézier surface in the corresponding area.

Due to the low degree of each Bézier surface, and as the vertices of the coarse

triangle mesh lies on the surface, if the coarse triangle is small then it can be

considered a good approximation to the surface. More specifically, if the two vertices

of one edge are close enough, the inclusion of additional vertices on that edge will

not increase the quality of the final mesh.

Similarly to the previous proposal, this test works on the edge basis as it is only

applied for the sampling points on the edges of the coarse triangle. In the case of

a vertex corresponding to the edge being inserted, the vertices on the same row are

directly inserted (only for the resolution area associated with that edge, as indicated

in Figure 3.10). Note that the test is based on the analysis of the original vertices

of the triangle and does not require the computation of the candidate vertices.

74 Chapter 3. Dynamic and Adaptive Bézier Tessellation

Consequently, the computational requirements of this new test are very low.

More specifically, to test whether a candidate vertex VB has to be inserted in the

edge with vertices V1 and V2 the following analysis is performed:

length = (|V1 − VS| > tlength) AND (|V2 − VS| > tlength)

this means that the point VB is inserted only when the distance of the corresponding

sampling point on the triangle VS to both extreme vertices V1 and V2 is larger than

a threshold tlength.

By way of example, let us consider Figure 3.13. To test if VB2 is inserted the

distance of its projection VS2 to V1 and V2 is evaluated. It should be noted that the

test does not require the costly evaluation of the VB2 coordinates.

This test has a number of different advantages in terms of computational require-

ments. First, the test is applied at the edge level, so only the candidate positions

on the triangle edges are tested. Additionally, the test does not imply the computa-

tion of the vertex coordinates, so computations associated with vertices not finally

inserted are avoided. As result, the computational requirements are very low.

3.3. Implementation of the DABT Algorithm on

the Geometry Shader

Our implementation of the DABT was performed to test the quality of the tes-

sellation technique as the speed results are conditioned by the limited hardware

tessellation resources available in current graphics cards. The new tessellation units

included with DirectX 11 [90] offer a high performance solution for the tessellation

proposals. However, current versions of these units have reduced flexibility with re-

spect to the adaptivity allowed. In this sense, the geometry shader introduced with

DirectX 10 [9] is the only unit that provides support for a fully adaptive tessellation.

However, the geometry shaders have different disadvantages in terms of the number

of primitives generated and reduced processing speed.

Our implementation processes bi-cubic Bézier surfaces and exploits the capabil-

3.3 Implementation of the DABT Algorithm on the Geometry Shader 75

ities of the geometry shaders. As will be shown in the results section, even with the

strong limitations associated with these units, a very good performance in terms of

quality and timing requirements is obtained. We hope that the good results obtained

will lead to the integration of more flexible tessellation units in future graphics cards.

Figure 3.14 shows the scheme of our DABT implementation. The algorithm

consist of two stages: Preprocessing Stage and Synthesis Stage. In the Preprocessing

Stage two step are performed: the control points of the Bézier surfaces (Step 1)

and the virtual vertices (Step 2) are sent from CPU to GPU. In the Synthesis

stage, Bézier surfaces are tessellated in the geometry shader (Step 3) and rendered

on the GPU. While the Preprocessing Stage is performed only once per scene, the

Synthesis Stage can be performed multiple times per data set for successive frames

f (see feedback in the figure).

The objective of our implementation is to exploit the large number of cores

available in current GPUs. With this objective in mind, the patches of the model

are initially tessellated and the resulting coarse triangles are employed as input

primitives for the application. To do this, the parametric domain (u, v) is partitioned

into Nu ×Nv cells of size 1
Nu
× 1

Nv
, where two adjoining triangles are generated per

cell. More specifically, our implementation employs Nu = Nv = 3 cells, so that

eighteen coarse triangles are generated per Bézier patch (see as an example Figure

3.9). The reason for this number of triangles is directly associated with the degree

of the Bézier surfaces employed. As our implementation processes bi-cubic surfaces

(defined by 4 × 4 control points) the vertices of the coarse mesh can be directly

computed by evaluating the parametric coordinates of the control points with E

quation 2.2.

An additional advantage of using the control points as a basis for the initial

vertices computation is the implicit simplicity of the coarse mesh reconstruction.

The control points are sent once from CPU to GPU (Step 1 in Figure 3.14) and

efficiently stored. More specifically, the surface control points [Bs] are stored in

three float 4×4 arrays [Bs
x, B

s
y, B

s
z]: one per coordinate. The storage is performed

in a texture buffer (tbuffer) [66]. The reason for this selection is the superior per-

formance of the texture memory with respect to the constant or global memory.

The texture memory has less restrictive access patterns and hides memory latency

accesses. Furthermore, the tbuffer has better performance as it allows the simul-

76 Chapter 3. Dynamic and Adaptive Bézier Tessellation

Bézier
patches

evaluation

Geometry shader

Rasterizer

CPU

CPU GPU

GPU
SYNTHESIS STAGE

PREPROCESSING STAGE

1

2

3

Control
points

virtual vertices

Step

Step

A

f

Figure 3.14: DABT structure using the Geometry Shader

taneous obtaining of different variables packed in the same buffer, thus increasing

the bandwidth. As a result of the organized storage scheme employed, no Index

Buffer is required. During the tessellation in the geometry shader, to generate each

coarse triangle the control points coordinates are read from the texture memory as

indicated in Figure 3.15. In this case a surface identification is stored on the vertex

buffer instead of the whole surface. Thus, control points of the surfaces are stored

in the texture memory in advance, which minimizes surface accesses due to the fact

that the whole surface is accessed when it is computed. This process is schematically

depicted in Figure 3.15, where the vertex buffer stores the surface ID which is used

to access to the control points of the surface stored in the texture memory. There-

fore, the control points of each surface are read once for each triangle in the surface

and the projection of those points in the Bézier surface are generated according to

Equation 1.8. Our implementation employs the direct evaluation strategy instead

3.3 Implementation of the DABT Algorithm on the Geometry Shader 77

... ...4 4 5 6
Vertex
Buffer

0 1 2 3 4 5 6

...

...

...{tBuffer

Bx

By

Bz

Figure 3.15: Access to tbuffer to recover control points

of the de Casteljau algorithm for this evaluation, owing to its greater efficiency in a

GPU implementation [88].

With respect to the implementation of the adaptive tessellation and to increase

the performance of the application a set of optimization strategies were used. The

performed optimizations include the minimization of conditional branches and the

utilization of vector operations and intrinsic functions. Flow control instructions are

necessary for a fully adaptive tessellation performed on the basis of the evaluation

of tests. Nonetheless, these instructions can significantly affect the throughput by

causing threads assigned to different processing element of the same compute unit

to diverge; i.e., to follow different execution paths. If this happens, the different

execution paths are serialized, decreasing the performance. To increase the per-

formance, conditional branches have been replaced with predication when possible.

With branch predication, each instruction is associated with a predicate that is set

to true or false according to the controlling condition. Only the instructions with a

true predicate are actually executed and these are not serialized.

On the other hand, the Bézier surface evaluation is also a costly operation; hence,

this evaluation has been minimized by employing Equation 3.3, which is shown again

78 Chapter 3. Dynamic and Adaptive Bézier Tessellation

here for the sake of clarity:

Q(u, v) = [u3 u2 u 1]


−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3



−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



v3

v2

v

1


(3.3)

This equation is characterized by a matrix evaluation so vector operations are

used. This is more efficient than a loop evaluation (see Equation 1.6). Moreover,

intrinsic functions have been also used owing to their superior performance. More

specifically, Bézier and tests evaluations have been implemented using intrinsic func-

tions.

3.4. Results

In this section we present the results of the evaluation of our proposal in terms

of the quality of the final image and frames per second (fps). We have evaluated

our proposal on an Intel Core 2 2.4 GHz with 2 GB of RAM and on two different

GPUs: Nvidia GeForce 295 GTX (Nvidia) with DirectX 10 Microsoft’s HLSL and

ATI Radeon 5870 (ATI) with DirectX 11 Microsoft’s HLSL.

The models employed in the tests presented in this section are shown in Figure

3.16: Teacup in Figure 3.16 (a), Teapot in Figure 3.16 (b) and Elephant in Figure

3.16 (c). The scenes we have employed for our tests contains replicated and scaled

versions of these models.

Table 3.1 summarizes the results obtained in terms of number of primitives. For

the tests summarized in this table, Lmax = 3 and three quality set of thresholds

were employed: High, Medium and Low. To obtain this data and for each quality

level, the thresholds for the three tests were selected to ensure a similar number

3.4 Results 79

(a) (b) (c)

Figure 3.16: Models employed: (a) Teacup, (b) Teapot and (c) Elephant

of triangles for the tessellated models. The second column includes the number of

Bézier surfaces per scene (each scene is composed by replicated and scaled versions of

the model specified). The third, fourth and fifth columns include the average number

of triangles generated with each test presented in Section 3.2.2. More specifically,

the test based on the distance between mesh and surface is labeled as Distance test,

the Vector deviation flat test as Flat test, while the test based on the length of the

triangle coarse edges is labeled as Length test.

The tests we have performed indicate that the tessellation method produces high

quality meshes with no visual artifacts. Additionally, the multi-resolution method

employed and the use of multiple resolution areas per triangle have produced the

expected good results. In Figure 3.17, a zoom shows the different tessellations

obtained for the teacup model for the three tests: Distance, Flat and Length. To

further evaluate and compare the results in terms of quality, the numerical error

of the resulting meshes was also analyzed. We have computed the mesh error as

an estimation of the distance between the real surface (approximated with a high

resolution non-adaptive tessellation of the mesh) and the resulting mesh obtained

through the adaptive technique. Figure 3.18 shows the mesh errors for a resulting

scene (teacup), with a resolution level Lmax = 3 for three different quality levels. As

can be observed, and as expected, the best results are obtained with the Distance

test. This is due to the fact that this test is performed per candidate position instead

of per edge. Similar results are obtained with the Length test, while poorer results

are obtained with the Flat test. Both tests are performed per edge and the results

80 Chapter 3. Dynamic and Adaptive Bézier Tessellation

High Quality
Scene\Test # surfaces Distance test Flat test Length test
Crazy teacups 260 72.96 k 70.94 k 71.22 k
Crazy teapots 960 267.63 k 217.24 k 266.28 k
Elephant herd 8110 2034.082 k 1918.933 k 2266.391 k

Medium Quality
Scene\Test # surfaces Distance test Flat test Length test
Crazy teacups 260 57.49 k 57.69 k 43.15 k
Crazy teapots 960 257.9 k 195.34 k 208.10 k
Elephant herd 8110 1986.02 k 1635.84 k 1781.87 k

Low Quality
Scene\Test # surfaces Distance test Flat test Length test
Crazy teacups 260 15.1 k 14.49 k 15.44 k
Crazy teapots 960 135.79 k 126.40 k 142.83 k
Elephant herd 8110 742.64 k 497.44 k 559.94 k

Table 3.1: Number of triangles generated with the different tests presented and
Lmax = 3

indicate that for low degree surfaces the Length test gives a good estimation of the

surface curvature.

The main objective of the proposal is the real-time rendering of complex models

without reducing the quality of the final image. With the aim of testing the timing

requirements of the application, we have analyzed a walk-through animation with

the same movement of the camera for all tests. The final images have a screen

resolution of 1280 × 1024 pixels. Figure 3.19 shows the results in fps for different

tests with the two GPUs employed using a resolution level Lmax = 3 for a high

quality threshold. The results indicate highly satisfactory performances in terms of

fps in both architectures, allowing real-time adaptive tessellation, even for a high

number of triangles. For example, for the Length Test, 284.94 K triangles were

rendered at 43.32 fps in the Nvidia and 148.97 fps in the ATI. Slightly better results

were obtained for the Length and Flat tests with the Nvidia card due to the lower

computational requirements as these tests are performed per edge. Note that in the

ATI card, and for a large number of triangles, the Distance test has similar timing

requirements to the other proposals. This is due to the exploitation of VLIW with

the use of short vector data types (like float4) and vector computations.

3.4 Results 81

Distance Test

Flat test

Length test

Figure 3.17: Zoom of the tessellated teacup model obtained with the three tests:
Distance, Flat and Length

No comparisons with previous proposals are included as, to the best of our

knowledge, this is the first analysis on fully adaptive tessellation of Bézier surfaces

on current GPUs. There are a few recent proposals in the field but they offer reduced

freedom in the adaptivity permitted. By way of example, in [34, 84] two proposals for

the adaptive subdivision are presented; however, adaptivity is selected at the patch

level. This means that once the level is selected, the patch is uniformly subdivided,

with the exception of the border areas, where the tessellation has to be modified

to avoid cracks between neighbor patches. In the field of triangle meshes there

are proposals for adaptive tessellation based on the use of previous pre-computed

patterns [62] so comparisons are not applicable.

The purpose of our implementation was to test the adaptive tessellation method

employed, the evaluation of the tests proposed and evaluating the capabilities of

current GPUs to process Bézier surfaces in real time. Owing to the good results ob-

tained, the flexibility of the adaptive proposal and the simplicity of the computations

involved, the proposal is a good candidate for integration as a specific tessellation

unit in future graphics cards. As nowadays the specific tessellation units included

in the graphics cards do not offer these adaptive characteristics, the algorithm was

tested by exploiting current geometry shader capabilities. We hope that the results

obtained will encourage the inclusion of more flexible tessellation units in future

82 Chapter 3. Dynamic and Adaptive Bézier Tessellation

LowHigh Medium

Figure 3.18: Error obtained with the teacup model for Lmax = 3 and three different
quality levels

graphics cards.

3.5. Conclusions

In this chapter we present a new method, Dynamic and Adaptive Bézier Tessella-

tion (DABT), for the real-time adaptive tessellation of Bézier surfaces on the GPU.

The method is based on the generation of a initial coarse triangle mesh that approx-

imates the Bézier surface and the adaptive tessellation of each resulting triangle in

the GPU. The methodology employed allows multiple resolutions to be applied to

the same Bézier surface. This means that neighbor triangles can be processed with

different resolutions and no visual artifacts are assured.

Our proposal does not employ any pre-computed pattern stored in memory as

in previous proposals. Inserted vertices are calculated on the fly according to a non-

adaptive tessellation pattern that guides the tessellation. The resulting inserted

vertices are organized and classified into strips. The management of this simple

and efficient representation permits the generation of the triangles associated to the

adaptive tessellation in a direct way.

3.5 Conclusions 83

FP
S

Number of original triangles (K)

(a)

FP
S

Number of original triangles (K)

(b)

Figure 3.19: FPS with tessellation level Lmax = 3 for a high quality threshold (a)
Nvidia Geforce 295 GTX (b) ATI Radeon 5870

The proposal is based on three main strategies: the use of a fixed tessellation

pattern to guide the procedure, the use of local tests for the adaptive tessellation

decisions and an efficient meshing procedure to reconstruct the resulting meshes.

With respect to the tests employed, in this work we have included three tests that

analyze different surface features to guide the tessellation. More specifically, we

include one test studying the distance mesh-surface, another based on the surface

curvature analysis and a third one based on the edge length.

84 Chapter 3. Dynamic and Adaptive Bézier Tessellation

For algorithm testing purposes and to evaluate the capabilities of current GPUs,

we have implemented our DABT algorithm by exploiting the geometry shader unit.

On the other hand, and as expected, the capabilities of the technique are reduced

owing to the limitations of the geometry shader. We consider that the introduction

of the geometry shader with DirectX 10 was an important step forward and we hope

that new generations will improve this unit and, with this, will encourage the use

of adaptive tessellation techniques. Increasing interest in tessellation algorithms is

acknowledged with the inclusion of specific tessellation units in DirectX 11. Taking

this increased interest in tessellation units into account, we hope our proposal helps

to guide the implementation of future tessellation units. The good results obtained in

terms of quality and frames per second makes our proposal an interesting candidate

for its real hardware implementation on future GPUs.

Chapter 4

Semi Adaptive Tessellation

Proposal

This chapter presents an adaptive tessellation scheme based on a halfway ap-

proach between a non-adaptive tessellation scheme, GST, detailed in Chapter 2,

and a fully adaptive proposal, DABT, presented in Chapter 3. Hence, this adap-

tive proposal is based on the use of different sampling strategies (adaptive and

non-adaptive) and on the exploitation of the spatial coherence of data within each

surface.

The non-adaptive method detailed in Chapter 2 is characterized by the simplicity

of the associated shader program, with the ultimate aim of achieving the optimum

use of the shader by reducing the divergence and irregularity of the program. The

fully adaptive tessellation (see Chapter 3) proposal allows the number of triangles to

be processed to be minimized to a given quality. The new semi adaptive approach

presented in this chapter aims to better exploit the GPU by decreasing the degree

of flexibility and adaptability. The objective is to reduce the irregularity and the

associated divergence of the fully adaptive proposal to optimize the graphics hard-

ware utilization, while generating the minimum number of triangles to achieve the

required quality.

The main purpose of this work is to analyze novel solutions for improving the

tessellation capabilities of the current rendering pipeline, rather than on developing

an optimized implementation. Furthermore, this semi adaptive proposal introduces

85

86 Chapter 4. Semi Adaptive Tessellation Proposal

a variable degree of flexibility which entails a deep study of the tessellation and

computation features of the geometry shader stage. The evaluation and comparison

of a semi adaptive technique with respect to those techniques presented in Chapter 2

and 3 is performed. In any case, as shown in the results section, good results in term

of quality and performance have being achieved with these methods. Additionally,

these three methods are compared with the tessellation performed by the DirectX11

tessellation unit.

This chapter is organized as follows: in Section 4.1 a brief description of the

main characteristics of the tessellation methods under analysis is presented. Section

4.2 describes the semi adaptive strategy. Section 4.3 presents the experimental

results and the comparison between algorithms. Finally, the main conclusions are

highlighted in Section 6.8.

This work has been submitted to [28].

4.1. Structure of the tessellation proposals

This section describes the structure of the tessellation methods under analysis.

Figure 4.1 schematically depicts the structure of the proposals: a non-adaptive

solution, GST, detailed in Chapter 2; a fully adaptive proposal, DABT, described

in Chapter 3; and a novel semi adaptive approach with an intermediate degree of

flexibility. For reasons of clarity, the figure shows the tessellation performed at

triangle level.

One key of our approaches is the exploitation of the spatial coherence of data

within each surface patch to take advantage of the constant result of [N][B][M]T for

every point on the surface and that the different control points [B] are accessed only

once, whereas the current DirectX11 tessellation proposal accesses [B] and computes

[N][B][M]T for each sample on the surface.

The non-adaptive proposal is represented in the right part of Figure 4.1. The

level of resolution of each object depends on the camera position and determines

the refinement degree of the surface. The tessellation is performed by evaluating

the parametric equation for uniformly distributed parametric values. The proposal

4.1 Structure of the tessellation proposals 87

Tessellation
pattern

Tessellation
pattern

Local
test

Semi adaptive
tessellation
procedure

level of
resolution

level of
resolution

Tessellation
pattern

Local
test

Fully adaptive
tessellation
procedure

level of
resolution

semi adaptive
non-adaptivefully adapt

ive

Figure 4.1: Structure of the tessellation algorithms.

under analysis is based on a strategy for increasing the number of output primitives

per patch, which makes it possible to achieve high processing speed, as will be shown

in the experimental analysis.

With respect to the fully adaptive and semi adaptive proposals (left part of

Figure 4.1), the objective is to reduce the number of triangles of the final mesh

while keeping the quality of the resulting image. Both algorithms are based on a

3-stage programmable pipeline: first, a fixed tessellation pattern is computed to

guide the adaptive procedure for the patch; next, the new vertices obtained from

the first step are conditionally inserted by applying a set of heuristics consisting

of tests local to the triangle; finally, a specific scheme is employed to represent the

88 Chapter 4. Semi Adaptive Tessellation Proposal

inserted vertices and the reconstruction methodology based on the processing of this

information.

The first step carries out a non recursive procedure based on the utilization of a

fixed tessellation pattern to guide the tessellation. The tessellation patterns are em-

ployed to guide the adaptive tessellation in such a way that the new vertices can only

be inserted into the candidate positions specified by the patterns. Once the level of

resolution is selected only the positions of the uniform tessellation pattern are eval-

uated for their conditional insertion. While for the fully adaptive proposal different

levels of resolution in the patch are permitted, for the semi adaptive proposal only

one is employed to reduce complexity of the algorithm.

The second step decides which candidate vertices are really inserted as a result of

a tessellation test. A local test is evaluated in order to guarantee that the same result

will be obtained in several recomputations. Different local test has been considered

(see Section 3.2.2); however, length test has been chosen for this analysis due to its

simplicity and its low computational cost (see Section 3.4).

The last step of the adaptive tessellation algorithms is the reconstruction of

the mesh from the set of vertices finally inserted; i.e., once the new vertices have

been conditionally added, all the vertices (old and new) have to be organized and

connected to reconstruct the final mesh, ensuring that there are no cracks or holes

in the result (Tessellation Procedure in Figure 4.1). In the fully adaptive proposal,

the new inserted vertices are organized into rows and represented as a set of lists.

This representation is the key for the mesh reconstruction, as the final mesh can be

extracted from this information easily and directly. For the semi adaptive proposal

the meshing scheme is much simpler and a triangle strip is directly generated. The

quality of the final triangle mesh is determined by both the inserted vertices and

the reconstruction method employed to generate the resulting mesh.

4.2. Semi adaptive Tessellation Strategy

The semi adaptive strategy is a new tessellation proposal that represents an

intermediate degree of flexibility between the non-adaptive strategy and the fully

adaptive strategy. The objective of the proposal is to increase the processing speed

4.2 Semi adaptive Tessellation Strategy 89

of the fully adaptive algorithm by reducing its flexibility. The strategy aims to

simplify the shader program as irregular shader programs (i.e., with an irregular

control flow and branches) have an associated performance degradation [2].

The semi adaptive algorithm we propose is a simplified version of the fully adap-

tive strategy. The semi adaptive strategy is characterized by a unique level of

resolution per triangle and its use of a regular grid pattern in the (u, v) paramet-

ric directions. Similarly to the non-adaptive proposal, this allows the GPU vector

computation capabilities to be exploited. Furthermore, while for the fully adaptive

algorithm the tests can be performed per candidate vertex, in this semi adaptive

algorithm the tests are only applied in the candidate positions located in the original

edges of the coarse triangle. Finally, if a vertex is inserted in the edge, the insertion

is also performed along the row in all the candidate positions inside the triangle.

An example of the vertex insertion procedure is depicted in Figure 4.2. Figures

4.2(a) and 4.2(b) show examples of tessellation patterns for the fully adaptive and

semi adaptive proposals, respectively. In the first case three resolution areas are

employed: L = 2, L = 3 and L = 1 for the areas of edges a, b and c respectively.

In the second case a single level of resolution L = 3 was selected. Figures 4.2(c)

and Figures 4.2(d) depict the result of tessellation once the insertion decisions have

been performed for the fully adaptive and semi adaptive algorithms, respectively.

For comparative reasons, a similar set of decisions were assumed in both examples.

While in the first sub-figure the test was applied in all the candidate positions, in

the second case it was only applied on the original triangle edges. As will be detailed

in this section, this different test application procedure reduces the complexity not

only of the test phase but also of the meshing scheme employed to reconstruct the

final triangle mesh.

