PhD Thesis

Real Time Rendering of Parametric
Surfaces on the GPU

Raquel Concheiro Figueroa

2013

=
— <

Departamento de Electronica y Sistemas

Universidade da Coruna, Spain

Departamento de Electronica y Sistemas

Universidade da Coruna, Spain

.

=

PuD THESIS

Real Time Rendering of

Parametric Surfaces on the GPU

Raquel Concheiro Figueroa

March 2013

PhD Advisors:
Margarita Amor Lopez

Montserrat Béo Cepeda

Dr. Margarita Amor Lopez Dr. Montserrat Boo Cepeda

Titular de Universidad Titular de Universidad
Dpto. de Electronica y Sistemas Dpto. de Electrénica y
Universidade da Coruna Computaciéon

Universidade de Santiago de

Compostela

CERTIFICAN

Que la memoria titulada “Real Time Rendering of Parametric Surfaces on the GPU”
ha sido realizada por D*. Raquel Concheiro Figueroa bajo nuestra direccion en el
Departamento de Electronica y Sistemas de la Universidade da Coruna y concluye la
Tesis Doctoral que presenta para optar al grado de Doctor en Ingenieria Informatica

con la Mencion de Doctor Internacional.

En A Coruna, a 27 de Febrero de 2013

Fdo.: Margarita Amor Lopez Fdo.: Montserrat B6o Cepeda
Directora de la Tesis Doctoral Directora de la Tesis Doctoral

Ve B°: Juan Tourino Dominguez

Director del Dpto. de Electronica y Sistemas

The Dissertation Committee for Raquel Concheiro Figueroa certifies that this is

the approved version of the following dissertation:

Real Time Rendering of Parametric Surfaces on the GPU

Committee:

President,

Member,

Member,

Member,

Secretary,

Resumen

A pesar de que el primer circuito electronico especifico para acelerar la sintesis
de la computacién grafica fue disenado a principios de los anos ochenta, hubo que
esperar hasta 1999 para que la Nvidia Geforce 256 popularizara el término GPU
(Graphics Processing Unit). Desde este primer chip gréafico que procesaba un minimo
de diez millones de poligonos por segundo, hasta las GPUs actuales que ofrecen una
solucién competitiva para la computacién masivamente paralela, ha habido una
continua investigacién y un crecimiento ininterrumpido. En los tltimos anos, la
computacién grafica se ha expandido a muchas y muy diversas areas cientificas y
tecnoldgicas, lo que ha impulsado la mejora de la arquitectura de la GPU con el

objetivo de proporcionar la sintesis de modelos complejos y realistas.

Tradicionalmente, la estructura de las GPUs esta orientada a triangulos y ha
sido especificamente disenado para procesar y sintetizar mallas de tridngulos. Sin
embargo, se ha demostrado que este enfoque es una solucién insuficiente para la
sintesis de modelos complejos, ya que, entre otras cosas, el bus que conecta CPU
y GPU puede llegar a ser un cuello de botella en las aplicaciones que suponen un

intercambio masivo de informacion.

Con el objetivo de minimizar los inconvenientes detectados en las GPUs orien-
tadas a tridangulos, esta tesis propone una nueva estructura de GPU orientada a su-
perficies paramétricas. Aunque en este momento hay implementaciones comerciales
que proporcionan, en mayor o menor medida, cierta flexibilidad para la evaluacién de
superficies paramétricas, ninguna de ellas ha sido disenada para soportar la sintesis

directa de superficies paramétricas sin ninguna conversion a mallas de tridngulos.

La eleccion de superficies paramétricas viene motivada porque éstas proporcio-

nan una representacion compacta, lo que minimiza los requerimientos de memoria y

VII

VIII

permite obtener un modelo mas continuo y suavizado que una malla de tridngulos.
Ademas de todo esto, las caracteristicas matematicas de estas superficies propor-
cionan propiedades muy interesantes en el campo de la computacién grafica ya que,
por ejemplo, simplifican la animacion y la colision debido a que usando superficies

paramétricas menos puntos deben ser controlados que con la sintesis de poligonos.