Once the insertion decisions have been taken a meshing procedure to connect the

vertices is performed. The semi adaptive algorithm we propose also follows a row

strategy in which triangles are generated by connecting vertices in two consecutive

rows of vertices. Similarly to the fully adaptive proposal, larger triangles connect-

ing vertices in non-consecutive rows have to be generated in those locations where

vertices are not inserted.

The resulting meshing scheme has a low complexity in comparison with the fully

90 Chapter 4. Semi Adaptive Tessellation Proposal

1

2

3 4

5

6 7

8 9 10

Ed
ge

 a

Edge c
Edge b

11 12

V

V

V V

V
V V

V V V V V

(a)

1

2 3

4 5 6

7 8 9 10

11

Ed
ge

 a

Edge c

Edge b
12 13 14 15

V

V V

V
4 V V

V V V V

V V V V V

(b)

1

2

3 4

5

6

8 9 10

Ed
ge

 a

Edge c

Edge b
12

V

V

V V

V

V

V V V V

(c)

1

2

5 6

7 8 9

11

Ed
ge

 a

Edge c

Edge b
12 13 15

V

V

V V

V V V

V V V V

(d)

Figure 4.2: Adaptive tessellation (a) Fully adaptive pattern (b) Semi-adaptive pat-
tern (c) Fully adaptive tessellation and (d) Semi-adaptive tessellation.

adaptive proposal. Similarly to the fully adaptive algorithm, once the subdivision

tests are performed, the resulting inserted vertices are organized into a set of lists.

The efficient management of this information permits the reconstruction of the final

mesh in a direct way. While in the fully adaptive proposal the representation is

based on rows of vertices, in the semi adaptive proposal the representation can be

directly performed as Triangles Strips (TS). A triangle strip is defined by a sorted

4.2 Semi adaptive Tessellation Strategy 91

list of vertices:

TS = {v1, v2, · · · , vNt}

where each triangle is defined by three sequential vertices, with an overlap of two

vertices between two consecutive triangles. As an example the i − th triangle is

defined by:

4vivi+1vi+2

while the (i+ 1)− th triangle is defined by:

4vi+1vi+2vi+3

The basic idea of the representation and reconstruction algorithm is the organization

of the resulting the triangles in rows and their representation as triangles strips. The

regular triangle strip structure is broken only in those positions where no vertices

are inserted. This happens either in a position in the edge of the coarse triangle or

in a full row of vertices if both vertices in the extreme positions are missing. For

the sake of clarity, we shall start by analyzing the case when only one of the two

extreme vertices of the row are missing.

The methodology we propose is based on the utilization of the TS structure that

would be generated with a non-adaptive tessellation as basis for the representation.

This TS list is updated with the utilization of a Virtual Vertex (V V) for the sub-

stitution of missing vertices. More specifically, each non-inserted vertex on the edge

of the triangle is substituted, in the TS representation by the closest vertex located

in the same edge. A simple set of rules for updating the TS structure when missing

vertices appear are applied:

1. Missing vertex. If there is a non-inserted vertex in a triangle edge, the V V is

the vertex located on the same edge and in the following row of vertices.

2. Group of missing vertices. If there is a group of adjacent non-inserted vertices

on a triangle edge, each non-inserted vertex is replaced in the TS represen-

tation by the nearest vertex on the edge. In case of equidistant vertices, the

vertex in the lower row is selected.

3. Replicated vertices in the TS list. Once the missing vertices are replaced by

92 Chapter 4. Semi Adaptive Tessellation Proposal

virtual vertices, replicated vertices can appear in the TS list. These replicated

vertices have to be eliminated; i.e., vi vi is substituted by vi.

4. Vertices from alternating rows. In the non-adaptive partitioning, consecutive

vertices in the TS list belong to two rows of vertices. For the semi adaptive

proposal, when this regular structure is broken a modification has to be per-

formed. Let us analyze a TS list with three consecutive vertices, vi vj vk,

where vj and vk come from the same row of vertices. In this case the TS list

is updated by including a replicated version of vi in between. As result the

list of vertices becomes vi vj vi vk.

An example of application is depicted in Figure 4.3(a). A non-adaptive tessella-

tion would generate three rows of triangles, each one to be represented with at TS

list. The TS lists for the non-adaptive tessellation are:

TS1 = {v2 v1 v3}
TS2 = {v4 v2 v5 v3 v6}
TS3 = {v7 v4 v8 v5 v9 v6 v10}

(4.1)

As result of the semi adaptive tessellation, the vertex v6 is not inserted. The TS

lists are updated by the following steps:

The missing vertex v6 is replaced by a virtual vertex V V = v10. This is the

closest vertex located in the same triangle edge and in the following row of

vertices. As a result the TS2 and TS3 lists are updated.

The utilization of v10 as virtual vertex in the TS3 list generates a replicated

vertex. According to rule 3, the list TS3 = {v7 v4 v8 v5 v9 v10 v10} becomes

TS3 = {v7 v4 v8 v5 v9 v10}.

With respect to the alternating rows property and according to rule 4, the list

TS3 = {v7 v4 v8 v5 v9 v10} becomes TS3 = {v7 v4 v8 v5 v9 v5 v10}.

Finally the triangle strips for this example are:

TS1 = {v2 v1 v3}
TS2 = {v4 v2 v5 v3 v10}
TS3 = {v7 v4 v8 v5 v9 v5 v10}

4.2 Semi adaptive Tessellation Strategy 93

v4

v2

v1

v3

v5 v6

v10v9v8v7
(a)

v4

v2

v1

v3

v5 v6

v
10v9v8v7

(b)

v4

v2

v1

v3

v5 v6

v10v9v8v7
(c)

Figure 4.3: Examples of semi adaptive tessellations (a) No empty rows (b) Empty
row, upper row with no missing vertex (c) Empty row, upper row with a missing
vertex.

and the following triangles are generated:

TS1 →4v2v1v3
TS2 →4v4v2v54 v2v5v34 v5v3v10

TS3 →4v7v4v84 v4v8v54 v8v5v94 v9v5v10

The methodology has to be extended to include those situations in which both

vertices in the extreme positions of a row are missing. As the insertion decisions

are applied to the interior vertices in the same row, this implies that a complete

row of vertices is missing. In this case fewer triangle strips are generated and a

number of modifications have to be made to the method explained above. The first

step is to update the TS lists of the non-adaptive case by identifying the two TS

lists affected and eliminating the first one. After this the second list is updated by

substituting the missing vertices by other vertices in the closest non-empty row of

vertices located above. More specifically the substitution has to be performed by

adhering to the following rules:

1. Upper row with no missing vertices. If the row above is complete, the vertices

are directly employed to substitute the eliminated vertices in the TS list. As

the number of vacancies is larger than the number of vertices, the vertices

have to be replicated. To obtain a satisfactory tessellation and to prevent the

94 Chapter 4. Semi Adaptive Tessellation Proposal

generation of large triangles, the pattern of substitution/replication has to be

uniform.

2. Upper row with a missing vertex. If the row above has a missing vertex, this

location will be occupied by a V V . The row of vertices is also employed to

update the TS list under construction, but a number of considerations have

to be taken into account for the V V . The vacancies are again covered by the

vertices in the row, but the V V vertex can be employed only once; i.e., the

V V cannot be replicated.

Examples of application are depicted in Figures 4.3(b) and 4.3(c). In these ex-

amples the row of vertices {v4, v5, v6} has not been inserted. The TS lists generated

by the uniform tessellation (see Equation 4.1) have to be updated. In this case lists

TS2 and TS3 are affected by the missing row and the list TS2 is eliminated. List

TS3 = {v7 v4 v8 v5 v9 v6 v10} has to be updated by identifying the missing vertices

(v4, v5 and v6) and replacing them with the list of vertices above. Specifically, and

for the example of Figure 4.3(b), the vertices to be employed are v2 and v3. The

number of vacancies is larger, so the first two vacancies are covered with vertex v2

and the last one with vertex v3. The list becomes TS3 = {v7 v2 v8 v2 v9 v3 v10}.

Figure 4.3(c) shows an example where the row of vertices to be employed has

a missing vertex (v2). Following the methodology explained abouve, this vertex is

substituted by a virtual vertex, in this case by v1. This virtual vertex is employed

only once while vertex v3 is employed for the other two vacancies. So the updated

list is TS3 = {v7 v1 v8 v3 v9 v3 v10}.

4.3. Experimental Results

In this section, the results of the evaluation of the different GPU tessellation

methods described in the paper (non-adaptive, fully adaptive and semi adaptive

subdivision) are presented and analyzed. The three proposals were coded in the Ge-

ometry Shader as this makes it possible to implement a free tessellation algorithm,

even though it has the important constraint of limiting the maximum number of

new primitives to be generated per input primitive to 1024 32-bit elements. Ad-

ditionally, we compare them with the tessellation implemented by the DirectX11

4.3 Experimental Results 95

(a) (b)

(c)

Figure 4.4: Models employed: (a) Teapot (b) Teacup and (c) Elephant.

tessellation unit. Specifically, we have used the code SimpleBezier11 included in the

DirectX11 SDK with two different tessellations, a simple uniform approach (Tess)

and an adaptive solution (AdptTess) based on a distance test (as presented in Section

3.2.2) computed in the Hull Shader.

All the algorithms were implemented with Microsoft’s HLSL DirectX11, and the

tests were run on an Intel Core 2 2.4 GHz with 2 GB of RAM and three different

GPUs: AMD/ATI Radeon 5870 (ATI 5870), GPU with 1600 processing elements

distributed in 20 SIMD processors, each one having 16 cores with 5-way VLIW

support; AMD/ATI Radeon 6970 (ATI 6970), with 1536 processing elements dis-

tributed in 24 SIMD processors, each one with 16 cores with 4-way VLIW support;

and Nvidia Geforce GTX 580 (Nvidia 580), GPU based on the Fermi architecture

that has 4 clusters, with 4 stream multiprocessor (SM) per cluster and 32 stream

96 Chapter 4. Semi Adaptive Tessellation Proposal

processors per SM for a total of 4× 4× 32 = 512 physical processing elements.

Three different models were employed to evaluate the tessellation (see Fig-

ure 4.4): Teapot, Teacup and Elephant. These models were used to build three

test scenes, Teapots, Teacups and Elephants, that consist of replicated versions of

the models: 30, 100 and 10 models, respectively. To check the performance of the

implemented methods a walk-through animation with the same movement of the

camera for the three scenes was performed. The final images have a screen resolu-

tion of 1280× 1024 pixels.

The next section focuses on the analysis of the experimental results in three

different key points: the analysis of the quality in the final image, the performance

in terms of frames per second for a medium degree of tessellation and, finally, the

performance for a high degree of tessellation. As the tessellation scheme for high

and medium degree has a different behavior, the analysis in terms of frames per

seconds is split it up into two different subsections.

4.3.1. Performance in terms of quality

As a starting point of the analysis of the results from the tests, Table 4.1 presents

the number of generated primitives for each method. In this table the maximum

resolution employed is Lmax = 3 (16 × 18 triangles for each input surface). The

second row indicates the number of input Bézier surfaces per scene. The third row

shows the number of triangles generated when a non-adaptive tessellation is applied.

The rest of the rows show the average number of triangles generated by the semi

adaptive and fully adaptive proposals. In both cases the Distance test was applied

with three different thresholds on the basis of a quality criteria: high, medium or

low degree of tessellation. The percentage of triangles obtained for each case with

regard to the non-adaptive strategy is shown in parenthesis.

In our experiments, high quality meshes with no cracks or holes are obtained

for all the methods. Obviously, the application of the adaptive proposals gives rise

to a reduction in the number of primitives generated, where the decrement can

be controlled by the adequate selection of the quality threshold applied. As an

example of the tessellation obtained, Figure 4.5 shows the result of applying the

4.3 Experimental Results 97

Table 4.1: Number of triangles generated (in thousands, Lmax = 3) and number of
input surfaces.

Teapots Teacups Elephants

Input Data 960 2600 8110

Non Adaptive 270.00 731.32 2280.94

S
e
m

i
a
d

a
p

-
ti

v
e

High 263.58 (97.62%) 684.67 (93.62%) 1941.03 (85.10%)
Medium 149.30 (55.30%) 379.98 (51.96%) 1155.70 (50.68%)
Low 67.68 (25.07%) 197.85 (27.05%) 831.79 (36.46%)

F
u

ll
y

a
d

a
p

-
ti

v
e

High 255.14 (94.50%) 680.21 (93.01%) 2112.71 (92.62%)
Medium 142.73 (52.86%) 385.13 (52.66%) 1158.83 (50.80%)
Low 59.73 (22.13%) 178.50 (24.41%) 519.51 (22.73%)

three different tessellation techniques to the teacup model with Lmax = 3 and for a

medium degree of subdivision. As can be observed, significantly fewer primitives are

generated in the flat areas for the adaptive approximations. In these flat areas the

coarse mesh is a good enough approximation to the Bézier surface, so introducing

additional primitives do not result in a higher quality of the image for the quality

threshold selected.

To further evaluate and compare the results in terms of quality, the numerical

error of the resulting meshes is also analyzed. Thus, in order to estimate the dis-

tortion due to the adaptive tessellation we have computed the mesh error as the

distance between the non-adaptive tessellation of the mesh and the resulting mesh

obtained through the fully adaptive and semi adaptive techniques. Since a static

object-space geometric error metric would not properly consider the point of view

and perspective of the rendering, an image-space error metric has been used to de-

termine the influence in the render quality of the non-inclusion of a candidate vertex

for a given viewpoint.

More specifically, the error measure used in this work is defined by:

ε =
|Vs − VB|
dv − rv

(4.2)

where VB and VS are the coordinates of the candidate vertex on the Bézier sur-

face and the corresponding sampling point on the control mesh, respectively (see

98 Chapter 4. Semi Adaptive Tessellation Proposal

(a) (b)

(c)

Figure 4.5: Examples of tessellation: (a) Non adaptive (b) Semi adaptive (c) Fully
adaptive.

Equation 3.2.2); and dv is the distance from the observer location to VS. As can be

noted, a bounding sphere with a conservative radius rv is added to the expression

to consider the influence of the relative triangle size, since the non-inclusion of a

vertex with distance |Vs−VB| in a large triangle in a far away region should produce

a higher error than a small triangle to the same distance. A similar metric is used

in the context of multi-resolution models for interactive terrain rendering [75].

Figure 4.6 compares the quality of the semi adaptive and fully adaptive proposals.

The graph of the figure shows the mean absolute error for the Teacups test scene

with a maximum resolution level Lmax = 3 for the same three quality levels of

Table 4.1 and using low dv values (approximately 70% of the screen is covered by

the model).

As can be observed, and could have been expected, the best results were ob-

tained with the semi adaptive proposal. The resulting tessellation patterns for the

semi adaptive proposal are closer to the non-adaptive patterns. Consequently, an

immediate benefit of reducing the flexibility in this proposal is a higher quality in the

resulting meshes. In any case, both adaptive methods produce high-quality results

comparable with the non-adaptive approximation, as Figure 4.6 proves.

4.3 Experimental Results 99

High Medium Low
0.0000

0.0001

0.0002

0.0003

E
rr

or
Semi-adaptive

Fully-adaptive

Figure 4.6: Mean absolute error obtained for the Teacups scene with Lmax = 3 for
the fully adaptive and semi adaptive proposals.

4.3.2. Performance in terms of fps for a medium degree tes-

sellation

Performance in term of fps is another important aspect to be analyzed. Figure 4.7

shows the frames per second (fps) with three different GPUs for a medium-quality

degree tessellation (over 50% of triangles of a non-adaptive tessellation, as shown

in Table 4.1). The columns labeled as Tess and AdptTess display the performance

obtained by the two SimpleBezier11 methods implemented using the tessellation

unit. Both alternative methods are based on the DirectX11 tessellation unit (see

Section 1.1). Tess follows a non-adaptive tessellation in the Tessellator where all

the tessellation factors have the same value. However, AdptTess, is also tessellated

in the Tessellation although a certain degree of adaptively is introduced. In both

alternatives, the tessellation factors have been selected to generate a number of tri-

angles similar to those generated by the Non-adaptive and Semi-adaptive proposals,

respectively, with a difference of less than 1 K for the non-adaptive case and less

than 2 K for the adaptive one.

As can be observed, the performance values obtained are quite sensitive to the

GPU architecture. Although a comprehensive analysis of the tessellation units in the

different architectures is beyond the scope of this work, we will just mention some

relevant issues that have an influence on the description of our proposals. The best

performance results are achieved by the Tess proposal on the Nvidia card. On the

whole, since the Nvidia platform has a larger number of tessellation units than the

100 Chapter 4. Semi Adaptive Tessellation Proposal

 Teapots

0

200

400

600

 F
P

S

Tess AdptTess Non-adaptive Semi-adaptive Fully-adaptive

 Teapots

0

200

400

600

 F
P

S

Nvidia

ATI 5870

ATI 6970

(a)

 Teacups

0

100

200

300

400

500

 F
P

S

Tess AdptTess Non-adaptive Semi-adaptive Fully-adaptive

 Teacups

0

100

200

300

400

500

 F
P

S

Nvidia

ATI 5870

ATI 6970

(b)

 Elephants

0

50

100

 F
P

S

Tess AdptTess Non-adaptive Semi-adaptive Fully-adaptive

 Elephants

0

50

100

 F
P

S

Nvidia

ATI 5870

ATI 6970

(c)

Figure 4.7: Processing Speed in Frames per Second (Lmax = 3) (a) Teapots (b)
Teacups (c) Elephants.

4.3 Experimental Results 101

ATI hardware, a higher patch tessellation rate is achieved, so the global performance

of the Tess and AdptTess implementations on the Nvidia GPU is greater than on

the two ATI GPUs. The reason why AdptTess performs worse than Tess in Nvidia

is the competition in the processing units of the GPUs between the Hull Shader,

which computes the tessellation factors for each edge according to the Distance Test,

and the Domain Shader, which evaluates the position of each candidate point to be

inserted. Nevertheless, in the case of ATI GPUs there is a completely different

tendency, as the higher number of processing elements in this architecture means a

greater performance for the AdptTess solution.

Regarding the three proposals analyzed in this chapter (non-adaptive, fully adap-

tive and semi adaptive) Figure 4.7 shows that good performance results in terms of

frame rate (fps) were obtained, and a real-time adaptive tessellation was achieved

even for a high number of triangles. Thus, for instance, the high quality result of

the Elephants scene is achieved with a frame rate of 71.16 fps for the non-adaptive

proposal on the ATI 6970, and 52.75 fps in the AdptTess on the Nvidia.

These three proposals are a representative set of the different approaches to the

tessellation of parametric surfaces, since they provide different degrees of adaptabil-

ity and flexibility which results in a quality/performance trade-off. An analysis of

the experimental results enables us to study the reasons behind the difference in

performance for each alternative, and to study their feasibility on current hardware.

Thus, regarding the impact of one of the main performance penalty in current GPUs,

branch divergence, the non-adaptive proposal is branch-free but needs two steps

through the stream-output of the DirectX11 pipeline, which means a synchroniza-

tion barrier. Meanwhile, the semi adaptive approach has a slight branch divergence,

whereas this penalty factor has a great impact in the fully adaptive method. Look-

ing at the results on the ATI GPUs, branch divergence has a significant impact on

the performance, so the fully adaptive and the non-adaptive implementations (the

latter is also optimized for a VLIW architecture) gets the worst and the best per-

formance, respectively. Let us emphasize that branch divergence has less impact on

ATI 6970 where the performance of the semi adaptive and fully adaptive proposals

are quite close. In short, out of the three methods mentioned here, the non-adaptive

proposal obtains the best performance on ATI GPUs, mainly due to a much more

optimized Geometry Shader and stream-output facility in this platform, together

102 Chapter 4. Semi Adaptive Tessellation Proposal

with the exploitation of the VLIW architecture of these GPUs.

The analysis of the performance on the Nvidia card causes us to come to a

different conclusion with respect to the three proposals analyzed in this chapter.

In this platform, the semi adaptive proposal achieves the best results, given that

the performance dramatically decreases in this architecture when the stream-output

facility is used [21]. Since the semi adaptive method passes only once through

the GPU pipeline, i.e. the stream-output is not used, whereas three passes are

needed in the non-adaptive proposal, this results in a substantial performance gain.

Furthermore, the non-adaptive implementation based on vector optimization is not

suited to the scalar architecture of the Nvidia GPU.

The three proposals analyzed in this work demonstrate better computational ex-

ploitation than the tessellator-based alternatives, since one computing core (shader)

is used for each input primitive, instead of the one core per output primitive ratio

of the DirectX11 tessellator-based proposals. As a result, an important feature of

our approach is the exploitation of the spatial coherence of data, as shared com-

mon computations within the same patch are computed only once and reused when

needed. Furthermore, from among the three methods the branch-free algorithm of

the non-adaptive solution provides superior performance than the methods based on

the DirectX11 tessellation unit, Tess and AdptTess. However, when a really large

number of triangles is generated (see Elephants scene) the amount of data stored on

the stream-output does not compensate for those advantages, due to the increase

in read/write times, as depicted in Figure 4.8. As we go on to analyze in the fol-

lowing paragraph, if the second kernel of the non-adaptive method (with the GS

implementation described in Chapter 2) generates a high number of primitives the

performance of the branch-free iterative process has an important drop.

4.3.3. Performance in terms of fps with a high degree of

tessellation

Figure 4.8 analyzes the impact on performance of the level of tessellation by

showing the frame rate for four different options: Tess47 and Tess64 are the results

obtained by the Tess implementation based on the DirectX11 tessellation unit, where

the tessellation factor is 47 or 64 triangles for each input primitive, respectively (the

4.3 Experimental Results 103

Teapots

0

100

200

300

400

F
P
S

Teapots

0

100

200

300

400

F
P
S

Nvidia

ATI 5870

ATI 6970

6447 47

(a)

Teacups

0

50

100

150

F
P
S

Teacups

0

50

100

150

F
P
S

Nvidia

ATI 5870

ATI 6970

47 4764

(b)

Elephants

0

20

40

60

F
P
S

Elephants

0

20

40

60

F
P
S

Nvidia

ATI 5870

ATI 6970

47 4764

(c)

Figure 4.8: Frame rate using higher tessellation factors (a) Teapots (b) Teacups (c)
Elephants.

104 Chapter 4. Semi Adaptive Tessellation Proposal

latter corresponding to the maximun tessellator factor of the tessellator stage, see

Section 1.1); whereas Non-adpt47 and Non-adptmax result from the non-adaptive

proposal, using in the first case the tessellation level necessary for obtaining with

our proposal a similar number of triangles to those obtained with Tess47 and the

maximun tessellation factor possible that can be implemented in our non-adaptive

proposal (taking advantage of the absence of limit in this software proposal). Ta-

ble 4.2 shows the number of output triangles for each case.

In respect to Tess47 and Non-adpt47, the best performance is obtained by our

non-adaptive proposal on ATI GPUs, since the exploitation of the data locality and

vector computation is emphasized. As an example, the frame rate of Non-adpt47

for Teacups with ATI 6970 is 194.51 fps, whereas Tess47 with Nvidia results in

125.83 fps. Tess64 achieves real time rendering except for scenes with a high number

of input primitives. However, in Non-adptmax real-time rendering is even obtained

(33.96 fps for Teapots) with 16.8 Mtriangles generated.

In summary, considering the good results obtained, the flexibility of the adaptive

proposals, the exploitation of the locality and the prevention of redundancy compu-

tations, our proposals are good candidates to be integrated as a specific tessellation

unit in future graphics cards, as nowadays the existing tessellation units included in

current GPUs do not offer the desirable adaptability.

4.4. Conclusions

This chapter presents a proposal for the tessellation of Bézier surfaces on the

GPU. It has been designed as a halfway solution between a non-adaptive tessellation

scheme, GST detailed in Chapter 2, and a fully adaptive proposal, DABT presented

Table 4.2: Number of output triangles for the three test models (in thousands).

Teapots Teacups Elephants

Tess47 1088.13 2947.00 9192.39
Tess64 2009.69 5442.90 16977.67

Non-adpt47 1080.00 2925.00 9123.75
Non-adptmax 17236.10 46800.00 145980.00

4.4 Conclusions 105

in Chapter 3. This semi adaptive proposal is based on the exploitation of the spatial

coherence and it assigns a unique level of resolution per patch.

This tessellation scheme reduces the divergence in order to achieve an optimum

utilization of the computational resources of the GPU; however, a remarkable degree

of adaptivity has been introduced. Hence, this proposal processes considerably

fewer triangles than a non-adaptive proposal, although the divergence caused by

this adaptivity is reduced.

The purpose of the implementations was testing not only considering the ex-

ploitation of the spatial coherence proposal but also the behavior of DirectX11

tessellation unit. The behavior is quite sensitive to the GPU architecture. The

tessellation unit obtains the best performance in the Nvidia architecture owing to

the high number of tessellation units. On the other hand, the adaptive proposals

obtain better performance on the ATI architecture, owing to the high number of

processing elements and its better behavior with respect to the divergence, above

all in the most recent ATI GPUS.

In addition to the quality and performance favorable results, we hope that the

good results obtained, the flexibility of the adaptive proposals and the simplicity of

the computations involved will encourage the inclusion of more flexible tessellation

units in future graphics cards.

Chapter 5

Rendering of Bézier surfaces on

Handheld Devices

This chapter describes the vertex shader Tessellation adapted to handheld de-

vices (VSTHD) which has been designed according to the constraints of GPUs im-

plemented on handheld devices. More specifically, this proposal is based on the

virtual parametric grids and memory exploitation described in VST alternative (see

Section 2.2). As handheld devices use GPUs with no hardware for generating primi-

tives, no other tessellation proposal detailed in this dissertation can be implemented

in these devices.

Handheld devices, such as smartphones, consoles or tablets, are widely available,

virtually omnipresent devices and this is one of the fastest growing technology mar-

kets. Graphics processing has become a significant factor on handheld devices, as

many contents in different platforms require high-quality visual contents, such as

video player, TV, game console or camera. Hence, they are by far the most widely

available device with rendering capabilities in the world [3, 13]. As consumers’ ex-

pectations have increased, demanding complex rendering capabilities, a new GPU

generation has been specifically designed to fit in the constraints of handheld de-

vices. As handheld devices are small in size and they are battery powered, they

have been designed according to a restricted set of features. Hence, the GPUs in

these devices implement only a subset of the features available in desktop GPUs.

Specifically, these GPUs have been designed to offer high performance graphics while

107

108 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

reducing power consumption. Their GPUs implement a subset of the features avail-

able in desktop GPUs. Hence, a new graphic API called OpenGL ES [52] has been

developed as a stripped-down version of the well-known graphics API as OpenGL.

In previous works, the tessellation of parametric surfaces directly on GPU of

handheld devices were oriented toward GPUs with a lower degree of programma-

bility. For this reason the tessellation was designed not to be programmed but to

be implemented in an additional and specific hardware unit [18, 19, 53]. In [18, 19]

tessellation limitations of the current hardware of GPU implemented in handheld

devices are dealt with and an architecture for tessellating spline surfaces in a mobile

multimedia processor is proposed. These proposals have been specifically designed

for reducing memory access or for saving bandwidth and consequently reducing en-

ergy consumption. In [53] a hardware unit for an efficient tessellation in handheld

devices was also proposed, but this proposal describes a tessellation procedure for

subdivision surfaces.

In this work we present a novel approach to the tessellation of Bézier surfaces on

the GPU of handheld devices. In contrast to previous proposals a generalization of

our VST solution aimed at the new programmability capabilities available in current

GPUs in handheld devices is proposed. Our proposal tessellates parametric surfaces

into high-quality triangle meshes that accurately represent complex surfaces and

contain no artifacts such as T-junctions or cracks. It is based on the utilization of

a parametric maps of virtual vertices [11, 21, 47], which makes it possible to work

on GPUs with no primitive generator. In addition, this design allows the efficient

exploitation of the information stored in the GPU and the minimization of the CPU-

GPU communications. Three main parameters are exposed to allow a fine tuning of

the method to the hardware resources available: maximum resolution level, number

of surfaces to be rendered per draw call and number of draw calls per frame.

In order to test our approach, we have made an OpenGL ES implementation of

the method for Android systems [45] and we have designed a full set of experiments

to analyze its performance. The tests were focused on locating the main performance

bottlenecks and identifying possible enhancements and tuning opportunities. Thus,

the results obtained could be a useful tool to introduce architecture improvements.

The rest of the chapter is organized as follows: Section 5.1 details hardware

5.1 GPU Architectures on Mobile Devices 109

features and introduces OpenGL ES API; in Section 5.2 our approach to tessellate

Bézier surfaces on handheld devices is presented; Section 5.3 the implementation on

Android smartphones with OpenGL ES is detailed and in Section 5.4 the experi-

mental results obtained are described and analyzed; finally, in Section 5.5 the main

conclusions are highlighted.

5.1. GPU Architectures on Mobile Devices

There is a gread deal of variation in hardware features on handheld devices, such

as memory bus bandwidths, cache memories, etc.; thus a wide range of different

performance profiles are available. Furthermore, each handheld device architecture

has a different GPU hardware, which has a significant impact on the performance.

Two constraints are considered in the design of handheld devices, their size

and the fact that they are battery powered. The size of these devices is quite

small in order to be portable and they are battery-driven platform [4]. Hence, the

components that can be fitted in these devices are limited and consequently handheld

devices provides a restricted set of features, such as a limited memory, a limited

memory bandwidth, a restricted CPU instruction set or a low clock frequency.

A handheld processor is usually implemented as a system on chip (SoC). As

components, such as CPU or GPU, are integrated into a single chip, they compete

for the shared bus, which becomes the main bottleneck in the chip. Furthermore,

the computational power of GPUs is usually under-utilized, owing to the fact that

memory accesses are very expensive in terms of computation thus an off-chip memory

access takes tens of cycles while an on-chip memory access takes only one cycle [53].

However, off-chip memory accesses have a higher impact in terms of power than in

terms of computation [43] as each component drives high capacitance for the buses,

which has a considerable cost in terms of energy. Parametric surfaces are a suitable

proposal in this architecture due to the fact that, as they provide a more compact

representation, the CPU-GPU communication is diminished.

As the power for handheld devices is supplied by batteries, it is important to

reduce their energy consumption to provide a long-use time of battery, thus the

clock frequency is kept as low as possible as higher clock frequency means higher

110 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

ARM 7

HD VIDEO
DECODER

HD VIDEO
ENCODER

AUDIO ISP MEM I/O

HDMI

SECURITY
ENGINE

DISPLAY

CORE 1 CORE 2

CORE 3 CORE 4

COMPANION
CORE

ULP GEFORCE
(12 CORES)

Figure 5.1: Tegra 3 structure

power consumption [8].

Nowadays, the screen and the communication subsystems are components with

the highest consumption and their consumption is significantly increased with each

new generation [14]. Meanwhile, the trend is to reduce as far as possible the con-

sumption of all the other components, such as CPU or GPU. Nevertheless, as screens

are continuously increasing in size and resolution, and a better screen requires a bet-

ter graphics render, GPU performance is quite relevant for these devices.

More specifically, there are principally three different GPU architectures: im-

mediate mode rendering (IMR), tile base rendering (TB) and an trade-off solution

called tile based immediate mode rendering (TBIMR).

Traditional IMR is a brute force approach designed for the desktop environment,

where bandwidth is plentiful and power consumption is largely irrelevant. IMR is

the traditional proposal for a graphics pipeline, where each vertex and each pixel are

independently processed. IMR architecture is similar to DirectX 9 pipeline detailed

in Section 1.1 (see Figure 1.1), where a per vertex computation takes place and, after

a rasterization step, generated pixels are also processed. Despite several resulting

pixels being occluded pixels which will be discarded, every IMR primitive is sent

5.1 GPU Architectures on Mobile Devices 111

Unified
Memory

Vertex
buffer

Objects

Frame
buffer

Texture
Data

VBO
Cache

Pixel
Cache

Texture
Cache

OpenGL
API calls

Pixel
Shader

Vertex
Shader

Texture
Primitive

Processing

Early Depth
Stencil

Primitive
Assembly Rasterizer

Figure 5.2: ULP Geforce Architecture in Tegra 3

down through the graphics pipeline. As a significant amount of processing steps

and memory transactions are involved in the computation of these discarded pixels,

a considerable amount of power is consumed, which is not desirable for a battery

supplied device as the battery power is drained.

Tegra 3 architecture is a fixed function pipelined architecture that includes fully

programmable fragment and vertex shaders [73]. Nvidia Tegra 3 processor is a multi-

core system on a chip specifically designed for handheld devices. This processor

implements a Variable Symmetric Multiprocessing with a Variable SMP (4-plus-1)

(see Figure 5.1) focused on extending battery life [74]. That is, a fifth CPU core,

called the Companion core or the battery saver core, which operates at low power

112 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

frequency for active standby mode or music playback, while the four main “quad”

cores are built to reach higher frequencies. All five cores are individually enabled

and disable based on the workload. On the other hand, there are twelve cores, eight

pixel shaders and four vertex shaders, in the ultra low power (ULP) Geforce GPU

implemented in the Tegra 3.

Despite the fact that the Nvidia Tegra has a traditional IMR pipeline (see Fig-

ure 5.2), it has been designed to deliver the performance of a pipelined GPU archi-

tecture with low power consumption. Tegra implements an IMR architecture where

the vertices are received as input primitives which are then processed to create

polygons; once they have been rasterized, pixels are colored or textured in the pixel

shader. As shown in Figure 5.2 the ULP Geforce architecture is a fixed function

pipelined architecture with a fully programmable vertex and pixel shader (see green

squares in Figure). Tegra 3 provides four vertex shaders and eight pixels shaders.

This architecture includes a pixel cache, texture cache and vertex buffer objects

cache to reduce memory transactions. Furthermore, this architecture includes sev-

eral features for optimizing power consumption, such as an early Z-buffer placed

prior to the pixel shader, and which discards occluded primitives in the early stages

of the pipeline, or an optimized memory controller.

With respect to Tile-Based (TB) rendering architecture [7, 13, 44, 96] (see TB

pipeline in Figure 5.3) is based on the rendering of tiles, small rectangular blocks of

pixels. A tile based rendering architecture is a slightly different approach to IMR

architecture. As shown in Figure 5.3, the scene is divided into tiles while geome-

tries are sorted into tile lists and each tile is stored in the graphics chip; thus, the

tile’s frame buffer accesses are extremely inexpensive. As soon as the rendering of

a particular tile is finished, it is written in an off chip frame buffer with an efficient

block transfer. Therefore, tile-based architecture fits perfectly with the character-

istics of handheld devices owing to the fact that per pixel bandwidth inefficiencies

are reduced by breaking each frame into tiles, rendering them independently and

finally assembling them together before display. Furthermore, this tiling approach

provides a multitude of optimization and culling possibilities. Nevertheless, as the

scene is projected to the screen space and its projection is divided into tiles, triangle

sorting is an expensive process. Hence, tile-based rendering offers better bandwidth

utilization than IMR in low complexity models, but as scene complexity increases,

5.1 GPU Architectures on Mobile Devices 113

MemoryGPU

Geometry

Tiling

Rasterizer
pixel shader

On-chip
buffers

Scene data

Transformed
scene data

Frame buffer

Primitives

Tile lists

Primitives
per tile

Texture read

Write

Figure 5.3: Tile base deferred pipeline

the bandwidth saved per pixel is reduced.

As the optimal approach also depends on the scene being rendered, the modern

handheld device GPU implements a hybrid between tile-based and immediate mode

renderings (TBIMR), exploiting the best characteristics of both approaches. In a

TBIMR approach, polygons are transformed before being assigned to tiles. The

rendering of the tiles itself is done in a manner more reminiscent of IMR as each tile

computes values for all pixels in that tile before starting work on the following one.

As this tile-based approach uses a fast, on-chip tile buffer, the GPU only writes the

tile buffer contents to the frame buffer in main memory at the end of each tile, in

contrast to traditional immediate-mode renderings, which require more frame buffer

accesses.

Mali 400 (ARM) and Adreno 200 (Qualcomm) implement a TBIMR, which re-

duces memory bandwidth overhead and lower power consumption. More specifically,

Mali 400 architecture tiles the scene but no full order independent hidden surface

removal is performed. The Mali 400 architecture is depicted in Figure 5.4 and it is

scalable from 1 to 4 cores. As shown in Figure, Mali 400 has a non-unified architec-

ture with vertex and fragment processors and an optimized memory interface for an

114 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

Vertex
Processor

Fragment
Processor

Fragment
Processor

Fragment
Processor

Fragment
Processor

Memory Management Unit

Level 2 Cache

Network Interconnect

Figure 5.4: Mali 400 Architecture

efficient connection to other bus architectures.

As has been detailed, Mali GPUs and Adreno GPUs use tile-based immediate-

mode rendering (TBIMR); however, the Mali GPU is closer to a tile based approach

as the frame buffer is divided into tiles of size 16 × 16 pixels, a small tile size, while

Adreno GPU is closer to an immediate mode rendering approach as tiles are split

into relative large tile as 256K. As shown in Figure 5.5, different size of tiles can be

defined according to hardware features. In Figure 5.5(a) the scene is split it into

small tiles, such as in a Mali architecture, while another approaches, such as Adreno

architecture, splits the screen into large tiles (see Figure 5.5(b)).

5.1.1. OpenGL ES

In the desktop world there are two standard 3D APIs: DirectX [66] and OpenGL [51,

87]. DirectX is the de facto standard 3D API for any system running the Microsoft

5.1 GPU Architectures on Mobile Devices 115

(a) (b)

Figure 5.5: Screen split into tiles: (a) small tiles (b) large tiles

Windows operating system, and is used by the majority of 3D games on that plat-

form. OpenGL (Open Graphics Library) is another cross-platform standard 3D

API.

Nowadays, high-end mobile phones use a simple graphics API called OpenGL

for Embedded Systems (OpenGL ES) [52, 81] as they cannot support any desktop

graphic APIs, such as DirectX or OpenGL. As small handheld devices became in-

creasingly common, OpenGL ES was developed, which was a stripped-down version

of the desktop version. It removed a lot of redundant API calls and simplified other

elements to make it run efficiently on the low-power GPUs in the market. As a

result, it has been widely adopted across many platforms such as iOS (Operating

System for Apple handheld devices) or Android [69, 94]. The device constraints

that OpenGL ES addresses are highly limited processing capabilities and memory

availability, low memory bandwidth, sensitivity to power consumption and lack of

floating-point hardware.

There are three main flavors of OpenGL ES, 1.x, 2.x and 3.x, the latter of which

was published in August 2012 and as of yet it is not supported for any device.

However, many of general market devices support OpenGL ES 1.x and 2.x. Version

1.x implements a fixed function pipeline and it is derived from the original OpenGL

specifications. Version 2.x implements a programmable graphics pipeline instead.

Also, OpenGL 2.0 specification was used as the baseline for determining the feature

116 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

Memory

Vertex
Shader

Rasterizer

Primitive
Assembly

Fragment
Shader

Per-fragment
Operation

v1

v2

v0

v1

v2

v3

Figure 5.6: OpenGL ES 2.0 Graphic Pipeline

set in OpenGL ES 2.0.

On a classical approach, the model is evaluated and tessellated in the CPU and

the generated vertices of these triangle meshes are sent to the GPU. These vertices

are stored on attributes variables, which are inputs to the vertex shader, as shown

in Figure 5.6. Every vertex shader receives a new vertex as input and this vertex

can be modified to be stored in varying variables, which are outputs of the vertex

shader.

After the vertex shader, the next stage in the pipeline is a fixed primitive as-

sembly stage. In this stage, those vertices are assembled into individual geometric

primitives that can be drawn, such as triangles, lines or point-sprites (see Figure

5.6). Clipping, a procedure to identify and remove those vertices outside the view

cone, and backface culling, a process to remove those vertices which are no visible

from the camera point of view, can also be performed in this stage in order to remove

5.1 GPU Architectures on Mobile Devices 117

Attribute 4
Attribute 5
Attribute 6
Attribute 7

Uniform
Texture

Varying 6
Varying 7

Vertex shader

gl_Position
gl_PointSize

Attribute 3
Attribute 2
Attribute 1
Attribute 0 Varying 0

Varying 1
Varying 2
Varying 3
Varying 4
Varying 5

Figure 5.7: OpenGL ES 2.0 vertex shader

those invisible primitives. After clipping and culling, the primitive is ready to be

passed to the next stage of the pipeline, which is the rasterization stage.

Rasterization is the process that converts primitives into a set of two-dimensional

fragments, which are processed by the fragment shader. All the triangles built in

the primitive assembly stage are converted into a group of fragments in this stage

(see Figure 5.6). These two-dimensional fragments are pixels that will be drawn on

the screen.

The vertex shader is the programmable stage in the rendering pipeline that

handles the processing of individual vertices. It receives a single vertex composed

of a series of vertex attributes. There must be a 1:1 mapping from input vertices to

output vertices. Figure 5.7 shows a vertex shader and its inputs on the left side and

outputs on the right side. Vertex shader inputs consist of:

Attributes. Data supplied for each vertex using vertex arrays.

Uniforms. Constant data used by the vertex shader.

Texture. Data storage larger than uniform storage and used by the vertex

shader. Samplers in vertex shaders are optional.

118 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

Fragment shader

Uniforms Textures

gl_FragColor

gl_FrontFacing

Varying 0
Varying 1
Varying 2
Varying 3
Varying 4
Varying 5
Varying 6
Varying 7

gl_FragCoord

gl_PointCoord

Uniform
Texture

Varying 6
Varying 7

Varying 0
Varying 1
Varying 2
Varying 3
Varying 4
Varying 5

Fragment shader

Figure 5.8: OpenGL ES 2.0 fragment shader

Shader program. Source code or executable that describes the operations that

will be performed on the vertex.

Varying variables are the output of the vertex shader. These primitives are

passed through the rasterizer to the fragment shader and they are computed for

each generated fragment.

Furthermore, another variables called built-in special variables are the output of

the vertex shader. These variables contain useful information for the rendering and

they are built by OpenGL instead of the program computed in the vertex shader.

The built-in special variables available to the vertex shader are as follows:

gl Position. Variable used in the rasterizer to perform the clipping process and

to convert the vertex position from model coordinates to screen coordinates.

gl PointSize. Variable used when point sprites are rendered and which de-

scribes the size of the point sprite in pixels.

Fragment shader implements a user-supplied program that, when executed, will

process a fragment from the rasterization process into a set of colors and a single

depth value. The fragment shader (see Figure 5.8) is executed for each generated

fragment by the rasterization stage and takes the following inputs:

5.1 GPU Architectures on Mobile Devices 119

Varying variables. Outputs of the vertex shader that are generated by the

rasterization unit for each fragment.

Uniform. Constant data used by the fragment shader.

Texture. Data storage larger than uniform storage and used by the vertex

shader.

Shader program. Source code or executable that describes the operations that

will be performed on the fragment.

Furthermore, fragment shader receives as input built-in special variables, which

are read-only and contain information from the vertex shader and the rasterizer

stages. As shown in Figure 5.8, these variables are the following:

gl FrontFacing. Boolean variable which indicates whether the fragment is part

of a front facing primitive.

gl FragCoord. Variable that holds the screen coordinates of the current frag-

ment.

gl PointCoord. Variable used in the rendering of point sprites and which holds

the texture coordinate for the point sprite.

The output of the fragment shader is a built-in special variable called gl FragColor

which is used to send the fragment color into the per-fragment operation stage.

The color, screen coordinate location, depth and stencil generated by the raster-

ization stage become inputs to the per-fragment operation stage of the OpenGL ES

2.0 pipeline.

Finally, in the per-fragment operation, either a fragment is rejected or is writ-

ten to the frame buffer. Therefore, the per-fragment operation stage performs the

following functions on each fragment: pixel ownership test, scissor test, stencil and

depth test, blending and dithering. A fragment produced by the rasterization with

screen coordinates (xi, yj) can only modify the pixel at that location in the frame

buffer.

120 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

5.2. Vertex Shader Tessellation on Handheld de-

vices

Since the GPUs in current handheld devices do not generate any new geometry,

the design of our tessellation proposal is based on the main features of the VST

proposal [21], which analyzes the capabilities of classical desktop GPU, so VST for

handheld translates characteristics of VST to the OpenGL ES 2.0 pipeline depicted

in Figure 5.6. Let us remind ourselves of the main features of VST alternative.

VST is a tuning strategy that permits the choice of an suitable relation between the

requirements of storage and the number synchronization CPU-GPU according to

the underlying GPU architecture. This technique uses a parametric map as vertex

shader input, with as many positions in the parametric domain as output vertices are

needed for the desired resolution of the triangle mesh. Then, by accessing the control

points on the Bézier surface to be tessellated, these virtual vertices are evaluated on

the vertex shader, generating the resulting triangle mesh. Hence, the resolution of

the triangle mesh is chosen by the parametric map being used.

This approach subdivides the parametric domain into uniform squares, where

the granularity is selected in function of the desired resolution. More specifically,

it tessellates the surface in the parametric space (u, v) in 2l × 2l squares of size
1
2l
× 1

2l
, for a resolution level l that is previously selected by the application taking

into account different factors, such as computational power, screen space error or

model complexity. Therefore, the Bézier surface is evaluated for each one of the

2l+1 × 2l+1 to obtain the corresponding Euclidean space points (see Equation 1.6).

The resulting vertices are conveniently arranged to output a triangle strip.

Thus, the grid of parametric values P l for a resolution level l would be:

P l =


(u1, v1) (u2, v1) · · · (u2l+1 , v1)

(u1, v2) (u2, v2) · · · (u2l+1 , v2)
...

...
. . .

...

(u1, v2l+1) (u2, v2l+1) · · · (u2l+1 , v2l+1)

 (5.1)

where

ui, vi =
i− 1

2l+1 − 1
, i ∈ {1, · · · , 2l+1}

5.2 Vertex Shader Tessellation on Handheld devices 121

The base case, l = 1, directly projects the control points into the surface to obtain

the vertices of the triangle strip.

Before starting, a set of L grids of parametric maps is precomputed on the CPU,

where L is the highest resolution level needed: {P 1, P 2, · · · , PL}. These grids are

stored in the GPU to be selected and employed as vertex shader input for the

different surfaces of the model. The parametric grids are stored in a convenient

pattern that implicitly contains connectivity information, preventing the need for

any additional indices.

Obviously, the other essential data that need to be accessed by the vertex shader

during surface evaluation are the control points. Since memory is a scarce resource

in this kind of GPU (the next section explains how and where the Bézier surfaces

are stored in the GPU), the surface’s data is transferred to the GPU in chunks of Nd

Bézier surfaces (of the total NS surfaces to be rendered for each frame). Therefore,

each Draw Primitive call processes a chunk of Nd surfaces, resulting in a total of

NDP drawing call for each frame:

NDP =
NS

Nd

with 1 ≤ Nd ≤ NS.