De todas formas, el aspecto mas relevante para el uso de superficies paramétricas
viene de la mano de los nuevos campos de aplicacién en distintas areas cientificas y
tecnoldgicas. En estas areas, la exactitud del modelo representado es especialmente
relevante lo que supone un gran impulso hacia el desarrollo de modelos complejos
basados en superficies paramétricas, puesto que éstos pueden ser descritos de una

forma mas precisa mediante ecuaciones que por medio de una malla de tridngulos.

El esquema tradicional para la sintesis de superficies paramétricas, se basa en la
evaluacién y subdivision de las superficies paramétricas en la CPU, donde se genera
una malla de tridangulos que posteriormente sera sintetizada en la GPU. Esta tesis
va un paso mas alla y propone diferentes esquemas para la evaluacion y sintesis de
estas superficies directamente en la GPU. Inicialmente, se proponen diferentes esque-
mas para la sintesis de las superficies Bézier, entre los que podemos encontrar una
propuesta para una subdivision no adaptativa con dos alternativas: Vertex Shader
Tessellation (VST) y Geometry Shader Tessellation (GST); otra propuesta para una
implementacién completamente adaptativa (DABT) basada en la generacién de una
malla mas adaptada a las condiciones del modelo y que permite renderizar modelos
de alta calidad con un menor nimero de primitivas de salida; y por tltimo una pro-
puesta de una subdivisiéon semi adaptativa que sintetiza las mejores caracteristicas
de las dos propuestas anteriores con el objetivo de obtener una subdivision adapta-
tiva pero con una evaluacién mas eficiente. Por otro lado, y como actualmente los
dispositivos méviles son los dispositivos mas habituales con capacidad para sintesis
grafica, esta tesis incluye un diseno para la sintesis de modelos de superficies Bézier
(VSTHD) en las GPUs implementadas en estos dispositivos.

En tltimo lugar, se ha propuesto una nueva estructura de GPU para la sintesis
de superficies NURBS en tiempo real. Un profundo anélisis de las caracteristicas
hardware para la generaciéon de nuevas primitivas ha detectado que las actuales
GPUs no son adecuadas para la sintesis de superficies NURBS. Por ese motivo,

Rendering Pipeline for NURBS Surface (RPNS) se propone como una novedosa

IX

solucién para la sintesis de superficies NURBS en la GPU sin ningiin pre-proceso ni

ninguna subdivision previa.

El desarrollo de esta tesis sigue las lineas de metodologias clasicas; incluyendo
planificacién, diseno, analisis, evaluacion y viabilidad de las implementaciones pro-
puestas. Su principal objetivo es contribuir con propuestas que hagan viable una
estructura de la GPU orientada a la sintesis de superficies paramétricas en vez de
mallas de tridngulos. Ademds, se ha realizado un profundo analisis para resaltar las
limitaciones de las GPUs orientadas a triangulos y las propuestas aqui recogidas se
han adaptado para explotar las caracteristicas hardware de este tipo de arquitec-

turas.

En primer lugar, se desarroll6 un estudio cuidadoso del estado del arte en el
campo de las GPU, especificamente de las capacidades de sintesis de modelos com-
plejos. Como resultado de este andlisis se detectaron las principales debilidades de
este tipo de arquitecturas, y posteriormente se han propuesto disenos orientados
a minimizar los problemas previamente detectados. Es por eso, que esta tesis se
centra en la sintesis de modelos complejos con superficies paramétricas, ya que es-
ta representacion soluciona, entre otros problemas, la degradacion del rendimiento
debido al cuello de botella del bus CPU-GPU, permite hacer un uso mas eficiente
de la memoria de la GPU gracias a que tienen una representacion mas compacta, y
ademas, proporcionan una representacion mas exacta ya que se describe el modelo
mediante ecuaciones matematicas. Hay que destacar que esta tesis se ha enfocado
tanto a superficies Béziers como a superficies NURBS. Las primeras porque debido
a la rigidez y simplicidad de su representacion matematica son adecuadas para ser
evaluadas en la arquitectura de las GPUs actuales enfocadas a triangulos, y las se-
gundas porque sus caracteristicas matematicas las hacen especialmente indicadas
para la representacion de modelos complejos, siendo en estos momentos un estandar
de facto para el software de diseno y modelado asistido por ordenador (CAD/CAM)),

lo que hace su evaluacion directa en la GPU deseable.