Thus, if Nd surfaces are processed in each draw call, a total of Nsamples = 2l+1×
2l+1×Nd samples could be concurrently evaluated (assuming a fixed resolution l for

all the surfaces in the chunk). This means an input of Nsamples virtual vertices is

needed in the vertex shader, which is provided by Nd copies of the P l parametric map

as vertex shader input (stored in the vertex buffer). Regarding the GPU memory

needed for the storage of the Nd Bézier surfaces, the required amount of memory is

M = M[Bs] ×Nd (5.2)

where M[Bs] is the storage needed for the control points of each surface and Nd � NS

in current handheld devices. Since in most of these devices GPU computation and

CPU-GPU transfers do not overlap, each draw call implies a synchronization point,

as new M data is sent down to the GPU. The worst case would be a sequential

process of as many draw call as surfaces to render (NS), with only one surface

122 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

processed by draw call.

Figure 5.9 depicts an example of our approach for a resolution level of 2 (l =

2) and a couple of Bézier surfaces to be processed concurrently (Nd = 2). The

parametric map for l = 2 is replicated and the resulting samples are the input

primitives for the vertex shader (middle box in the figure). The control points of

the two surfaces are transferred to the GPU (left box, texture memory is used in

this example) and a draw call causes the evaluation of the samples that results in

the meshes of the right box.

In summary, GPU performance depends on the right balance between: the num-

ber of simultaneous samples Nsamples that may be concurrently processed, which is

a function of Nd and L; the amount of memory needed to storage the Nd Bézier sur-

faces of a chunk, M ; and the number of synchronizations between CPU-GPU, NDP .

Therefore, an optimal balance can be expressed by three factors, {L,Nd, NDP}.

The number of samples to be processed in parallel may be restricted by the low

computational power of the shaders in this kind of GPUs, the size of the vertex

buffer or the storage capacity (this is dealt with in the next section). Regarding

the influence of each draw call on the performance, it is important to bear in mind

that they introduce a certain amount of processing overhead. For each draw call,

the graphics driver also collects all current OpenGL ES states, textures and vertex

attribute data. The driver processes all this information to generate appropriate

commands for the graphics hardware to perform the specified draw operation. This

process can take a significant amount of time, and it is even more significant in the

case of embedded systems. Finally, to evaluate the number of surfaces that can

be processed per draw call, our proposal requires that the control points [BS] of Nd

surfaces be stored in the GPU. Nevertheless, the scarce memory of current handheld

devices makes it impossible to store large amount of surfaces.

5.3. Implementation details

In this subsection, we summarize the details of our implementation. The ker-

nel implemented processes bicubic Bézier surfaces and exploits the capabilities of

OpenGL ES 2.0. The structure of our algorithm is shown in Figure 5.10. In the

5.3 Implementation details 123

Sampling Grids

23 x 23

samples

Control points Tessellated and
evaluated meshP2

Texture Memory Input Primitives Rasterizer Input

Figure 5.9: Example of parametric maps for l = 2

preprocessing stage the grids of virtual vertices P l, 1 ≤ l ≤ L are transferred from

CPU to GPU. During the synthesis process the level of resolution per surface is

selected and the control points of Nd surfaces are sent down from CPU to GPU.

As mentioned in the previous section, Nsamples samples or virtual vertices are

sent down to GPU and stored in the vertex buffer to compose the input primitives

for each vertex shader execution. The control points of each surface [Bs] are stored

in a 4×4 float3 arrays [Bs
x, B

s
y, B

s
z].

All draw calls use the same parametric maps, while the resolution level is un-

changed, reducing CPU-GPU transfers (i.e. synchronization points). Then, these

virtual vertices are evaluated in the vertex shader of the GPU for all the Nd surfaces

of a chunk.

Instead of applying the de Casteljau algorithm [88], in our kernel a direct eval-

uation strategy is used to compute the tessellation, as it results in a more efficient

GPU implementation. As will be shown in the results section, the simplicity of this

strategy and the efficient management of the data storage are key points, together

with the CPU-GPU transfers, for the real time rendering of high quality models.

According to the vertex shader structure of OpenGL ES, this work proposes two

124 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

Sampling
grids

Bézier
patches

evaluation

VertexShader

Rasterizer

A

frame

Draw
call

CPU GPU

Tessellated and
evaluated mesh

Control
Points

Figure 5.10: Structure of the method

different approaches to store Bézier’s data in the GPU. The first option, Uniform

method, is based on storing the control points of the surfaces in uniform variables,

whereas the second one, Texture method, stores them in the texture memory. Both

alternatives are described below.

5.3.1. Uniform method

Uniform variables memory is one type of variable modifiers in the OpenGL ES

Shading Language (it has evolved in modern desktop GPUs into what is now known

as constant memory). These uniform variables are useful for storing all kinds of

constant data that shaders can need. Basically, any parameter provided to a shader

that is constant across either all vertices or fragments, but that is known before

executing the shader should be passed in as a uniform variable. This is the case of

the control points of the Bézier surfaces to be tessellated.

In order to check the suitability of the uniform variables storage, a couple of

features should be clarified: firstly, the overhead related to the memory access of

uniform variables; and, secondly, its storage capacity. From a performance point

of view, and according to hardware manufacturers [64, 73], any access to uniform

variable memory is simple and fast and it has a low impact on execution speed.

Moreover, this access overhead is similar to an arithmetic operation such as addition

or subtraction, and considerably faster than other operation, such as division or

5.3 Implementation details 125

square root.

With respect to the storage capacity, uniform variables are generally stored in

hardware in constant storage. This physical storage space is organized into a grid

with four columns and a row for each storage location. As storage is typically of a

fixed size, there is a limit on the number of uniforms that can be used in a program.

According to the standard, any implementation of OpenGL ES 2.0 must provide at

least uniform memory in the vertex shader, Muv, to store 128 vectors and uniform

memory in the pixel shader, Muf , to store 16 vectors, each vector comprising four

floats. Hence, the maximum number of surfaces per chunk would be

Nd =
Muv

M[BS]

(5.3)

In the case of bicubic Bézier surfaces, 16 vectors of points are needed to store the

control points of each surface, so Nd = 128
16

= 8 is the maximum number of surfaces

that can be evaluated in the same draw call, assuming the minimum of uniform

variables defined by OpenGL ES 2.0. There are commercial devices that provides a

higher number of vertex uniform vectors; for instance Mali 400 provides 256 vertex

uniform vectors, Nd = 256
16

= 16.

Clearly, the main drawback of this approach is the reduced number of surfaces

that can be stored for each draw call (a low Nd), which means the bottleneck lies in

the great number of draw calls needed (a high NDP). This is especially a problem

in devices that do not overlap GPU computation and transference.

In Section 5.4, the overhead of the draw calls, NDP , and Nd are analyzed in order

to identify the bottleneck of different configurations.

5.3.2. Texture VST for handheld devices

An alternative to the uniform variables is to store the control points in texture

memory, MT , as is shown in Figure 5.7. As texture memory can store a higher

number of surfaces than uniform memory, this alternative prevents an important

number of draw calls per frame, NDP , one of the main drawbacks of using uniform

126 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

variables.

Nd =
MT

M[BS]

(5.4)

where MT is considerably larger than Muv and subsequently more primitives can

be stored in texture memory than in the uniform variables memory simultaneously.

More specifically, for Mali 400 MT = 16MB, which is four times larger than Muv.

Although Bézier control points can be stored in the texture memory, this storage

space has not been designed for store floats. In OpenGL ES 2.0 texture memory

formats have been implemented to store color information as a 4-byte vector. There

are different formats in texture storage, but typically each color is 32 bit data and

they are split up into 4 groups of 8 bits: rgba [42] red, green and blue colors and

the alpha channel. The texture method defines a codification process to store and

recover float values from texture memory. This encoding process to pack a float

into a rgba texture is a simple process based on multiplications and divisions by the

largest number that can appear.

On the other hand, the texture method solves the main disadvantages of uniform

approach for handheld devices, however it has yet to be implemented on Android

platforms. As it is shown in Figure 5.7 with a dashed line, access to texture memory

from vertex shader is not implemented in any commercial OpenGL 2.0 device at

this moment. First devices implementing this feature are expected in lately 2013.

5.4. Experimental results

In this section, the results of the evaluation of VST for handheld devices on

different GPU architectures is analyzed. In particular, the platforms employed are

a Samsung Galaxy S2 (Mali), a Samsung Galaxy ACE (Adreno) and a Asus Trans-

former TF 300 (Tegra 3).

Samsung Galaxy S2 has a 1.2 GHz dual core ARM Cortex-A9 processor and uses

ARM’s Mali-400 MP GPU with a vertex shader and 4 fragment shaders. Samsung

Galaxy ACE features an 800 MHz Qualcomm MSM7227 processor with the Adreno

200 GPU. Adreno 200 GPU implements a unified architecture where a core can dy-

namically allocate vertex or fragment processing. Finally, Asus Transformer TF300

5.4 Experimental results 127

(a) (b)

Figure 5.11: Models employed in the test scenes (a) Teacup (b) Teapot

(a) (b) (c)

Figure 5.12: Screenshots of the teacup model with (a) L=1, (b) L=3 and (c) L=5

implements a Nvidia Tegra 3 Quad-core at 1.2GHz and a ULP Geforce 12-core: 4

vertex shaders and 8 fragment shaders.

Different scenes, composed of replicas of a set of models, have been used in our

tests. The models (Teacup and Teapot) are depicted in Figure 5.11. The number of

primitives generated for the different resolution levels is shown in Table 5.2. Column

Ns presents the number of Bézier surfaces whereas the rest of columns include the

number of triangles generated for the corresponding level of detail with a uniform

tessellation; i.e. all surfaces are tessellated with the same level of detail. Figure 5.12

depicts a screenshot of the teacup model rendered with L = 1, L = 3 and L = 5 in

Tegra 3. Table 5.2 shows the KBytes stored in the vertex buffer for different scenes

and different resolution levels. As shown in the figure, performance is dramatically

reduced increasing the tessellation level.

First of all, we must emphasize that our proposal obtains superior performance

than the best CPU results: up to 3 fps in Mali and 5 fps in Tegra for the scene S5pots

with L = 1. In this CPU implementation each sample is evaluated in the CPU and

128 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

0

10

20

30

1 2 3 4 5

FP
S

5pots 10 pots 15pots 20pots

L

Figure 5.13: FPS of our proposal implementated in Mali with different levels of
resolution

0

10

20

30

1 2 3 4 5

FP
S

5pots 10 pots 15pots 20pots

L

Figure 5.14: FPS of our proposal implementated in Tegra with different levels of
resolution

the whole vertex buffer is sent down to the GPU for each frame.

Our analysis is principally focused on obtaining the optimal tuning factors for the

three parameters used to characterize the behavior of our method: {L,Nd, NDP}.
The first factor we have analyzed in our method is the resolution level, L. As

the evaluation and tessellation of Bézier surfaces are computed for every vertex

in each GPU shader, the number of vertices to be computed is defined by the

selected tessellation level; thus, the greater the increase in the tessellation level of

Bézier surfaces, the lower the performance obtained. More specifically, each of the

2l+1 × 2l+1 × Nd samples is evaluated in each GPU vertex shader. The graphs in

Figures 5.13 and 5.14 show the frame rate on two distinct platforms for 4 of the

test scenes with the different resolution levels. In both devices, Mali and Tegra,

the frame rate drop when the resolution level increases, but a number of differences

between the two platforms can be observed. Mali obtains better results when the

tessellation level is low (less synchronization penalty) whereas Tegra performs better

when the resolution level increases (4 vertex shaders vs. 1 vertex shader in Mali).

5.4 Experimental results 129

Scene Ns L = 1 L = 2 L = 3 L = 4 L = 5

S5cups 130 2.29 12.44 57.13 244.00 1007.75
S5pots 160 2.81 15.31 70.31 300.31 1240.31
S10ups 260 4.57 24.88 114.26 488.01 2015.51
S10pots 320 5.63 30.63 140.63 600.63 2480.63
S15cups 390 6.86 37.32 171.39 732.01 3023.26
S15pots 480 8.44 45.94 210.94 900.94 3720.94
S20cups 520 9.14 49,77 228.52 976.02 4031.02
S20pots 640 11.25 61.25 281.25 1201.25 4961.25

Table 5.1: Number of surfaces and triangles generated (in K) for each scene

0

20

40

60

0

20

40

60

Nd

1 2 3 4 5

FP
S

5pots 10 pots 15pots 20pots

(a)

0

20

40

60

0

20

40

60

Nd

1 2 3 4 5

FP
S

(b)

Figure 5.15: Frame rate in Mali with different Nd and considering: (a) L = 1 (b)
L = 3

In any case, frame rate dramatically drops for L = 5 in both cases, since a vertex

buffer size greater than 16 MB is needed.

In short, the main problems of current GPUs in handheld devices are the com-

puting power and the low number of vertex shaders. This implies a limit on the

130 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

0

20

40

60

1 2 4 8

0

20

40

60

F
P

S

Nd

Adreno Mali Tegra

(a)

0

20

40

60

1 2 4 8

F
P

S

Nd

(b)

0

20

40

60

1 2 4 8

F
P

S

Nd

(c)

0

20

40

60

0

20

40

60

1 2 4 8

F
P

S

Nd

(d)

Figure 5.16: Frame rate comparative in Adreno, Mali and Tegra with S5pots and
different resolution levels: (a) L=1 (b) L=2 (c) L=3 (d) L=4

5.4 Experimental results 131

0

20

40

60

0

20

40

60

Adreno Mali Tegra

1 2 4 8

F
P

S

Nd

(a)

0

20

40

60

0

20

40

60

1 2 4 8

F
P

S

Nd

(b)

0

20

40

60

0

20

40

60

1 2 4 8

F
P

S

Nd

(c)

0

20

40

60

0

20

40

60

1 2 4 8

F
P

S

Nd

(d)

Figure 5.17: Frame rate comparative in Adreno, Mali and Tegra with S20pots and
different resolution levels : (a) L=1 (b) L=2 (c) L=3 (d) L=4

132 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

0

20

40

60

0

20

40

60

l=1 l=2 l=3 l=4 l=5 l=6

1 2 4 8 16

F
P

S

Nd

(a)

0

20

40

60

0

20

40

60

1 2 4 8

F
P

S

Nd

(b)

Figure 5.18: Performance of scene S5pots with texture access in: (a) Mali (b) Adreno

resolution that can be achieved and the complexity of scenes that can be rendered.

With respect to the rest of factors {Nd, NDP} where NDP = NS/Nd, four dif-

ferent scenes have been considered and their performance is depicted with different

resolution levels in Figure 5.15 on the Mali. This graph analyzes how the number

of surfaces that can be tessellated by a single draw call affects the GPU perfor-

mance. Similar behavior is observed on Tegra and Adreno and other scenes. Table

5.3 presents the number of NDP for these scenes with different number of draw calls.

As can be observed, values lower than NDP = 40 reach maximum performance on

Mali, that is 62 fps. Broadly speaking, if the complexity of the model increases

(more surfaces, Ns), maintaining a high performance usually implies to try to re-

duce NDP . For example, S5pots with NS = 160 for {L = 1, Nd = 4, NDP = 40}
achieves 60 fps, and S15pots with NS = 480 also achieves 60 fps for a configuration

{L = 1, Nd = 16, NDP = 30}. Thus, a trade-off between the number of draw calls

and the primitives processed in parallel is needed to increase the performance as

5.4 Experimental results 133

Scene L = 1 L = 2 L = 3 L = 4 L = 5

S5cups 60.94 255.94 1035.94 4155.93 16635.94
S5pots 75.00 315.00 1275.00 5115.00 20475.00
S10cups 121.88 511.88 2071.88 8311.88 33271.88
S10pots 150.00 630.00 2550.00 10230.00 40950.00
S15cups 182.81 767.81 3107.81 12467.81 49907.81
S15pots 225.00 945.00 3825.00 15345.00 61425.00
S20cups 243.75 1023.75 4143.75 16623.75 66543.75
S20pots 300.00 1260.00 5100.00 20460.00 81900.00

Table 5.2: Vertex buffer size (in KB) for each scene

Nd S5pots S10pots S15pots S20pots

1 160 320 480 640
2 80 160 240 320
4 40 80 120 160
8 20 40 60 80
16 10 20 30 40

Table 5.3: NDP for each scene

much as possible.

Figure 5.16 and Figure 5.17 present a final comparison of our best results in

different platforms: Adreno, Mali and Tegra. Different models such as S5pots, and

S20pots have been depicted as a wide range of rendered primitives and vertex buffer

size are considered. As has previously been explained, the uniform method stores

Bézier control points in the vector uniform variables. Hence, as there are only 128

vector uniform variables in the Adreno 200 architecture, only 8 surfaces can be

stored for each draw call, Nd = 8, meanwhile up to 16 surfaces can be stored in Mali

400 or in a Tegra 3 in 256 vector uniform variables, Nd = 16.

For a low level of resolution, L = 1 or L = 2, Mali and Adreno offer the best

performance for Nd = 8; i.e. 62 and 35 fps, respectively. Tegra also has the best

performance, that is 58 fps but scales perfectly as the level of resolution increases,

up to 55 fps for L = 3. Nonetheless, in Mali and Adreno the performance drop for

L ≥ 3 (37 and 13 fps are achieved, respectively, for L = 3 and Nd = 8) confirms

that the number of computational cores (i.e. the computational power) becomes

134 Chapter 5. Rendering of Bézier surfaces on Handheld Devices

a limiting factor and is noticeable in the performance. More specifically, the Mali

400 MP GPU has one vertex shader while Tegra 3 has four. For larger levels of

resolution, L = 4, the performance is below 20 fps for all GPUs due to the low

number of vertex shaders.

Although, in the uniform method the number of primitives processed in parallel

in the GPU is restricted by the vertex uniform vectors, the Texture method cannot

be tested on any market devices, as the access to texture memory from the vertex

shader has yet to be implemented on the Android platform. This approach would

solve the main problem of the uniform method, since texture memory provides a

larger storage space than uniform variables. To test how this approach would be,

we have designed a group of tests to measure the texture access latency. Although

the evaluation of a Bézier surface cannot be carried out in the fragment shader, the

texture memory accesses are processed in this stage to analyze the access latency.

Figure 5.18 shows the performance of a texture memory access from the fragment

shader in Mali and Adreno architectures. A simple model comprising 160 surfaces

(S5pots) has been chosen for this test to reduce the impact of computational power

and CPU-GPU communication as far as possible. According to the results, the

overhead associated with the texture access is about 20% of the final performance

in Mali architecture and under 10% in an Adreno devices, as a unified architecture as

implemented in Adreno devices, dynamically configuring its GPU cores to allocate

vertex or fragment processing.

As a result, we can conclude that the proposed texture method could obtain a

better performance, as the number of total draw calls could be significantly reduced.

5.5. Conclusions

In this chapter we have presented a proposal for the tessellation of Bézier sur-

faces on the GPU of embedded devices. VST for handheld devices has been designed

to test the bottleneck of the GPU implemented on handheld devices and to eval-

uate how the performance of VST for handheld devices is sensitive to important

architectural parameters.

Parametric surfaces cannot be directly rendered in the current GPUs of modern

5.5 Conclusions 135

handheld devices, thus our first contribution is to achieve a rendering of Bézier

surface and the analysis of the most relevant hardware constraints in current GPUs

using in the handheld devices. Another related contribution is to describe some of

the tuning techniques employed.

VST for handheld permits the analysis of the most relevant hardware constraints

in graphics computing. It has basically been implemented as a benchmark set to

analyze hardware capabilities of embedded devices, as the evaluation and tessellation

of Bézier surfaces on the GPU enable the analysis of hardware constraints.

As one of the main features of GPUs implemented in handheld devices is to re-

duce power consumption as far as possible, the computational power of the GPU’s

shader has been dramatically reduced compared to a desktop GPU. Hence, compu-

tational power and CPU-GPU communication, a typical bottleneck in GPUs per-

formance, are the two main topics when analyzing VST for handheld devices.

VST for handheld devices is based on the rendering of Bézier surfaces, considering

that these surfaces fit perfectly into the analysis of these hardware constraints.

Bézier surfaces have been evaluated on the GPU cores to test their computational

power, and a different number of surfaces has been rendered per draw call to analyze

the performance overhead related to this communication.

VST for the analysis of handheld devices has been tested on handheld devices

from different manufacturers, giving rise to the conclusion that CPU-GPU com-

munication is the main drawback of these devices, despite the reduced processing

power.

Chapter 6

Rendering Pipeline for NURBS

Surfaces

In this chapter we present a proposal for rendering NURBS surfaces directly

on the GPU without a tessellation preprocess. Our proposal, Rendering Pipeline

for NURBS Surfaces (RPNS), is based on a new primitive, KSQuad, which uses a

regular and flexible processing of NURBS surfaces, while maintaining their main

geometric properties to achieve real-time rendering. RPNS performs an efficient

adaptive discretization to fine-tune the density of primitives needed to avoid cracks

and holes in the final image, applying an efficient non-recursive evaluation of the

basis function on the GPU. Additionally, to provide a versatile example of this new

primitive, different culling strategies are applied using the KSQuad primitive and

its strong convex hull property. An implementation of RPNS using current GPUs

is presented, achieving real-time rendering rates of complex parametric models.

NURBS surfaces [37, 38, 79, 82] have been widely employed in CAD/CAM tools

and graphics applications owing to their capabilities for modeling complex geome-

tries. In addition to the high quality of NURBS models, another advantage of

NURBS representations is the compactness of the description and, in consequence,

the low storage and transmission requirements. Furthermore, graphics designers can

produce models and animations in a simpler and faster way as they need to control

fewer points than for triangle meshes. On the other hand, NURBS are easily scal-

able representations, so a surface can be converted into a triangle mesh with few

137

138 Chapter 6. Rendering Pipeline for NURBS Surfaces

triangles or with many triangles, depending on the required LOD.

NURBS surfaces are commonly decomposed into a series of Bézier patches by

the well-known technique called knot refinement [79], since a NURBS surface can be

divided into sections, each one corresponding with a knot span in the knot vector.

Each section can be mathematically represented as a Bézier surface, maintaining the

original shape. Each knot with multiplicity lower than the degree in each parametric

direction has to be replicated in the knot vector until it appears p-times. The knot

insertion algorithm inserts one into, then adds and adjusts control points to yield

a new description for the same curve or surface. The insertion of each new point

depends on the value of the new knot added. Thus, the algorithm moves the other

control points near the new one to preserve the shape of the surface. Therefore, such

an approach using Bézier surfaces suffers from long pre-processing times as well as

the introduction of artifacts, especially at the surface boundaries [1].

Thus, even though a NURBS surface can be decomposed into a set of Bézier sur-

faces, which makes efficient rendering and evaluation possible, Bézier surfaces are

not a good replacement for NURBS surfaces in fields such as modeling or anima-

tion [54], since NURBS properties are not projected into these new Bézier surfaces.

For example, any change in one Bézier point can reduce the continuity from C1 to C0

on the edge between surfaces. This effect is not an artifact on NURBS surfaces as,

according to local support property, p× q consecutive points are needed to generate

a corner or a change from C1 to C0. Moreover, in a Bézier-based modeling process

the user is restricted to sketching on tangent planes instead of directly dealing with

the NURBS surface, resulting in a lack of flexibility and good response feedback.

The rest of the chapter is organized as follows: Section 6.1 presents the struc-

ture of RPNS, Section 6.2 presents KSQuad, the primitive our pipeline is based

on. Section 6.3 describes the rendering primitive, KSDice. Section 6.4 details the

culling techniques implemented in RPNS. Section 6.5 introduces the Stair Strategy

that achieves an efficient evaluation of NURBS surface. Section 6.6 describes im-

plementation details of RPNS on current GPUs using DirectX11 and Section 6.7

presents the experimental results obtained in our tests. Finally, in Section 6.8 the

main conclusions are highlighted.

This work has been published in [26].

6.1 Rendering Pipeline for NURBS Surfaces 139

6.1. Rendering Pipeline for NURBS Surfaces

This section presents RPNS, Rendering pipeline for NURBS Surface, a novel

solution for the direct evaluation of NURBS surfaces on the GPU with no previous

tessellation procedure or pre-processing. The objective is the efficient rendering of

each surface so that the final image is free of cracks and holes, either inside each

surface or between neighbor surfaces, making it possible to exploit the parallelism of

the GPU to perform common operations such as sketching on surfaces, interactive

trimming or surface-surface intersection.

The architecture of the rendering pipeline can usually be divided into three

conceptual stages: application, geometry and rasterizer. In the application stage

the geometry to be rendered is generated by a software application. This results in

a stream of primitives that are processed by the geometry stage, which computes

what, how and where the things are drawn. Finally, the rasterizer stage renders

an image; i.e., it sets the color for the pixels covered by the different object in the

scene.

Figure 6.1 is a block diagram from our pipeline proposal for NURBS surfaces. It

consists of three modules: geometry, sampler and rasterizer. In this work we focus

on the first two stages of RPNS, geometry and sampler, leaving the discussion about

the rasterization of KSDices as future work.

As mentioned below, RPNS adds a new primitive, KSQuad (see Section 6.2), to

the input stream of the geometry shader. KSQuad is based on the regions defined

by the projection on the parametric cell delimited by the different knot spans. This

primitive provides an efficient and accurate evaluation of NURBS surfaces and in

RPNS they are processed in the geometry stage (see Figure 6.1). KSQuad needs

no pre-processing stage and intrinsically maintains the main geometric properties

of NURBS surfaces, such as local support and strong convex hull. The exploita-

tion of these properties enables us to improve performance by applying acceleration

algorithms, such as culling techniques.

As depicted in Figure 6.1, an intermediate stage, sampler, between the geometry

and the rasterizer stages is added in our pipeline proposal. In this stage an adaptive

sampling of the KSQuad primitives is performed according to the viewpoint, the

140 Chapter 6. Rendering Pipeline for NURBS Surfaces

GeometryKSQuad Sampler Rasterizer
.
.
.

.

.

.

KSDice
KSQuad

parametric space geometric space

Figure 6.1: Generic structure of the rendering pipeline for NURBS surfaces based
on KSQuad

geometric characteristics of the surface and the boundary edges between surfaces.

More precisely, the geometry stage precedes the sampler stage in RPNS pipeline and

all this geometric information is used to guide the sampling process.

In sampler stage, RPNS carries out an adaptive discretization of KSQuad prim-

itives into KSDices (see Section 6.3) according to the level of resolution needed or

the geometric properties. This sampling process results in a set of sampled points

or dices that we have named KSDice and which make it possible to render the sur-

face without cracks or holes. Here, KSDice, a new object analogous to the idea of

surfels in the context of point rendering [78], is introduced. Each KSDice consists

of a sampled point and additional information such as the parametric size of the

dice and the degree of the corresponding surface,and it does not save any explicit

connectivity information. The KSQuad discretization makes it possible to find an

optimal rendering of the geometry of surfaces with minimum redundancy. Thus, a

suitable discretization is obtained when it can be guaranteed that there is at least

one KSDice projected into the region of each output pixel for orthographic projec-

tion. Therefore, the objective is to reduce the number of positions to be evaluated

for each KSQuad primitive while keeping the quality of the resulting image.

On the other hand, the utilization of the KSQuad primitive allows the RPNS

pipeline to improve performance in two ways: culling techniques and evaluation of

NURBS surfaces using a non-recursive strategy.

One beneficial side effect of bringing forward the geometry stage prior to the

sampling is that we can improve the performance by also moving forward the appli-

cation of other techniques in the pipeline, such as culling. Whereas backface culling

is usually performed after a tessellation step, RPNS follows recent proposals [48]

which cull before tessellation, so culling is performed before discretization in RPNS

(see Section 6.4). By applying a culling technique in the first stages of the pipeline,

6.2 KSQuad Primitive 141

the number of primitives to be processed is dramatically reduced [48]. To prove this,

several culling algorithms that exploit the versatility and flexibility offered by the

use of KSQuad in the geometry stage have been implemented. These culling pro-

posals are based on the strong convex hull property of the NURBS surfaces that is

preserved in the KSQuad primitive, and it efficiently avoids the evaluation of points

of knot spans which do not contribute to the final image.

An important feature of RPNS is the evaluation of NURBS surfaces without any

approximation; thus, a new explicit and non-recursive method for the evaluation of

the basis function has been developed with the aim of obtaining an efficient GPU

implementation. Basis function evaluation is usually one of the main bottlenecks of

NURBS evaluation, since these functions have a recursive formulation and they are

re-evaluated for each parametric position. RPNS introduces a non-recursive strat-

egy, called stair strategy (see Section 6.5), to the evaluation of the basis functions

which makes it suitable for a GPU architecture. This strategy performs an explicit

evaluation of the basis functions by exploiting the local support property of NURBS

surfaces; i.e., the fact that the number of nonzero basis functions in any knot span

is, at most, equal to the basis function degree.

In summary, by means of the KSQuad primitive, RPNS exploits the main fea-

tures of NURBS surfaces to accomplish their real time evaluation and direct display,

rivaling approaches based on the REYES pipeline in quality and performance. More-

over, whereas other similar approaches really compute the basis functions previously

on the CPU [54], RPNS goes one step further and evaluates the whole NURBS equa-

tion in the GPU in real time with no pre-computation on the CPU. To test our pro-

posal, and although this chapter mainly focuses on algorithmic improvements to the

rendering pipeline, rather than an optimized implementation, we have implemented

it to measure its performance on current GPUs, achieving real-time rendering rates.

6.2. KSQuad Primitive

In this section, we present a new primitive called KSQuad that allows a regular,

flexible, efficient and adaptive rendering of NURBS surfaces.

A NURBS surface is obtained as the tensor product of two NURBS curves, as

142 Chapter 6. Rendering Pipeline for NURBS Surfaces

explained in Section 1.2.2, parametric curves that are a generalization of Bézier

curves and are defined by their degree, a set of weighted control points, and a knot

vector. Thus, using two independent parameters u and v, the NURBS surface of

degree (p, q), respectively in both parametric directions, is given by the equation:

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v) wi,jBi,j

n∑
i=0

m∑
j=0

Ni,p(u) Nj,q(v) wi,j

, 0 ≤ u, v ≤ 1 (6.1)

where Bi,j are the control points, wi,j are the weights, n + 1 and m + 1 are the

number of control points in u and v parametric directions, respectively, and Ni,p

and Nj,q are the non-rational B-spline basis function defined on two knot vectors of

p+ n+ 1 and q +m+ 1 elements, respectively:

U =

0, · · · , 0︸ ︷︷ ︸
p+1

, xp+1, · · · , xr−p−1, 1, · · · 1︸ ︷︷ ︸
p+1


V =

0, · · · , 0︸ ︷︷ ︸
q+1

, yq+1, · · · , ys−q−1 1, · · · 1︸ ︷︷ ︸
q+1

 (6.2)

The basis function Ni,p of degree p is defined for the parametric u direction as

Ni,p(u) =
u− xi
xi+p − xi

Ni,p−1(u) +
xi+p+1 − u
xi+p+1 − xi+1

Ni+1,p−1(u) (6.3)

with

Ni,0(u) =

{
1 if xi ≤ u < xi+1

0 otherwise
(6.4)

Analogously, the basis function Nj,q of degree q is defined for the parametric

direction q.

The knot vectors are non-decreasing sequences of real numbers that make a

partition on the parametric domain. This partition defines the relation between

different ranges of the parametric coordinates, known as knot spans or knot intervals,

with the control points. Since basis functions are non-zero only in part of the domain,

6.2 KSQuad Primitive 143

the functions Ni,p−1 and Ni+1,p−1, used for the computation of Ni,p, are non-zero for

p knot spans, overlapping for p− 1 knot spans.

A NURBS surface can be seen as a grid of cells in parametric space delimited by

the different knot spans, with each cell containing a part of the surface computed

with the non-zero basis functions in that interval. Thus, we have focused on this no-

tion to propose a suitable input primitive that requires no previous transformation

as the seed of RPNS. This new primitive, Knot Span Quad (KSQuad), represents

a half-open interval of the parametric domain, [xi, xi+1) × [yj, yj+1), with non-zero

length, and maintains the information of q × p neighboring knot spans, allowing an

efficient evaluation of the NURBS surface in this interval without any recursive com-

putation, making it suitable for GPU implementation. It is important to emphasize

that at no time does our proposal decompose the NURBS surface. Each position of

the surface is directly evaluated on the NURBS surface.

A KSQuadi,j of degree q and p is defined like

KSQuadi,j = {
knot span︷ ︸︸ ︷

xi, xi+1, yj, yj+1,

control points︷ ︸︸ ︷
Bi−p,j−q, · · · , Bi,j wi−p,j−q, · · · , wi,j︸ ︷︷ ︸

weights

} (6.5)

being xi 6= xi+1 and yj 6= yj+1.

Each KSQuadi,j is defined in the parametric domain by a knot span, the rectangle

parametric sub-domain with corners (xk, yl), k ∈ {i, i+1}, l ∈ {j, j+1}, as illustrated

in Figure 6.2. As a bicubic surface is shown in the figure, sixteen control points are

evaluated in each knot span projection. Hence, the NURBS surface in the model

space is composed of patches which are generated as a projection of the knot span

into the model space, see shadow patch and shadow knot span in the figure.

A KSQuad preserves the many desirable geometric properties presented in NURBS

curves and surfaces, such as:

Strong convex hull: a NURBS surface is contained in the convex hull of its

control points. Moreover, if (u, v) is in the parametric rectangle defined by

the knot spans [xi, xi+1)× [yj, yj+1), then S(u, v) is in the convex hull defined

by the control points {Bi−p,j−p, . . . , Bi,j}. This property assumes that all the

weights in the NURBS surfaces are positive values, and it allows us to propose

144 Chapter 6. Rendering Pipeline for NURBS Surfaces

Parametric Space

(xi,yj+1)

(xi,yj) (xi+1,yj)

(xi+1,yj+1)

S(xi,yj) S(xi+1,yj)

S(xi,yj+1) S(xi+1,yj+1)

Model Space

Figure 6.2: KSQuad primitive defined by a knot interval

efficient culling methods on RPNS.

Local support: Ni,p(u)·Nj,q(v) = 0 if (u, v) is outside the rectangle [xi, xi+p+1)×
[yj, yj+q+1). Therefore, the influence of an individual control point over the

surface is delimited to this parametric interval for each parametric direction.

This feature is highly interesting in our context, since it makes it possible

both to reduce the computational cost of basis functions and to improve data

locality. The latter is achieved as only (p+1)×(q+1) control points are used to

evaluate every point in a given KSQuad, avoiding unnecessary accesses to the

whole NURBS surface. Furthermore, the exploitation of the spatial coherence

means that the data calculated for a given point into a cell can be reused for

the rest of the points in the same cell. This saves both memory accesses and

computations.

The number of KSQuad primitives generated for each surface is variable, but

6.3 KSDice: Adaptive sampling of KSQuad primitives 145

limited to (r − 2p)× (s− 2q):

KSp+1︷ ︸︸ ︷ KSr−p−1︷ ︸︸ ︷
U =

0, · · · 0, 0, xp+1,︸ ︷︷ ︸
KSp

xp+2, · · ·xr−p−2, xr−p−1,︸ ︷︷ ︸
KSr−p−2

1, · · · 1


KSq+1︷ ︸︸ ︷ KSs−q−1︷ ︸︸ ︷

V =

0, · · · 0, 0, yq+1,︸ ︷︷ ︸
KSq

yq+2, · · · ys−q−2, ys−q−1,︸ ︷︷ ︸
KSs−q−2

1, · · · 1


(6.6)

where r and s are the number of knots for each parametric direction, respectively.

Therefore, a surface is defined by the following set of knot span:

S → {[0, xp+1)× [0, yq+1)︸ ︷︷ ︸
KSq,p

, [xp+1, xp+2)× [y1, y2)︸ ︷︷ ︸
KSq+1,p

, · · · ,

[xr, xr+1)× [ys, ys+1)︸ ︷︷ ︸
KSr−p−1,s−q−1

}
(6.7)

As a visual example, Figure 6.3 shows the Head model where each surface has

a different color (see Figure 6.3(a)), and the KSQuads for this model (see Fig-

ure 6.3(b)). In this figure, each KSQuads has been rendered as a pair of triangles,

since the model has been rendered in a triangle oriented pipeline with DirectX11.

6.3. KSDice: Adaptive sampling of KSQuad prim-

itives

The main purpose of RPNS is the adaptive sampling of KSQuad to obtain the

appropriate number of KSDice (samples) for providing high-quality, hole-free ren-

dering, while increasing the performance. As a matter of fact, the use of KSQuad

as the input primitive to be sampled already favors this adaptive behavior, since

it allows a improved exploitation of the surface’s local geometric features. There-

fore, it solves an important problem in current GPUs: they cannot obtain enough

samples for adequately covering the whole surface by directly using the NURBS

surface as the input primitive of the pipeline. Thus, for example, supposing the

146 Chapter 6. Rendering Pipeline for NURBS Surfaces

(a) (b)

Figure 6.3: Head model: (a) Surfaces (b) KSQuads

tessellation of a NURBS surface into triangles, it is preferable to select a tessellation

factor per KSQuad than to compute a tessellation considering the whole NURBS

surface. This is shown in Figure 6.4, where a model, Killeroo, is first rendered using

surfaces (Figure 6.4(a)) as input primitives, and then KSQuads Figure 6.4(b)). As

can be observed, the quality of the final image is much higher with KSQuads, even

though significantly fewer triangles are used: 12016.05 K vs. 385.56 K. Figure 6.4(a)

contains numerous artifacts, such as cracks, holes and creases, since it possesses in-

sufficient triangles to follow the curvature of the surface. Thus, thirty times more

primitives are evaluated but a lower quality rendered model is obtained.

A KSDice obtained from a KSQuad is defined as

KSDice = {(xk, yl), δx, δy, Sp,q, f}

where (xk, yl) is the starting parametric coordinate of the range covered by the

KSDice, so (xi, yj) ≤ {(xk, yl), (xk + δx, yl + δy)} < (xi+1, yj+1), S
p,q is a set of

indices that provide access to the surface’s data, and f is a 4-bit tag that indicates

which edges of the KSDice are boundary edges with another surface.

The key to obtaining good performance with RPNS is the number of KSDice

that are sampled and rendered. An adaptive sampling that focuses on the geomet-

6.3 KSDice: Adaptive sampling of KSQuad primitives 147

(a)

(b)

Figure 6.4: Killeroo model rendered using as input primitives: (a) NURBS surfaces
with a uniform tessellation per surface (b) KSQuads, which are adaptive allowing
triangles to be placed more appropriately

ric features of a surface and the number of pixels to be rendered can provide an

important boost in performance, with no reduction in image quality. We propose

an adaptive sampling procedure that is based on this set of tests:

Local Area Average. The number of pixels in screen space that are covered by

a KSQuad from a specific viewpoint is evaluated. Then, a sampling factor τ

is chosen and applied in parametric space to obtain the appropriate number

148 Chapter 6. Rendering Pipeline for NURBS Surfaces

of KSDice primitives from the projected KSQuad, considering a maximum

pixel-size for each KSDice of µ:

dist(p(S(xk, yl))− p(S(xm, yn)))/τ < µ,

∀k,m ∈ {i, i+ 1} and k 6= m

∀l, n ∈ {j, j + 1} and l 6= n

(6.8)

where p() means a screen space projection, so the distance between the pro-

jected corners of the KSQuad is computed.

Linear Approximation. This test measures the difference between the evaluation

of the NURBS surface at a point and the position where that point will be

rendered if the KSDice is not further subdivided. Therefore, the maximum

deviation between the KSDice to be rendered S(u, v) and the ideal projection

of the NURBS surface S ′(u, v) is computed, which provides a measure about

the accuracy of the linear approximation applied; that is

max abs(p(S(u, v))− p(S ′(u, v))) < ε,

∀(u, v) ∈ [xk, yl)× [xk + δx, yl + δy)
(6.9)

Boundary Region. Since each KSQuad is independently processed in the pipeline,

it is necessary to apply a higher sampling in the boundary edges between ad-

jacent NURBS surfaces to prevent discontinuities, especially if there is not G1

continuity in the boundary between the two surfaces. This is usually the case

when different tessellation factors are applied in these surfaces. In this respect,

our first approach was to introduce a test that evaluates whether a KSQuad is

in a boundary edge with an adjacent NURBS surface and, if so, forces a higher

sampling in the corresponding boundary regions. The information about the

boundary edges of a KSQuad is coded in the field f during the creation of the

KSQuad in the application stage of the pipeline. Then, to avoid cracks and

holes, a boundary edge {S(xk, yl)), S(xk+δx, yl+δy)} is oversampled according

to:

max abs(p(S(xk, yl))− p(S(xk + δx, yl + δy))) < η,

η < µ
(6.10)

6.3 KSDice: Adaptive sampling of KSQuad primitives 149

Boundary edges
between surfaces

(a) (b)

(c)

Figure 6.5: Boundary edges between surfaces (a) KSQuads with boundary edges
(b) Oversampling all boundary edges (c) Oversampling only non G1 boundary edges

An example is depicted in Figure 6.5(b): thick lines mark the boundary edges

between surfaces in Figure 6.5(a), and Figure 6.5(b) shows how the boundary

regions are higher sampled.

A better solution for dealing with possible discontinuities but avoiding over-

tessellation is our second approach to this test, depicted in Figure 6.5(c). This

new implementation is based on the notion of friend surfaces, which means

that two adjacent surfaces are friends if they are G1 according to the necessary

and sufficient conditions of G1 continuity [17] between two adjacent NURBS

surfaces with arbitrary degree and generally structured knots. In order to

150 Chapter 6. Rendering Pipeline for NURBS Surfaces

guarantee this friend condition, data defining the boundary surfaces (control

points, weights and knot span) are analyzed in the application stage on the

CPU only once. This results in a boundary region test that only applies a

higher sampling on the boundary edges of a KSQuad when it is really needed,

as can be observed in Figure 6.5(c).

These tests measure the improvement achieved in image quality with each new

KSDice inserted by the sampler stage. As with other similar proposals [41], our

tests work with a series of thresholds that must be pre-computed for each surface in

order to reach the required quality level.

6.4. Culling techniques for NURBS surfaces

Culling is the process of removing those portions of the scene that do not con-

tribute to the final rendering. The advantage of culling in the early stages of the

rendering pipeline is that entire objects that are invisible can be removed, saving

a great deal of computation in the rest of the pipeline. Examples of culling tech-

niques are backface culling and viewing frustum culling. To optimize the rendering

of NURBS surfaces in RPNS as well as a proof of the versatility of the primitive

KSQuad, backface and viewing frustum culling methods for the geometry stage

are proposed in RPNS. This culling makes possible an important reduction in the

number of rendered KSDice, which has a high impact on the overall performance.

First of all, a view frustum culling based on the NURBS bounding box is per-

formed at KSQuad level. A view frustum is a pyramid truncated by six planes: near,

far, left, right, top, and bottom. This culling proposal is based on the strong convex

hull property, described above in Section 6.2. Hence, those KSQuads placed outside

of the viewing cone will be removed and only those KSQuads inside or partially

inside the viewing cone will be considered in the following steps.

Lastly, a backface culling is applied. In RPNS, backface culling and backpatch

culling strategies have been considered. These culling techniques are based on dif-

ferent processing characteristics and they are placed in different RPNS pipeline

stages. Backface culling is placed at the end of the RPNS sampler stage (see Figure

6.1), where samplers called KSDices have already been built. Meanwhile, backpatch

6.4 Culling techniques for NURBS surfaces 151

N1

N2
N4

N3

Figure 6.6: Backface culling

culling should be placed at the beginning of the geometry stage, the first step in the

pipeline proposed (see Figure 6.1). In summary, backface culling is at KSDice level,

while backpatch culling is at KSQuad level.

Broadly speaking, a culling algorithm generates what is called the potentially

visible set (PVS), which is a prediction of the exact visible set (EVS) [2]. A PVS is

conservative if it fully includes the EVS, so that only invisible geometry is discarded.

Otherwise, a PVS is approximate when the EVS is not fully included, which results

in rendered images with a certain error. In RPNS, three culling proposals have been

implemented, EVS follows a backface culling algorithm while two backface culling

algorithms, approximate and conservative, have been implemented.

6.4.1. Backface culling

Backface culling [2] is a traditional and standard technique used by GPUs and

it is based on removing those polygons which are invisible from the viewpoint as

early as possible. Backface culling is usually obtained by the computation of the dot

product between the normal to the plane defined by the polygon and the viewing

direction of each polygon (see Figure 6.6); i.e., a triangle t defined by v1, v2 and

v3 is culled out, evaluating the dot product of the plane normal to the triangle t

and the camera - to - polygon vector. In this figure, light gray face is placed on the

backface to the camera, so this face is removed. Meanwhile, dark gray faces of the

152 Chapter 6. Rendering Pipeline for NURBS Surfaces

cube are turned to the camera and they will be rendered.

RPNS pipeline includes a backface culling proposal called DiceCulling (DC). As

traditional pipelines are triangle oriented in the rendering stages, culling is usually

computed on triangle polygons. However, as RPNS is based on the rendering of

pieces of parametric surfaces, specifically KSDice, the DiceCulling proposal removes

those KSDices not turned to the camera as early as possible. Although in RPNS a

KSDice is the render primitive sampled from a KSQuad, in the implementation of

RPNS on a DirectX11 pipeline, each KSDice is approximated as a pair of triangles.

The DiceCulling test is placed at the end of the sampler stage, after the screen-

mapping procedure (see Figure 6.1). DiceCulling decreases the number of KSDices

sent to the rasterizer, since backfaced KSDice are culled out. However, as backface

culling computations are done in the sampler stage, in this stage workload is slightly

increased meanwhile the rasterizer workload is reduced.

6.4.2. Backpatch culling

Nevertheless, backface triangles have proved to be an unsuitable solution for

complex models due to their computational cost; thus, in order to reduce the cost of

a dot product and normal computation for each polygon in backface culling, several

proposals have been developed to approximate the plane normal. For instance,

hierarchical proposal like [56, 57] cluster polygons by normal and cull the whole

group. However, as RPNS proposes a direct evaluation of NURBS surfaces with no

tessellation into polygons, a backpatch NURBS culling is also considered with the

aim of reducing culling computations. Figure 6.7 depicts a sphere of surfaces. In

this figure light gray surfaces are backfaced, so they are removed; meanwhile dark

gray surfaces are frontfaced and consequently they are rendered.

Backpatch culling [58] is an extension of backface culling to parametric surfaces.

Like backface culling, backpatch culling is based on removing these invisible patches

as early as possible. In RPNS, the KSQuad is removed before being tessellated into

KSDices. As with a polygon, a KSQuad is culled out by evaluating the dot product

of the normal to the KSQuad and the camera− to− patch vector.

Although backpatch culling is not a novel idea, to date it had only be applied

6.4 Culling techniques for NURBS surfaces 153

N1

N2

N3

N4

N5

Figure 6.7: Backpatch culling

to Bézier patches. There are basically two different groups of proposals to compute

backpatch culling: based on cone-of-normals [68, 86, 89] and based on the bounding

box [58, 61]. In the first group, [86] proposes a cone-of-normals derived from tan-

gent and bi-tangent patches, whose main drawback is the coarse bounds that are

obtained. [89] presents a preprocessing step to compute a normal patch for a given

Bézier patch and to compute its bounding cone-of-normals. Lately, a simple test is

used to compute the culling on the fly. The main drawback of this approach is that

dynamic models are not rendered in real time owing to the high computational cost.

A recent proposal [68] is focused on fitting this algorithm into modern GPUs, which

in turn means an approximation in the computation of the tangent and bi-tangent

cone. RPNS, like [58] and [61], is based on the computation of the bounding box

of the patches. [58] and [61] focus on Bézier surfaces, though. [58] computes the

bounding box of the normalized vectors of the normal patch, whereas [61] constructs

the Bézier convex hull of the parametric tangent plane.

Unlike Dice Culling which has been designed to remove KSDice, backface culling

proposals, Light Quad Culling (LQC) and Strong Quad Culling (SQC), have been

designed to remove KSQuad. Quad Culling algorithms are independently applied

to each KSQuad. Hence the KSQuad of a NURBS can be culled out, while other

KSQuads from the same NURBS surface are rendered. Both Quad Culling pro-

posals are based on the potentially visible set (PVS) and they are placed at the

beginning of the geometric stage; consequently, KSQuads are removed before to be

sampled into KSDices. Although the workload in geometric stage is increased, sam-

154 Chapter 6. Rendering Pipeline for NURBS Surfaces

pler stage and rasterizer workload are reduced. As both Quad Culling techniques

have been specifically designed for NURBS surfaces, they are based on the strong

convex hull property detailed in Section 6.2. Hence, the normal to the plane defined

by the convex hull of each KSQuad is computed instead of computing the normal to

the KSQuad. Therefore, the normal computation workload is reduced and a more

efficient culling technique is implemented.

The proposed Light Quad Culling algorithm culls a KSQuadi,j by using this

simple square:

�i,j = {S(xi, yj), S(xi+1, yj), S(xi, yj+1), S(xi+1, yj+1)} (6.11)

LQC is an approximate PVS technique and although a fast and efficient culling

computation is provided, the EVS is not fully included thus the quality of the render

is slightly decreased as will be detailed in Section 6.7. �i,j cannot guarantee that

the normal of all surface points have the same direction.

On the other hand, the Strong Quad Culling (SQC) algorithm culls a KSQuadi,j

by computing the culling for a set of p× q squares

�k,l
i,j = {Bi−p+k,j−q+l, Bi−p+k+1,j−q+l, Bi−p+k,j−q+l+1, Bi−p+k+1,j−q+l+1} (6.12)

with 0 ≤ k ≤ p − 1 and 0 ≤ l ≤ q − 1. Each square is the convex hull polygon

corresponding to the adjacent control points. If any of these squares is not culled,

then the KSQuad is not culled. A KSQuadi,j is contained in the convex hull defined

by the control points {Bi−p,j−q, · · · , Bi,j}. That is, the NURBS surface fragment that

defines the parametric subset KSQuadi,j is contained by the control net fragment,

p× q squares. If any square is oriented to the viewpoint, then it is possible that any

point in the surface is frontfaced. The control polygon represents a piecewise bilinear

approximation to the surface. This approximation is improved by applying either

knot insertion or degree elevation. As a general rule, the lower the degree, the closer

the surface follows its control polygon, reaching the extreme case with p = 1, when

the surface is the control polygon. SQC is a conservative PVS technique where the

EVS is fully included, as only invisible geometries are discarded, and a high quality

images are rendered.

6.5 Explicit equations: Stair strategy 155

KSQuad

S(xi, yj+1)

S(xi, yj)

S(xi+1, yj+1)

S(xi+1, yj)

(a)

KSQuadk KSQuadk+1

S(xi,yj+1)

S(xi,yj)

S(xi+1,yj)

S(xi+1,yj+1)

S(xi+2,yj+1)

KSQuadk+2

S(xi+3,yj)

S(xi+2,yj)

S(xi+3,yj+1)

(b)

Figure 6.8: KSQuad-based culling (a) high degree NURBS (b) low degree NURBS

Figure 6.8 shows two different scenarios for applying our culling strategies: for

a high-degree surface (Figure 6.8(a)), there are few knots in the NURBS and the

difference between the results obtained by the approximative and the conservative

strategies, �i,j and �k,l
i,j , is greater; however, for a low-degree surface (Figure 6.8(b))

the squares �i,j comes close to the actual surface, so a similar PVS is obtained in

both strategies, although with an marked reduction in performance in the approxi-

mative method (as shown in Section 6.7).

The introduction of these Quad Culling techniques in RPNS results in an im-

portant reduction in the computational load of the sampler and rasterizer stages,

although this is accompanied by a slight increase in the computation of the geometry

stage.

6.5. Explicit equations: Stair strategy

Another relevant contribution in this chapter is a novel approach to the compu-

tation of the basis functions of a NURBS surface based on a non-recursive strategy,

called stair strategy. Stair strategy provides a straightforward, efficient and general

procedure with a simple control flow which makes it suitable for implementation

on current GPUs. Nowadays, NURBS surfaces evaluation on the GPU is usually

based on the de Boor algorithm [55]. Thus, evaluating the B-splines basis function

of degree p requires the evaluation of the B-spline basis function of degree p− 1. In

156 Chapter 6. Rendering Pipeline for NURBS Surfaces

[55] the B-spline basis function of degree p−1 is stored as a texture on the GPU and

this intermediate result is used as input for evaluating the B-spline basis function of

degree p. In [1, 49] several approaches are presented for improving the performance

on CPU of the computationally expensive de Boor recursion algorithm by avoiding

the recursion. Our stair strategy follows a similar strategy focused on the GPU.

The basis function of a NURBS can be calculated in each parametric point by ap-

plying the de Boor recursive expression shown in Equation 6.3. As mentioned in Sec-

tion 6.2, the local support property of a NURBS surface is preserved in the KSQuad

primitive, which means that at most p+1 of the Ni,p functions are non-zero within a

given knot span [xi, xi+1), namely the functions {Ni−p,p, · · · , Ni,p}. Table 6.1 shows

the non-zero basis functions in the ith knot span for p = 5. Hence, the only non-zero

pth-degree functions on this knot span are {Ni−5,5, Ni−4,5, Ni−3,5, Ni−2,5, Ni−1,5, Ni,5}.

The RPNS proposal is based on the non-recursive reformulation of the Ni−k,p

functions, replacing the recursion that can be represented by a truncated triangular

table [79] with a simple expression of additions and multiplications. Thus, each basis

function can be represented like a rectangle table with size (p− k)× k. Whereas de

Boor is O(N2) in the basis functions evaluation, the proposed method is O(N) due

to the sums for each of the N basis functions. Figure 6.9 shows the dependence of

Ni−2,5 and Ni−3,5 , where according to the NURBS basis function definition each of

these basis functions should be computed in a five-step recursive process. However,

each basis function can be expressed as a rectangle table with a remarkable reduction

of computation, as shown in Figure 6.10. This figure shows the rectangle tables for

Ni−2,5 (Figure 6.10(a)) and for Ni−3,5 (Figure 6.10(b)), where the influence of each

basis function is shown and subsequently the recursive representation is avoided.

Table 6.1: Non-zero basis functions on knot span [xi, xi+1) for p = 5

5 Ni−5,5 Ni−4,5 Ni−3,5 Ni−2,5 Ni−1,5 Ni,5 0
4 0 Ni−4,4 Ni−3,4 Ni−2,4 Ni−1,4 Ni,4 0
3 0 0 Ni−3,3 Ni−2,3 Ni−1,3 Ni,3 0
2 0 0 0 Ni−2,2 Ni−1,2 Ni,2 0
1 0 0 0 0 Ni−1,1 Ni,1 0
0 0 0 0 0 0 1 0

i− 5 i− 4 i− 3 i− 2 i− 1 i i+ 1

6.5 Explicit equations: Stair strategy 157

Ni-2,1

Ni-1,1

Ni,1

Ni-2,3

Ni-1,3

Ni,3

Ni-2,4

Ni-1,4

Ni-2,5

Ni+1,1

Ni+2,1

Ni-2,2

Ni-1,2

Ni,2

Ni+1,2

(a)

Ni-3,1

Ni-2,1

Ni-1,1

Ni-3,3

Ni-2,3

Ni-1,3

Ni-3,4

Ni-2,4

Ni-3,5

Ni,1

Ni+1,1

Ni-3,2

Ni-2,2

Ni-1,2

Ni,2

(b)

Figure 6.9: Dependence of (a) Ni−2,5 and (b) Ni−3,5

Consequently as this stair strategy is optimized by an efficient diagonal and columns

computation, these diagonals and columns are highlighted in Figure 6.10. The basis

functions Ni−k,p with k = {0, · · · , p} can be formulated according to some of the

158 Chapter 6. Rendering Pipeline for NURBS Surfaces

Ni-2,5

Ni-2,4 Ni-1,4

Ni-2,3 Ni-1,3 Ni,3

Ni-1,2 Ni,2

Ni-1,1 Ni,1

1

Ni-2,2

(a)

Ni-2,4

Ni-2,3 Ni-1,3

Ni-1,2 Ni,2

Ni,1Ni-1,1

1

Ni-2,2

Ni-3,5

Ni-3,4

Ni-3,3

(b)

Figure 6.10: Stair strategy (a) Ni−2,5 (b) Ni−3,5

Ni,c and Ni−d,d with c = {1, · · · , p − k} and d = {1, · · · , k}, that is, only a total

of p non-recursive basis functions. We designate the basis functions Ni,c as column

functions and Ni−d,d as diagonal functions. Stair strategy formulation is expressed

as a piecewise function with three subdomains. The first subdomain details the

formulation of column basis functions, where k = 0 (depicted as blue squares in

Figure 6.10), the second subdomain comprises diagonal basis functions, where k = p

(depicted as red squares in figure) and, finally, the rest of basis functions, where

k 6= 0 and k 6= p (depicted as white squares). Stair strategy allows a simple and

efficient computation of the column and diagonal basis functions by simply applying

6.5 Explicit equations: Stair strategy 159

the following expressions:

Ni,c =
(u− xi)c

c∏
l=1

(xi+l − xi)
Ni−d,d =

(xi+1 − u)d

d∏
l=1

(xi+1 − xi−l+1)

(6.13)

Therefore, the basis functions Ni−k,p with k = {1, · · · , p− 1} and k 6= p are formu-

lated according to p−k column functions Ni,c and k diagonal functions Ni−d,d, with

c = {1, · · · , k} and d = {1, · · · , p− k}:

Ni−k,p =
k−1∑
j=0

(u− xi−k+j)
p−k(xi+k−1+j − u)j

p−k+j∏
l=1

(xi+l − xi−k+j)

Ni−k+j,k+j

+

p−k−1∑
j=0

(xi+p−k+1−j − u)k(u− xi−k)j

k−1+j∏
l=0

(xi+p−k+1−j − xi−l)

Ni,p−k−j

(6.14)

The denominator terms are constant for each KSQuad and are computed only once

for each shader invocation:

Cj,k,p =
1

p−k+j∏
l=1

(xi+l − xi−k)

Dj,k,p =
1

k−1+j∏
l=0

(xi+p−k+1−j − xi−l)

(6.15)

Finally, the final non-recursive expression for a basis function is:

Ni−k,p =
k−1∑
j=0

(u− xi−k+j)
p−k(xi+p−1+j − u)j(xi+1 − u)k+jCj,k,pD0,k+j,k+j+

p−k−1∑
j=0

(xi+p−k+1+j − u)k(u− xi−k)j(u− xi)p−k−jC0,0,p−k−jDj,k,p

(6.16)

Hence, Stair Strategy piecewise expression is defined as:

160 Chapter 6. Rendering Pipeline for NURBS Surfaces

Ni−k,p =


(u− xi)pC0,0,p, if k = 0

(xi+1 − u)pD0,p,p, if k = p

Equation 6.16, if k 6= p and k 6= 0

Considering a bicubic NURBS surface, basis functions are:

Ni,3 = (u− xi)3C0,0,3

Ni−1,3 = (u− xi)2(xi+1 − u)C0,1,3D0,1,1 + (xi+3 − u)(u− xi)2C0,0,2D0,1,3+

+(xi+2 − u)(u− xi−1)(u− xi)C0,0,1D1,1,3

Ni−2,3 = (u− xi−2)(xi+1 − u)2C0,2,3D0,2,2 + (xi+2 − u)(u− xi+1)(xi+1 − u)C0,1,3D0,1,1+

+(xi+2 − u)2(u− xi)C0,0,1D1,1,3

Ni−3,3 = (xi+1 − u)3D0,0,3

6.6. RPNS with DirectX11 on current GPUs

The geometry shader (GS) introduced with DirectX10 was the first stage in the

graphics pipeline capable of generating new primitives on the GPU. Although this

programmable stage exploits data locality and allows an efficient tessellation on the

GPU, it is highly limited by the number of output primitives that can be created

for each input primitive, since the maximum size of its output stream is 1024 bytes

per invocation.

Although the new configurable stage introduced in DirectX11, the tessellator

unit, does not follow the same philosophy as the GS as it does not focus on data

locality, this new stage solves the main limitation of the GS, the amount of primitives

generated in the GPU on the fly. The Tessallator can create up to 64 samples

per edge, but needs two additional programmable stages in the rendering pipeline:

hull shader (HS) and domain shader (DS). The HS is called once for each input

primitive in the pipeline, KSQuad in our implementation, and this is the stage in

charge of configuring the tessellator. Culling can also be performed in this stage.

The new primitives generated by the tessellator are sent to the DS, so this stage

is called once for each KSDice in our implementation. The DS receives both the

6.6 RPNS with DirectX11 on current GPUs 161

KSQuad VBO

... KSi,j ...

Info KSQuad Table

KS0 ... KSi,j ...

Knot Spans

x0 ... xi

Weights

w0 ... wi-p,j-q ...

Points

B0,0 ... Bi-p,j-q ...

VertexAtributes HS Tess DS

... Wi,j ...

... CPi,j ...

W0

CP0

KS0

xi+1 ...

y0 ... yj yj+1 ...

...

...

}

pxq

}

pxq

}

}
GS

Figure 6.11: Memory layout of the data structures

parametric positions created by the tessellator and the KSQuad data directly from

the HS. The four corners of each KSDice, S(xk, yl), S(xk + δx, yl), S(xk, yl + δy), and

S(xk + δx, yl + δy), are efficiently evaluated in the DS by taking advantage of access

locality and avoiding redundant computations. The output from the DS is sent

to the GS, where two triangles are generated for each KSDice due to the triangle-

oriented graphics pipeline of current GPUs. We should emphasize that, like Reyes

vertex shading, RPNS also allows the user to specify an arbitrary shading rate. In

Reyes, the shading rate is expressed in samples per pixel, while in RPNS we specify

samples per KSDice, with a value of 4.0 in our implementation.

Although DirectX11 introduces a patch primitive to deal with parametric sur-

faces, this primitive is only suitable for working with simple regular surfaces, such

as bicubic Bézier surfaces, where only the positions of the control points need to

be stored and the number of control points can be deduced from the surface de-

gree. Owing to the inherent complexity of the NURBS surfaces, we need to define a

162 Chapter 6. Rendering Pipeline for NURBS Surfaces

storage layout in texture memory more complex than the one available through the

patch primitive. As shown in Figure 6.11, our proposal uses two indirection levels to

access all the data required to work with a KSQuad primitive: firstly, an access to

the Info KSQuad Table, which contains indices to the NURBS surface data needed

for each KSQuad, and then the access to the surface data using those indices. Both

the Info KSQuad Table and the rest of the surface data (knot spans, weights and

control points) are stored in texture memory. Although this arrangement needs a

double memory access, it saves an important number of CPU-GPU transfers. Other

alternatives could easily be implemented, such as sending all the required data for

each KSQuad via the vertex buffer.

Every KSQuad primitive that enters in the pipeline has enough information to

access the Info KSQuad Table and fetch all the data needed to completely evaluate

the KSQuad from texture memory. The access to all this information is needed

in the HS and DS stages (see Figure 6.11), which correspond to the input of the

geometry and sampler stages in RPNS, as shown in Figure 6.1.

We have implemented and tested three different alternatives to map RPNS on

DirectX11, one which exploitsg the GS capability of generating new geometry, and

the other two which use the HS, tessellator and DS stages to overcome the GS

limitations. One of these two proposals implements a non-uniform version of RPNS

which focuses on minimizing the number of generated primitives, whereas the other

one obtains a uniform result.

GS-based RPNS. Our first proposal for the implementation of RPNS on the

DirectX pipeline focuses on the GS stage. Thus, even though evaluating

KSQuads in the GS means that part of the computations can be reused, the

bounds in the maximum number of KSDices that can be generated for each

input KSQuad make it impossible to achieve high quality renderings. This

proposal is not shown in the results section as its performance and the ren-

dering quality is considerably worse than the other proposals as well as the

GS not providing enough primitives for a smooth rendering. As it is shown

in Figure 6.12, the number of generated primitives with two passes through

the GS stage is insufficient to achieve an acceptable quality. Furthermore,

two GS stage passes decreases the performance and real-time rendering is not

achieved.

6.6 RPNS with DirectX11 on current GPUs 163

Figure 6.12: Killeroo model with the GS-based RPNS and two passes through the
GS stage

Uniform RPNS (RPNS-U). This implementation uses the HS, Tessellator and

DS stages to map the stages in RPNS. The work in HS is performed with a

KSQuad granularity, fetching the necessary information from texture memory.

This stage applies the local average area test and, optionally, a previous culling.

This test is used to set the subdivision factor in the tessellator that guarantees

a maximum size (in pixels) for the KSDices to be generated (Equation 6.8).

All this work corresponds with the geometry stage of RPNS.

Once the KSDices are created by the tessellator, they are sent to the DS.

Thus, the DS is called once for each (still empty) KSDice. In this stage, each

KSDice is evaluated in the NURBS surface using the stair strategy described

in Section 6.5. This stage, along with the tessellator, corresponds with the

sampler stage of RPNS.

Non-uniform RPNS (RPNS-NU). This non-uniform implementation of RPNS

follows the same structure as the previous one, but with the addition of a GS

stage which implements the adaptability in the sampler stage of RPNS [10].

In this case, the HS previously sets the tessellator to create a fewer number of

KSDices. The output from DS is sent to GS, where the linear approximation

164 Chapter 6. Rendering Pipeline for NURBS Surfaces

and the boundary region test are used to guide the subdivision level applied

to each KSDice. Thus, the linear approximation test (Equation 6.9) ensures

that a higher subdivision level is applied to non-flat regions. Moreover, the

boundary region test (Equation 6.10) detects the regions of KSQuads that

are boundaries to other surfaces and applies the highest subdivision factor to

prevent cracks between adjacent surfaces.

6.7. Experimental Results

In this section we present the results obtained with different versions of our

implementations of RPNS on GPU. Our test platform is an Intel Core 2 Duo 2.4GHz

with 2GB of RAM and a nVidia Geforce 580 GTX with DirectX11, Microsoft’s

HLSL. The models used in our tests are shown in Figure 6.13 and Table 6.2 depicts

the number of NURBS surfaces and KSQuads, #NS and #KS, respectively, in the

models. As shown in Table 6.2 a high #KS and a low #NS are desirable due to

the fact that a high amount of #KS provides a high flexibility and adaptivity inside

the NURBS surface meanwhile a low #NS decreases the continuity gaps, because

they can only be introduced on surface edges. The final images were rendered with

a screen resolution of 2048× 1152 pixels.

Different aspects of the RPNS implementation have been analyzed in this section.

Firstly, different culling techniques are analyzed in the standard RPNS-U approach.

This analysis focuses on the number of primitives generated, the quality of the

rendered images, as well as the frame rate achieved. Recently, different RPNS

implementations have been considered to measuring the effectiveness of the adaptive

process that our KSQuad primitive allows us to introduce in RPNS. Specifically,

Table 6.2: Number of surfaces and KSQuad for each test model

Test model #NS #KS

Killeroo 89 11532
Head 601 15025
Hinge 427 34891
Car 1364 63000

6.7 Experimental Results 165

Table 6.3: #KS with different culling techniques for Killeroo model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 1564.79 485.76 178.47 83.16 51.20 45.05

SQC
1564.79 378.63 139.71 83.16 51.19 45.05

100% 77.95% 78.29% 100% 100% 100%

LQC
841.98 259.90 94.82 43.60 26.51 23,10

53.81% 53.5% 53.13% 52.43% 51.78% 51.27%

DC
847,16 261,89 95,72 44,18 26,98 23,95

54.14% 53.91% 53.63% 53.13% 52.7% 53.17%

Table 6.4: #KS with different culling techniques for Head model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 2309.04 742.09 225 115.96 69.09 58.69

SQC
1829.71 554.62 199.82 91.32 54.26 45.91
79.24% 47.74% 88.81% 78.75% 78.53% 78.23%

LQC
1211.38 368.28 131.23 58.87 34.24 29.46
52.45% 49.63% 58.33% 50.76% 49.55% 50.20%

DC
1223.83 368.87 131.85 59.78 34.96 29.74

53% 49.71% 58.6% 51.55% 50.59% 50.68%

Table 6.5: #KS with different culling techniques for Hinge model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 4245.46 1593.56 576.54 263.69 163.00 139.56

SQC
2977.54 907.97 325.36 236.42 91.07 77.52
29.86% 43.02% 43.56% 10.34% 44.13% 44.45%

LQC
2373.27 716.07 251.76 111.00 66.49 55.11
44.09 % 55.06% 56.33% 57.90% 59.21% 60.51%

DC
1578.48 716.35 252.02 83.96 66.78 55.57
62.81 % 55.04 % 56.28% 68.16% 59.02% 60.18%

166 Chapter 6. Rendering Pipeline for NURBS Surfaces

Table 6.6: #KS with different culling techniques for Car model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 4448.50 1493.51 607.11 332.07 257.90 246.09

SQC
3444.57 1149.10 459.18 247.62 190.12 180.09
56.81% 56.22% 55.25% 53.89% 52.53% 52.39%

LQC
2527.32 839.68 335.44 178.94 135.47 128.93
77.43% 76.94% 75.63% 74.57% 73.72% 73.18%

DC
2520.33 839.08 311.96 180.35 136.83 123.05
56.66% 56.18% 51.38% 54.31% 53.06% 50%

Table 6.7: PSNR with different culling techniques for Killeroo model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 44.51 42.95 40.75 39.28 39.30 36.74

SQC 44.53 42.95 40.75 39.28 39.30 36.71

LQC 39.16 38.64 38.22 37.51 37.486 36.22

DC 44.50 42.95 40.75 39.28 39.30 36.72

Table 6.8: PSNR with different culling techniques for Head model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 42.37 43.93 42.97 40.87 40.53 36.26

SQC 42.36 43.95 42.57 40.87 40.52 36.26

LQC 38.88 38.41 38.21 38.18 38.05 35.07

DC 42.36 43.86 42.57 40.87 40.51 36.26

Table 6.9: PSNR with different culling techniques for Hinge model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 41.89 41.39 39.77 40.94 40.30 38.77

SQC 41.11 41.42 39.78 40.20 39.93 38.55

LQC 40.60 41.29 39.70 40.03 39.26 37.89

DC 41.02 41.65 39.94 40.18 39.92 37.92

6.7 Experimental Results 167

Table 6.10: PSNR with different culling techniques for Car model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 38.64 38.35 40.47 38.47 37.58 30.45

SQC 38.54 38.34 40.48 38.47 37.58 30.18

LQC 34.87 34.47 35.25 34.78 34.23 30.02

DC 38.53 38.34 40.45 38.44 37.57 30.17

Table 6.11: FPS with different culling techniques for Killeroo model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 27.91 76.14 152.7 199.86 265.85 281.73

SQC 34.46 87.51 162.78 189.21 213.12 225.61

LQC 47.44 107.12 179.9 204.24 231.65 234.87

DC 26.43 73.1 165.21 250.68 487.543 405.87

Table 6.12: FPS with different culling techniques for Head model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 17.90 41.84 113.03 115.25 134.128 218.98

SQC 21.44 49.83 54.56 69.99 104.39 195.53

LQC 33.67 90.24 122.52 131.8 144.86 208.95

DC 20.66 54.6 158.48 300.51 404.93 434.12

Table 6.13: FPS with different culling techniques for Hinge model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 9.27 27.57 35.22 117.42 134.16 158.27

SQC 15.35 44.49 83.42 105.50 122.17 130.03

LQC 19.01 53.73 100.65 113.36 127.73 132.92

DC 8.55 26.21 64.94 117.95 156.30 159.82

168 Chapter 6. Rendering Pipeline for NURBS Surfaces

(a) (b)

(c) (d)

Figure 6.13: Test models: (a) Killeroo (b) Head (c) Hinge (d) Car

RPNS approach with different adaptivity degrees have been tested considering de

Boor approach as the baseline.

The results obtained from the tests are shown in detail in Tables 6.3 - 6.14 and

in Figure 6.14 with the RPNS-U approach. The experiments were carried out for

the four test models for different culling strategies and with different values of the

threshold µ (maximum pixel-size for each KSDice, see Equation 6.8).

Results have been grouped into three different groups of tables. Tables 6.3 -

6.6 indicate the thousands of KSDices that are rendered, #KS. The second group

of tables (Tables 6.7 - 6.10) detailes PSNR (Peak Signal-to-Noise Ratio in dB) in

order to indicate the performance in terms of quality. Peak Signal-to-Noise Ratio

is the distortion between the maximum possible power of a signal and the power

6.7 Experimental Results 169

Table 6.14: FPS with different culling techniques for Car model

µ = 1 µ = 2 µ = 4 µ = 8 µ = 16 KSDice
KSQuad

No Culling 10.23 20.31 33.3 91.36 96.84 104.73

SQC 12.85 34.9 58.9 65.59 66.09 84.4

LQC 17.06 44.37 70.56 79.98 82.73 85.6

DC 9.59 29.91 59.18 93.65 102.09 105.65

of corrupting noise that affects the fidelity of its representation. In this case, the

distortion is measured with respect to the model rendered with the maximum tessel-

lation factor PSNR = 20 · log10(MAX/
√

MSE). As can be observed, similar results

have being obtained in all cases. Finally, the fame rate achieved, FPS, is shown in

Tables 6.11 - 6.14 in order to depict the performance in terms of rendering time.

An adaptive sampling of KSQuad allows the utilization of larger KSDices where

the geometry is less detailed, concentrating smaller KSDices at silhouette edges and

curves. As shown in Tables 6.3 - 6.6 the #KS is not linear and increases when µ

is increased. As adaptive sampling focuses on the geometric characteristics of the

NURBS surfaces, #KS depends on the geometric characteristic of the model. Re-

garding the performance of RPNS implementation in the pipeline of current GPUs,

the graphs of Figure 6.14 show the good results in terms of frame rate obtained by

RPNS with µ > 1 for the four test models. Furthermore, four strategies achieve

good quality results, always over 30dB and close to 40dB for µ ≤ 16, with no signif-

icant loss of quality. Commonly accepted reference values for PSNR are between 20

and 40dB (the bigger, the better). A value higher than 30 dB usually means that a

good quality result has been achieved.

For each culling technique implemented, the table shows the percentage of KS-

Dices eliminated. The Strong Quad Culling approach culls up to 44.45% of prim-

itives, but there are still 1.4 times more KSDices than the strictly necessary for

the rendering. The Light Quad Culling culls some KSDices that should be in the

rendering, so the quality of the render (PSNR value) decreases slightly. Regarding

the frame rate obtained by the different culling approaches for the four test models,

the graphs of Figure 6.13 show that the proposals based on the KSQuad primi-

tive discussed in this work achieve the best results for µ < 8. Thus, for example,

170 Chapter 6. Rendering Pipeline for NURBS Surfaces

speedups of 2.86 and 2.37 are obtained for µ = 4 by the LQC and SQC, respectively.

However, as the value of µ rises, the number of KSDices generated for each KSQuad

decreases (see Table 6.5); this means that for values lower than 300 K KSDices the

high computational cost of the HS software implementation, that has a significant

degree of divergence, spoils the advantage achieved by reducing the number of KS-

Dices to be rendered in cases with similar tessellation factors for all the surfaces, so

the frame rate drops. In this case, the best results are obtained by the Dice Culling

implementation, since the backface KSDices are removed with very simple computa-

tions with no divergence on the GS. Otherwise, the Quad Culling implementations

may still be worthwhile for values between 300 K and 200 K KSDices in models

such as Killeroo. In this model, there are KSDices with much higher tessellation

factors than others as they have a greater area in the projected image. These large

KSQuads are an important bottleneck, so performance dramatically improves when

they are culled. Thus, 182.7 K KSDices are generated without culling with µ = 4

for the Killeroo model, achieving 179.9 and 165.21fps with the LQC and the DC

solutions, respectively.

The tables and the graphs show that the introduction of DC culling dramatically

improves the performance of the pipeline, with speed-ups of more than 3x in the

frame rate in some cases, and without decreasing the quality in the rendering, since

the PSNR values are mostly identical. In these cases, the number of primitives culled

in an early stage of the pipeline is not worth the additional computation introduced

with these backpatch strategies such as LQC and SQC. Backpatch culling strategies

are applied to KSQuad primitives in an early pipeline stage, while KSDice primitives

are culled out in a latter GPU pipeline stages in a more classical backface culling

approach. Consequently, backpatch culling strategies evaluate considerable fewer

primitives than the backface culling strategy. However, as more computational

complexity is introduced by the backpatch approaches, better results in terms of

FPS have been obtained with a backface design. In any case, the final renderoing

obtained by RPNS is a high quality image, as shown in Figure 6.15. To sum up,

the culling techniques proposed in Section 6.4 remove an average of around a 20%

of the KSDices generated in the case of the SQC method and over a 41% when the

LQC is applied. Both strategies achieve good results in terms of quality, always over

30 dB, as has previously been mentioned.

6.7 Experimental Results 171

0

100

200

300

400

1 2 4 8 16

0

100

200

300

400 No culling

 LQC

 SQC

 DC

F
P

S

KSDice
KSQuad

µ

(a)

0

100

200

300

400

1 2 4 8 16

0

100

200

300

400
No culling

 LQC

 SQC

 DC

F
P

S

KSDice
KSQuad

µ

(b)

0

50

100

150

1 2 4 8 16

0

50

100

150

F
P

S

No culling

 LQC

 SQC

 DC

KSDice
KSQuad

µ

(c)

0

20

40

60

80

100

1 2 4 8 16

0

20

40

60

80

100

F
P

S
No culling

 LQC

 SQC

 DC

KSDice

KSQuad

µ

(d)

Figure 6.14: Frame rate with the different culling approaches for the four test
models: (a) Killeroo (b) Head (c) Hinge (d) Car

The performance of several RPNS implementations is analyzed in Table 6.15 in

terms of frame rate. This table shows the frames per second obtained by rendering

the four test models using five different implementations of RPNS on DirectX11,

with the speed-up values in parentheses. The first method, de Boor, is the result of

applying Dice Culling on the KSQuads in the GS, evaluating the NURBS Surfaces

in a traditional way with µ = 16. Simply by changing the surface evaluation to our

stair strategy, second column in the table, we achieve a significant improvement in

performance. Hence, a NURBS surface evaluation specifically designed for a GPU

computation, which has been detailed in Subsection 6.5, provides a more efficient

evaluation than the classical de Boor proposal, where the speed-up is up to 1.62.

The next two columns, which both follow the stair strategy, RPNS-U which is a

172 Chapter 6. Rendering Pipeline for NURBS Surfaces

(a) (b)

(c) (d) (e)

Figure 6.15: Head model rendered with different screen area (a) µ = 1, (b) µ = 8
and (c) µ = 16 (d) 1 KSDice per KSQuad (e) RPNS-NU

uniform RPNS and RPNS-NU (GS) which is a-non uniform RPNS in the geometry

shader, correspond to the implementations proposed in Section 6.6. As can be

observed, in general the uniform approach obtains the best results, since it allows

the HS, tessellator and DS to be explointed by using regular operations. However,

the non-uniform proposal, based on some conditional branches, introduces a greater

divergence into the control flow of the GS stage, and also calls a supplementary

kernel, which results in a significant drop in performance. Finally, the last column,

which also follows the stair strategy RPNS-NU (HS) which is a non-uniform RPNS

implemented in the hull shader, is a less adaptive implementation of our non-uniform

approach, now implemented in the HS by adapting the behavior of the tessellator

to improve the number of KSQuads in the regions with important variations of the

linear approximation test.

6.8 Conclusions 173

Table 6.15: Frame rate (FPS) of RPNS implementations with Dice Culling

(GS) (HS)
Model de Boor Stair Strategy RPNS-U RPNS-NU RPNS-NU

Killeroo 118.34 (1.22) 144.39 (4.12) 487.54 31.99 (1.57) 186.25
Head 120.47 (1.11) 134.13 (3.36) 404.93 23.66 (2.37) 285.86
Hinge 82.74 (1.62) 134.16 (1.88) 156.30 9.75 (2.00) 165.78
Car 61.71 (1.60) 96.84 (1.65) 102.09 5.45 (1.90) 116.96

In conclusion, although the DC approach provides a better performance in terms

of fps, the RPNS pipeline has been implemented in a triangle-oriented pipeline, and

theoretically in a RPNS hardware implementation improved performance should

be obtained by applying the backface culling, where a considerable less amount of

KSQuad and KSDice will be processed. Furthermore, this chapter describes different

RPNS implementations where different GPU stages are exploited. As has already

been detailed, the stair strategy has been specifically designed for a GPU evaluation

avoiding recursive computation and consequently better performance than the de

Boor strategy has been obtained. Furthermore, as expected, a uniform implemen-

tation (RPNS-U) provides better performance than a non-uniform implementation

(RPNS-NU), owing to the fact that computational divergence has been avoided.

Finally, in a non-uniform implementation, HS provides a more efficient divergence

implementation owing to the well-known GS restrictions as well as to a more adap-

tive tessellation pattern than the HS.

In short, even though our main objective is to evaluate the robustness of all

the algorithmic proposals behind RPNS, we have proved that high quality results

can be obtained using our novel primitive KSQuad and RPNS, performing a test

implementation on current GPUs and achieving real-time rendering for complex

models.

6.8. Conclusions

In this chapter a proposal of a new pipeline for the efficient rendering of NURBS

surfaces, RPNS, is presented. Our pipeline is based on a new primitive, KSQuad,

174 Chapter 6. Rendering Pipeline for NURBS Surfaces

which provides a regular and flexible management of NURBS surfaces but maintains

their main geometric properties. This primitive allows an efficient evaluation of the

NURBS surface in all its parametric knot spans, which is especially suitable for

achieving high performance GPU implementations.

To provide a versatile example of RPNS, we implemented several culling strate-

gies using the KSQuad primitive and its strong convex hull property. RPNS per-

forms an efficient adaptive discretization of KSQuads into KSDices, which allows us

to fine-tune the density of primitives needed to avoid cracks and holes in the final

image. It also applies an efficient non-recursive evaluation of the basis function of

a NURBS surface on the GPU. An implementation of RPNS using current GPUs is

presented, achieving real-time rendering rates of complex parametric models. Dif-

ferent GPU implementations of RPNS are proposed on DirectX11, exploiting the

programmable and configurable stages.

Chapter 7

Conclusions and Future Work

The graphics processing unit (GPU) is a specialized processor designed to ac-

celerate the rendering of computer images. From this initial design, GPU hardware

architecture has gone from a single core with a fixed function hardware pipeline

specifically designed for graphics, to a set of highly parallel and programmable

cores for more general purpose computation. Despite the rapid development of

the GPGPU (general purpose graphics processing unit), the main purpose of GPUs

is the rendering of graphics computing.

Although GPU pipelines were initially designed as a triangle-oriented pipeline,

it has proved to be an unsuitable solution for the rendering of the complex im-

ages employed on a wide range of areas, such as medicine, computer-aided design

(CAD) or virtual reality. As those models employed in scientific areas can be more

precisely described by equations than by a triangles mesh, current research in the

computer graphics area is considering other render primitives instead of triangles;

more specifically, parametric surfaces have been proved as a flexible solution. The

main objective of this dissertation is to develop a real-time rendering of parametric

surfaces solution aimed to the new programmability capabilities presented in current

GPUs.

This thesis proves that a parametric surface-oriented pipeline is a perfect fit for

the rendering of complex models, as these surfaces provide mathematical character-

istics specifically suitable for graphic computation. These surfaces have a compact

representation, thus there is a saving in memory storage and much fewer data need

175

176 Chapter 7. Conclusions and Future Work

to be sent than when sending a triangle mesh. Furthermore, this representation al-

lows a more flexible evaluation and tessellation of the model because if a parametric

surface is tessellated in the GPU, then the level of detail can be selected on the fly.

As parametric surfaces are represented as a mathematical expression, they provide

a more precise representation than a mesh of triangles.

This dissertation proposes different GPU approaches for the rendering of para-

metric surfaces. Firstly, the Bézier surface is considered as the input parametric

surface and, finally, a NURBS (Non Uniform Rational B-Spline) surface approach

is proposed.

Firstly, this thesis details a non-adaptive proposal for the tessellation of Bézier

surfaces on the GPU based on the exploitation of spatial coherence of data within

each surface. Furthermore, each Bézier surface is considered as an input pipeline

primitive instead of an independent set of samples or triangles, since this non-

adaptive proposal has been designed to tessellate and evaluate Bézier surface in the

GPU. Additionally, an efficient Bézier evaluation as well as an optimized memory

access have been designed. Two alternatives have been designed and implemented

considering different GPU architectures, thus the VST (Vertex Shader Tessellation)

alternative has been designed for those GPUs without any primitive generator and

the GST (Geometry Shader Tessellation) alternative has been designed for GPUs

with a geometry shader.

In one hand, VST is a tuning strategy that permits the choice of a suitable

relation between the requirements of storage and the number synchronization CPU-

GPU according to the underlying GPU architecture. It focuses on the efficient

utilization of a parametric maps of virtual vertices, owing to the impossibility of

generating geometries in the GPU. The VST alternative is based on three different

keys: firstly, API draw calls and CPU-GPU communications are reduced and finally,

data locality is exploited.

In the other hand, GST is based on the capabilities of a primitive generation

in the GPU. As in this case parametric maps of virtual vertices are generated on

the fly, storage requirements are reduced and primitive generator capabilities are

exploited. The GST alternative performs an efficient Bézier evaluation prior to the

sampling process and although Bézier computation is reused for each new generated

177

point, it is only computed once for each surface. As the number of new primitives

that can be generated is restricted, owing to hardware features, the level of detail

of the render is limited. Therefore, in the GST alternative the resolution level is

increased by partitioning the parametric map into zones, where a Bézier surface is

computed once for each partition it is split into.

Both alternatives prove the impact on the performance of the shader without di-

vergence and they highlight the benefits of the exploitation of the spatial coherence.

The non-adaptive proposal demonstrates that an evaluation based in parametric

surfaces can produce a real-time rendering of complex models where the model is

tessellated and rendered in the GPU with a level of detail selected on the fly.

This thesis also analyzes the advantages and disadvantages of an adaptive tes-

sellation; thus a fully adaptive approach called Dynamic and Adaptive Bézier Tes-

sellation (DABT) is proposed. Unlike non-adaptive proposals, which can generate

meshes with a high number of triangles without any contribution to the quality to

the rendered image, DABT proposes an adaptive tessellation and, consequently, a

considerable reduction in the number of triangles is obtained without reducing the

quality of the final scene.

DABT provides a tessellation procedure without any recursive structure and

where the positions of the candidate vertices can be easily evaluated through their

barycentric coordinates. Furthermore, the tessellation procedure can be determined

on the fly without any set of pre-computed patterns according to the tessellation level

and the resolution level can be dynamically selected. The methodology employed

is based on three main strategies: the use of a fixed tessellation pattern to guide

the procedure, the use of local tests for the adaptive tessellation decisions and an

efficient meshing procedure to reconstruct the resulting meshes. As DABT follows

an adaptive approach, the resolution level can be dynamically modified along the

path, thus preventing different resolution levels being selected in neighbor triangles.

DABT has three different resolution levels inside a triangle, one resolution level for

each triangle edge. In order to apply three levels per triangle, resolution levels are

projected through the barycentric center and each resolution level is applied to one

third of the triangle.

DABT introduces an early adaptive tessellation where much fewer triangles are

178 Chapter 7. Conclusions and Future Work

rendered than in a non-adaptive proposal; however, performance is worse than in

the non-adaptive proposal in current GPUs. Hence, this dissertation reasserts the

drawbacks of the divergence in a GPU core, since DABT performance is reduced

owing to the divergence introduced by the adaptivity. Therefore, and in order to

maintain the more relevant features of both schemes, a semi-adaptive proposal is

also outlined.

The semi-adaptive scheme is proposed as a halfway solution which exploits the

best characteristic from the non-adaptive and the fully adaptive proposals. The

objective of semi-adaptive proposal is to increase the processing speed of the DABT

by reducing its flexibility. Hence this tessellation scheme reduces the divergence in

order to achieve an optimum utilization of the GPU’s computational resources, even

though a significant degree of adaptivity has been introduced. Hence, this proposal

processes considerably fewer triangles than a non-adaptive proposal, although the

divergence caused by this adaptivity is considerably reduced.

The semi-adaptive algorithm is a simplified version of the fully adaptive strategy,

and it is based on a single level of resolution per triangle and a regular grid pattern in

the parametric directions. Furthermore, the tests are only applied in the candidate

positions located in the original edges of the coarse triangle. According to the

inserted vertex in the triangle edges, the insertion is also performed along the row in

all the candidate positions inside the triangle. Hence as the semi-adaptive scheme

is a more simplified scheme than DABT, and similar to the non adaptive proposal,

it allows the GPU’s computation capabilities to be exploited.

As nowadays, handheld devices are by far the most available device with ren-

dering capabilities in the world, this dissertation also describes a proposal for the

tessellation of Bézier surfaces in these devices. Handheld devices are widely avail-

able, virtually omnipresent and one of the fastest growing markets. As consumers

demand complex rendering capabilities and their expectations for these devices are

increasingly higher, a new GPU generation has been specifically designed to fit with

the constraints of handheld devices. Handheld devices are small in size and are bat-

tery powered, thus they have been designed according to a restricted set of features.

Hence, the GPUs in these devices implement only a subset of the features avail-

able in desktop GPUs. More specifically, these GPUs have been designed to offer a

high performance graphics while reducing power consumption. This dissertation de-

179

scribes the design of several hand-tuned Bézier surfaces real-time rendering, Vertex

Shader Tessellation in Handheld Devices (VSTHD), and identifies the key graphics

processor performance limitations, enhancements and tuning opportunities.

VSTHD has been designed according to the constraints on the GPU in handheld

devices. As handheld devices implement GPUs with no hardware for generating

primitives, VSTHD is based on virtual parametric grids and memory exploitation,

like the VST proposal for desktop GPUs. However, a small memory is implemented

on current handheld devices, thus two different alternatives have been implemented

to analyze different memory characteristics: Uniform VSTHD, which exploits uni-

form variables memory; and texture VSTHD, which stores data in texture memory.

In summary, this dissertation designs different Bézier tessellation schemes and

the capabilities of current GPUs, from both desktop PCs and handheld devices,

to the tessellation and evaluation of Bézier surfaces have been tested. As Bézier

surfaces have a very simple and regular representation, they have commonly been

used for the rendering of parametric surfaces. This thesis asserts that these surfaces

fit well into the evaluation and tessellation in the GPU.

Finally, as NURBS surfaces are much more complex than Bézier surfaces, in

a parametric surface oriented pipeline NURBS are usually converted into Bézier

surfaces in the CPU and finally these Béziers are sent down the GPU pipeline to be

rendered. However, this dissertation goes a step further and proposes an efficient

scheme for the evaluation and tessellation of NURBS in the GPU.

This thesis also introduces two new primitives: the input primitive, called KSQuad,

and the rendering primitive, called KSDice. KSQuad is a input primitive which man-

tains the main geometric properties from the original NURBS surfaces and it also

provides a regular and flexible management of NURBS surfaces, which reduces di-

vergence on GPU evaluation. This primitive allows an efficient evaluation of the

NURBS surface in all its parametric knot spans, which is especially suitable for

achieving high performance GPU implementations. This scheme is based on an-

alyzing the mathematical characteristics of NURBS surfaces and a non-recursive

evaluation of the basic functions of NURBS expression is performed.

Furthermore, this thesis proposes and designs a new hardware pipeline for the

real-time rendering of complex models designed with NURBS surfaces. THe NURBS

180 Chapter 7. Conclusions and Future Work

pipeline, called Rendering Pipeline for NURBS Surfaces (RPNS) consists of three

modules: geometry, sampler and rasterizer. Firstly, KSQuad are processed in the

geometry stage. Lately, in the sampler stage, each KSQuad is tessellated into a set

of KSDices. RPNS performs an efficient adaptive discretization of KSQuads into

KSDices, and it allows the fine tuning of the density of primitives needed to avoid

cracks and holes in the final image. Finally, this KSDices are rasterized.

This thesis also implements a RPNS pipeline using current GPUs, achieving real-

time rendering rates of complex parametric models. To provide a versatile example

of our proposal, backpatch and backface culling strategies have been designed.

Although this thesis focuses on the design of a parametric surface oriented

pipeline, it has also proved that our proposals are capable of achieving real-time

rendering in the current triangle-oriented pipelines.

7.1. Future Work

As this dissertation proposes an effective solution for the rendering of NURBS

surface in the GPU, several features are considered as extensions to the Rendering

Pipeline for NURBS Surfaces. NURBS surfaces are defined as a tensor product of

NURBS curves, thus their borderlines are defined by NURBS curves. However, as

current GPUs are triangle-oriented pipelines and only triangles, lines or points can

be projected from a 3D representation in the model world to a 2D representation

in the screen world, a higher sampling is applied in the boundary edges in order to

prevent discontinuities, especially if the continuity between patches in the boundary

region is not G1. Although RPNS introduces several proposals for reducing these

cracks between surfaces, employing a piecewise representation such as friend sur-

faces detection, current GPUs are triangle oriented, thus each NURBS boundary

edge defined by an NURBS curve is approximated as a set of linear segments. Con-

sequently, triangle-oriented rendering produces numerous artifacts, such as cracks,

holes and creases, since a considerable amount of triangles are needed to follow the

curvature of the surface.

As a future extension to the NURBS pipeline, a rasterizer for the rendering of

curved KSDice will be proposed. This rasterizer will be designed to project curves

7.1 Future Work 181

into the screen space and any patch artifacts due to different tessellation in the

border will not be introduced; thus, the KSDice rasterizer will modify the features

of the tessellation procedure of parametric surfaces. This rasterizer will provide more

efficient rendering in which neither friend surface nor overtessellation techniques will

be needed as the rasterizer will project the NURBS curve to the screen space and

consequently a more exact representation of the parametric model will be achived.

A complete parametric surface oriented pipeline will be designed including a KSDice

rasterizer. In short, a NURBS model will be tessellated and evaluated in the GPU

and finally small pieces of the NURBS model called KSDices will be render according

to the NURBS representation.

Furthermore, current proposal of texture implementations on NURBS surfaces

are based on a individual mapping of the texture. Usually, a parametric texture is

associated with a surface, thus the coordinates of the parametric point evaluated in

the NURBS surface can be used to obtain the corresponding texel. However and

from a designer’s point of view, it should be easier to assign one texture to the

whole model. However, CAD or designer software as well as more common NURBS

file formats have been designed to store one texture for each surface instead of one

surface for the whole object.

In order to assign a texture to the whole model, textures should include a ref-

erence to those surfaces it is associated with, and a preprocessing step should be

performed to identify which piece of the texture corresponds to each parametric

patch. In this case each NURBS surface will access a piece of the texture and a

more complex index than parametric coordinates should be needed to reference the

corresponding texels.

Bibliography

[1] O. Abert, M. Geimer, and S. Müller. Direct and Fast Ray Tracing of NURBS

Surfaces. In Proceedings of the 2006 IEEE Symposium on Interactive Ray Trac-

ing, pages 161–168, Salt Lake City, UT, USA, September 18-20 2006. IEEE

Computer Society. pages 3, 138, 156

[2] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering. A. K.

Peters, Ltd, third edition, 2008. pages 4, 35, 39, 46, 89, 151

[3] T. Akenine-Möller and J. Ström. Graphics for the masses: A hardware ras-

terization architecture for mobile phones. ACM Transactions on Graphics,

22:801–808, 2003. pages 107

[4] T. Akenine-Möller and J. Ström. Graphics Processing Units for Handhelds. In

Proceedings of the IEEE, special issue on Cutting-Edge Computing, volume 96,

pages 779–789, 2008. pages 109

[5] M. Amor, M. Bóo, J. Hirche, M. Doggett, and W. Strasser. A meshing scheme

for efficient hardware implementation of butterfly subdivision surfaces using

displacement mapping. IEEE Computer Graphics and Applications, 25(2):46–

59, 2005. pages 53, 55

[6] A. Amresh and C. Fünfzig. Semi-uniform, 2-Different Tessellation of Triangular

Parametric Surfaces. In Proceedings of the ISVC’10: 6th International Confer-

ence on Advances in Visual Computing, pages 54–63, Berlin, Heidelberg, 2010.

Springer-Verlag. pages 6

[7] I. Antochi, B. Juurlink, and S. Vassiliadis. Scene management models and

overlap tests for tile-based rendering. In In Proc. EUROMICRO Symp. on

183

184 BIBLIOGRAPHY

Digital System Design (DSD 2004), pages 424–431, Washington, DC, USA,

2004. IEEE Computer Society. pages 112

[8] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Boosting mobile gpu perfor-

mance with a decoupled access/execute fragment processor. SIGARCH Com-

puter Architecture News, 40(3):84–93, 2012. pages 110

[9] D. Blythe. The Direct3D 10 System. ACM Transations on Graphics, 25(3):724–

734, 2006. pages 4, 56, 74

[10] M. Bóo, M. Amor, R. Concheiro, and M. Doggett. Efficient adaptive and

dynamic mesh refinement based on a non-recursive strategy. The Computer

Journal, 2012. pages 26, 54, 55, 163

[11] T. Boubekeur and C. Schlick. Generic Mesh Refinement on GPU. In Proceed-

ings of the HWWS ’05: ACM SIGGRAPH/EUROGRAPHICS Conference on

Graphics Hardware, pages 99–104, New York, NY, USA, 2005. ACM. pages 30,

32, 36, 108

[12] T. Boubekeur and C. Schlick. A Flexible Kernel for Adaptive Mesh Refinement

on GPU. Computer Graphics Forum, 27(1):102–113, 2008. pages 53

[13] T. Capin, K. Pulli, and T. Akenine-Möller. The state of the art in mobile

graphics research. Computer Graphics and Applications, IEEE, 28(4):74 –84,

july-aug. 2008. pages 107, 112

[14] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone.

In Proceedings of the 2010 USENIX conference on USENIX annual technical

conference, USENIXATC’10, pages 21–21, Berkeley, CA, USA, 2010. USENIX

Association. pages 110

[15] I. Castaño. Next-Generation Hardware Rendering of Displaced Subdivision

Surfaces. In Exhibition Tech. Session at the SIGGRAPH’08, New Orleans, LA,

2008. ACM Press, USA. pages 5

[16] E. Catmull and J. Clark. Recursively generated B-Spline surfaces on arbitrary

topological meshes. Computer-Aided Design, 10(6):350–355, 1978. pages 1

BIBLIOGRAPHY 185

[17] X. Chea, X. Liangb, and Q. Lib. G1 continuity conditions of adjacent NURBS

surfaces. Computer Aided Geometric Design, 22(4):285–298, 2005. pages 149

[18] K. Chung, Y. Chang-Hyo, K. Donghyun, and K. Lee-Sup. Shader-based tessel-

lation to save memory bandwidth in a mobile multimedia processor. Computer

and Graphics, 33(5):625–637, 2009. pages 108

[19] K. Chung, C.-H. Yu, D. Kim, and L.-S. Kim. Tessellation-enabled shader for a

bandwidth-limited 3D graphics engine. In Proceedings of CICC 2008: Custom

Integrated Circuits Conference, pages 367 –370, sept. 2008. pages 108

[20] R. Concheiro, M. Amor, and M. Bóo. Evaluation of Parametric Surfaces on

the GPU. In Proceedings of the ACACES’10: Advanced Computer Architecture

and Compilation for High-Performance and Embedded Systems., pages 13–16.

HiPEAC, 2010. pages 25, 30

[21] R. Concheiro, M. Amor, and M. Bóo. Synthesis of Bézier Surfaces. In

P. Richard, J. Braz, and A. Hilton, editors, Proceedings of the GRAPP’10: In-

ternational Conference on Computer Graphics Theory and Applications, pages

110–115. INSTICC Press, 2010. pages 3, 25, 29, 30, 102, 108, 120

[22] R. Concheiro, M. Amor, M. Bóo, and R. Doallo. Explotación de la tarjeta

gráfica para la śıntesis de modelos basados en superficies Bézier. In Proceeding

of the XIX Jornadas de paralelismo, pages 448–453, 2008. pages 25, 30

[23] R. Concheiro, M. Amor, M. Bóo, and R. Doallo. Śıntesis de superficies

paramétricas en tiempo real. In Proceedings of the ANACAP 2008: Work-

shop de Aplicaciones de Nuevas Arquitecturas de Consumo y Altas Prestaciones

(ANACAP 2008), 2008. pages 25, 30

[24] R. Concheiro, M. Amor, M. Bóo, and M. Doggett. Dynamic and Adaptive

Tessellation of Bézier Surfaces. In P. Richard and J. Braz, editors, Proceedings

of the GRAPP’11: International Conference on Computer Graphics Theory

and Applications, pages 100–105. SciTePress, 2011. pages 26, 55

[25] R. Concheiro, M. Amor, M. Bóo, I. Iglesias, E. J. Padrón, and R. Doallo.

Synthesis of Multiresolution Scenes with Global Illumination on a GPU. In

P. Richard, M. Kraus, R. S. Laramee, and J. Braz, editors, Proceedings of

186 BIBLIOGRAPHY

the GRAPP’12: International Conference on Computer Graphics Theory and

Applications, pages 274–279. SciTePress, 2012. pages 26, 55, 56

[26] R. Concheiro, M. Amor, M. Bóo, E. J. Padrón, and M. Doggett. Interactive

Rendering of NURBS Surfaces (under review). High Performance Graphics

(HPG), 2013. pages 28, 138

[27] R. Concheiro, M. Amor, M. Gil, and E. J. Padrón. Bézier tessellation in Hand-

held Devices (under review). International Conferences in Central Europe on

Computer Graphics, Visualization and Computer Vision (WSCG), 2013. pages

27

[28] R. Concheiro, M. Amor, E. J. Padrón, and M. Bóo. Tessellation Techniques

for Bézier Surfaces based on the Exploitation of the Spatial Coherence on GPU

(under review). Computer Aided Geometric Design, 2012. pages 26, 86

[29] R. L. Cook, L. Carpenter, and E. Catmull. The Reyes Image Rendering Archi-

tecture. SIGGRAPH Computer Graphics, 21:95–102, 1987. pages 3

[30] C. DeCoro and N. Tatarchuk. Real-Time Mesh Simplification using the GPU.

In In the Proceedings of the I3D’07: Symposium on Interactive 3D Graphics

and Games, pages 161–166, Seattle, WA, 29 April–02 May 2007. ACM, USA.

pages 4

[31] M. Doggett and J. Hirche. Adaptive view dependent tessellation of displacement

maps. In Proceedings of HWWS ’00: ACM SIGGRAPH/EUROGRAPHICS

Workshop on Graphics Hardware, pages 59–66, Interlaken, Switzerland, 21–22

August 2000. ACM Press. pages 53, 55

[32] D. Doo and M. Sabin. Behaviour of Recursive Division Surfaces Near Extraor-

dinary Points. Computer-Aided Design, 10(6):356–360, 1978. pages 1

[33] C. Dyken, M. Reimers, and J. Seland. Semi-uniform Adaptive Patch Tessella-

tion. Computer Graphics Forum, 28(8):2255–2263, 2009. pages 3, 29, 37

[34] C. Eisenacher and C. Loop. Data-Parallel Micropolygon Rasterization. In

Proceeding of the Eurographics 2010, pages 53–56, Switzerland, 3–7 May 2010.

The Eurographics Association. pages 3, 53, 81

BIBLIOGRAPHY 187

[35] C. Eisenacher, Q. Meyer, and C. Loop. Real-Time View-Dependent Rendering

of Parametric Surfaces. In Proceedings of the I3D ’09: Interactive 3D Graphics

and Games, pages 137–143, NY, USA, 27 February–01 March 2009. ACM Press.

pages 3, 53

[36] F. J. Espino, M. Bóo, M. Amor, and J. D. Bruguera. Hardware Support for

Adaptive Tessellation of Bézier Surfaces Based on Local Tests. Journal of

Systems Architecture, 53(4):233–250, 2007. pages 72

[37] G. E. Farin. NURBS - from projective geometry to practical use. AK Peters,

second edition, 1999. pages 11, 16, 137

[38] G. E. Farin. Curves and surfaces for CAGD: a Practical Guide. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 5th edition, 2002. pages 11,

16, 137

[39] K. Fatahalian, S. Boulos, J. Hegarty, K. Akeley, W. R. Mark, H. Moreton,

and P. Hanrahan. Reducing Shading on GPUs Using Quad-Fragment Merging.

ACM Transations on Graphics, 29:67:1–67:8, 2010. pages 3

[40] M. Fisher, K. Fatahalian, S. Boulos, K. Akeley, W. R. Mark, and P. Hanrahan.

DiagSplit: Parallel, Crack-free, Adaptive Tessellation for Micropolygon Ren-

dering. Proceedings of ACM SIGGRAPH Asia 2009, 28(5), December 2009.

pages xxxi, 7, 9

[41] M. Fisher, K. Fatahalian, S. Boulos, K. Akeley, W. R. Mark, and P. Hanra-

han. DiagSplit: Parallel, Crack-Free, Adaptive Tessellation for Micropolygon

Rendering. ACM Transations on Graphics, 28:150:1–150:10, 2009. pages 3, 150

[42] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer graphics:

principles and practice. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, second edition, 1990. pages 4, 10, 126

[43] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, D. Patter-

son, T. Anderson, and K. Yelick. The energy efficiency of IRAM architectures.

SIGARCH Computer Architecture News, 25(2):327–337, 1997. pages 109

188 BIBLIOGRAPHY

[44] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S. Mol-

nar, G. Turk, B. Tebbs, and L. Israel. Pixel-planes 5: a heterogeneous multi-

processor graphics system using processor-enhanced memories. In Proceedings

of the 16th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’89, pages 79–88, New York, NY, USA, 1989. ACM. pages 112

[45] Google. Android documentation. pages 108

[46] K. Grya. Microsoft DirectX9 Programmable Graphics Pipeline. Microsoft Press,

2003. pages 4

[47] M. Guthe, A. Balázs, and R. Klein. GPU-Based Trimming and Tessellation

of NURBS and T-Spline Surfaces. ACM Transations on Graphics, 24(3):1016–

1023, 2005. pages 3, 29, 30, 32, 36, 37, 44, 48, 108

[48] J. Hasselgren, J. Munkberg, and T. Akenine-Möller. Automatic Pre-Tessellation

Culling. ACM Transations on Graphics, 28:19:1–19:10, 2009. pages 140, 141

[49] K. Jankauskas. Time-efficient NURBs curve evaluation algorithms. In Proceed-

ings of the IT2010: 16th International Conference on Information and Sofware,

pages 60–69, 2010. pages 156

[50] T. Kanai. Fragment-Based Evaluation of Non-Uniform B-spline Surfaces on

GPUs. Computer-Aidded Design and Applications, 4(1-4):287–294, 2007. pages

3

[51] Khronos group. OpenGL specifications. Technical report. pages 114

[52] Khronos group. OpenGL ES. Technical report, 2010. pages 108, 115

[53] S.-H. Kim, S.-E. Yoon, S.-H. Chung, Y.-J. Kim, H.-Y. Kim, K. Chung, and

L.-S. Kim. A mobile 3-d display processor with a bandwidth-saving subdivider.

IEEE Trans. VLSI Syst., 20(6):1082–1093, 2012. pages 108, 109

[54] A. Krishnamurthy, R. Khardekar, and S. McMains. Direct Evaluation of

NURBS Curves and Surfaces on the GPU. In Proceedings of SPM’07: The

2007 ACM Symposium on Solid and Physical Modeling, pages 329–334, New

York, NY, USA, 2007. ACM. pages 138, 141

BIBLIOGRAPHY 189

[55] A. Krishnamurthy, R. Khardekar, and S. McMains. Optimized GPU Evaluation

of Arbitrary Degree NURBS Curves and Surfaces. Computer Aided Design,

41(12):971–980, 2009. pages 3, 155, 156

[56] S. Kumar and D. Manocha. Hierarchical visibility culling for spline models.

In Proceedings of the conference on Graphics interface ’96, GI ’96, pages 142–

150, Toronto, Ont., Canada, Canada, 1996. Canadian Information Processing

Society. pages 152

[57] S. Kumar, D. Manocha, B. Garrett, and M. Lin. Hierarchical back-face culling.

In In 7th Eurographics Workshop on Rendering, pages 231–240, 1996. pages

152

[58] S. Kumar, D. Manocha, and A. Lastra. Interactive display of large-scale nurbs

models. IEEE Transactions on Visualization and Computer Graphics, 2(4):323–

336, 1996. pages 152, 153

[59] C. Loop. Smooth Subdivision Surfaces Based on Triangles. PhD thesis, Uni-

versity of Utah, Utah, 1987. pages 1

[60] C. Loop and S. Schaefer. Approximating Catmull-Clark subdivision surfaces

with bicubic patches. ACM Transactions on Graphics, 27(1):8:1–8:11, Mar.

2008. pages 2

[61] C. T. Loop, M. Nießner, and C. Eisenacher. Effective Back-Patch Culling for

Hardware Tessellation. In Proceeding of the VMV 2011: Vision, Modeling, and

Visualization Workshop, pages 263–268, 4-6 October 2011. pages 153

[62] H. Lorenz and J. Döllner. Dynamic Mesh Refinement on GPU using Geometry

Shaders. In Proceedings of the WSCG ’08: 16-th International Conference

in Central Europe on Computer Graphics, Visualization and Computer Vision

2008, pages 97–104, Plzen–Bory, Czech Republic, 4–7 February 2008. ACM

Press, USA. pages 4, 53, 81

[63] F. Luna. Introduction to 3D Game Programming with DirectX 11. Mercury

Learning Series. International Pub Marketing, 2012. pages 5

[64] Mali. Mali GPU OpenGL ES. Application Development Guide. Technical

report, 2009. pages 124

190 BIBLIOGRAPHY

[65] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical Ray Tracing of Trimmed

NURBS Surfaces. Journal of Graphics Tools, 5:27 – 52, 2000. pages 3

[66] Microsoft. DirectX SDK Documentation, 2007. pages 36, 42, 44, 75, 114

[67] J. Munkberg, J. Hasselgren, and T. Akenine-Möller. Non-uniform Fractional

Tessellation. In Proceedings of the GH ’08: 23rd ACM SIGGRAPH/EURO-

GRAPHICS Symposium on Graphics Hardware, pages 41–45, Aire-la-Ville,

Switzerland, Switzerland, 2008. Eurographics Association. pages 6

[68] J. Munkberg, J. Hasselgren, R. Toth, and T. Akenine-Möller. Efficient bounding

of displaced bezier patches. In Proceedings of the Conference on High Perfor-

mance Graphics, HPG ’10, pages 153–162, Aire-la-Ville, Switzerland, Switzer-

land, 2010. Eurographics Association. pages 153

[69] A. Munshi, D. Ginsburg, and D. Shreiner. OpenGL(R) ES 2.0 Programming

Guide. Addison-Wesley Professional, 1 edition, 2008. pages 115

[70] H. Nguyen. GPU GEMS 3, chapter third. Addison-Wesley Professional, first

edition, 2007. pages 44

[71] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray Tracing Trimmed Rational

Surface Patches. ACM SIGGRAPH 1990, 24:337 – 345, 1990. pages 3

[72] Nvidia. Technical Brief. Microsoft DirectX 10: The Next-Generation Graphics

API, 2006. pages 4

[73] NVIDIA. Technical Brief. Bringing High-End Graphics to Handheld Devices.

Technical report, 2011. pages 111, 124

[74] NVIDIA. Technical Brief. The Benefits of Quad Core CPUs in Mobile Devices.

Technical report, 2011. pages 111

[75] R. Pajarola and E. Gobbetti. Survey of Semi-regular Multiresolution Models

for Interactive Terrain Rendering. Visual Computing, 23(8):583–605, July 2007.

pages 98

[76] A. Patney, M. S. Ebeida, and J. D. Owens. Parallel view-dependent tessellation

of Catmull-Clark subdivision surfaces. In Proceedings of the High Performance

BIBLIOGRAPHY 191

Graphics, pages 99–108, New York, NY, USA, 01–03 August 2009. ACM. pages

53

[77] A. Patney and J. D. Owens. Real-Time Reyes-Style Adaptive Surface Subdivi-

sion. ACM Transations on Graphics, 27:143:1–143:8, 2008. pages 3

[78] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: surface elements

as rendering primitives. In Proceedings of the SIGGRAPH’00: 27th annual

conference on Computer graphics and interactive techniques, pages 335–342,

New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. pages

140

[79] L. Piegl and W. Tiller. The NURBS Book. Springer, 1997. pages 11, 16, 29,

137, 138, 156

[80] H. Prautzsch and T. Gallagher. Is there a Geometric Variation Diminishing

property for B-Spline or Bézier Surfaces? Computer Aided Geometric Design,

9(2):119–124, 1992. pages 16, 23

[81] K. Pulli, J. Vaarala, V. Miettinen, T. Aarnio, and K. Roimela. Mobile 3D

Graphics: with OpenGL ES and M3G. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2007. pages 115

[82] D. F. Rogers. An Introduction to NURBS with Historical Perspective. Morgan

Kaufmann, 2001. pages 11, 16, 29, 137

[83] A. L. Sarmiento, M. Amor, E. J. Padrón, C. V. Regueiro, R. Concheiro, and

P. Quint́ıa. Evaluating Performance of Android Systems as a Platform for

Augmented Reality Applications (in press). International Journal of Advances

in Software, 2012. pages 27

[84] M. Schwarz and M. Stamminger. Fast GPU-based Adaptive Tessellation with

CUDA. Computer Graphics Forum, 28(2):365–374, 2009. pages 3, 81

[85] M. Schwarz and M. Stamminger. Fast GPU-based adaptive tessellation

with CUDA. Computer Graphics Forum (Proceedings of Eurographics 2009),

28(2):365–374, 2009. pages 53

192 BIBLIOGRAPHY

[86] T. W. Sederberg and R. J. Meyers. Loop detection in surface patch intersec-

tions. Computer Aided Geometric Design, 5(2):161–171, 1988. pages 153

[87] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification (Ver-

sion 3.0 - August 11, 2008), 2008. pages 114

[88] P. Shirley. Fundamentals of Computer Graphics. Addison-Wesley, 2003. pages

4, 38, 77, 123

[89] L. A. Shirman and S. S. Abi-Ezzi. The cone of normals technique for fast

processing of curved patches. Computer Graphics Forum, 12(3):261–272, 1993.

pages 153

[90] T. Ni and I. Castaño. Efficient substitutes for Subdivision Surfaces. In SIG-

GRAPH Course Notes, New Orleans, LA, August 2009. ACM Press, USA.

pages 5, 74

[91] P. Walsh. Advanced 3D Game Programming with DirectX 10.0. Wordware,

2008. pages 4

[92] D. Wexler, L. Gritz, E. Enderton, and J. Rice. GPU-Accelerated High-

Quality Hidden Surface Removal. In Proceedings of the HWWS ’05: ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 7–14,

New York, NY, USA, 2005. ACM. pages 3

[93] Y. I. Yeo, L. Bin, and J. Peters. Efficient Pixel-Accurate Rendering of Curved

Surfaces. In Proceedings of the i3D’12: ACM SIGGRAPH Symposium on In-

teractive 3D Graphics and Games, pages 165–174, New York, NY, USA, 2012.

ACM. pages 2, 3, 6

[94] M. Zechner and R. Green. Beginning Android 4 games development. Apress,

Berkeley, CA, USA, 2011. pages 115

[95] K. Zhou, Q. Hou, Z. Ren, M. Gong, X. Sun, and B. Guo. RenderAnts: Inter-

active Reyes Rendering on GPUs. ACM Transations on Graphics, 28:155:1–

155:11, 2009. pages 3

[96] R. Zioma. Unity: iOS and Android: cross platform challenges and solutions.

In Exhibition Tech. Session at the SIGGRAPH’12, Los Angeles, 2012. ACM

Press, USA. pages 112