Finalmente, resaltar que todas estos disenos han contribuido a enfatizar las ven-
tajas de la evaluacion de superficies paramétricas en la GPU, proponiendo estrate-
gias, que si bien han sido disefiadas con el objetivo de lograr una implementacion
hardware, han logrado la sintesis de modelos complejos en tiempo real con una im-

plementacion software adaptada a la arquitectura subyacente, superando en algunos

casos el rendimiento obtenido por propuestas implementadas en hardware.

Esta tesis ha demostrado que una estructura de la GPU orientada a superficies
paramétrica encaja perfectamente en la sintesis de modelos complejos, debido a
las propiedades matematicas de estas superficies las hacen especialmente adecuadas
para la computacién grafica. A continuacion se detallan las principales caracteristicas
y las conclusiones mas relevantes extraidas de los disenos incluidos en esta tesis. En
primer lugar se tratan los disenos enfocados a las superficies Bézier tanto en GPUs

de escritorio como para dispositivos moviles. Posteriormente, se analiza el diseno
enfocado a superficies NURBS.

En primer lugar, esta tesis detalla una propuesta no adaptativa para la subdi-
vision de superficies Bézier en la GPU, la cual esta basada en la explotacion de la
coherencia espacial de la informacién. Cada superficie Bézier se considera como una
primitiva de entrada a la GPU y se representa por medio de sus puntos de control.
Esta propuesta se caracteriza por incluir una subdivisién y evaluacién eficiente de
las superficies basada en un acceso coherente a la memoria. Se han implementa-
do dos alternativas diferentes, considerando para ello diferentes arquitecturas de la
GPU. Por un lado, VST se ha disenado para GPUs que no tienen la capacidad de
generar primitivas en tiempo de ejecucion, mientras que GST ha sido disenado para

las GPUs que cuentan con un generador de primitivas.

VST se caracteriza por la eficiente utilizacion del mapa paramétrico de vértices
virtuales que permite realizar un ajuste preciso del nivel de subdivision deseado. Los
buenos resultados obtenido por esta estrategia son debidos a una reduccion de las
sincronizaciones CPU-GPU, y a una eficaz evaluacién de las superficies Bézier que

permite una eficiente explotacion de la localidad de los datos.

Por otro lado, GST se basa en las capacidades de la generacién de primitivas
en la GPU. En este caso el mapa paramétrico de vértices virtuales se generan en
tiempo de ejecucién, disminuyendo los requerimientos de almacenaje. GST realiza
una eficiente evaluacién de las Bézier previamente al proceso de muestreado, reuti-
lizando la evaluacién de la superficie Bézier para cada nuevo punto generado. El
principal problema de esta estrategia viene dado por la arquitectura de la GPU que
se caracteriza por restringir el nimero de primitivas que pueden ser generadas por

cada primitiva de entrada. Para evitar esta limitaciéon, GST incluye un particionado

XI

en zonas que permite obtener una mayor resolucién que la que teéricamente propor-
ciona la GPU. Debido a esto, la evaluacion de la superficie Bézier pasa a reutilizarse

unicamente dentro de cada una de las zonas de particionado del mapa paramétrico.

Ambas alternativas muestran el impacto en el rendimiento de un shader sin
divergencia y resaltan los beneficios de la explotacién de la coherencia espacial.
Esta propuesta demuestra que una evaluacién basada en superficies paramétricas
puede producir una sintesis en tiempo real de modelos complejos donde el modelo es
subdividido y sintetizado en la GPU con un nivel de detalle seleccionado en tiempo

de ejecucion.

Esta tesis también analiza las ventajas y desventajas de una subdivision adapta-
tiva, mediante Dynamic and Adaptive Bézier Tesselation (DABT). A diferencia de
la propuesta no adaptativa que genera un gran nimero de tridangulos que no van a
contribuir a la calidad de la imagen resultante, DABT es un esquema de subdivision
adaptativo donde el nimero de triangulos procesados se reduce considerablemente

sin que ello suponga ninguna pérdida de calidad en la imagen final.

DABT propone un procedimiento de subdivision sin ninguna estructura recursiva
y donde la posicién de los vértices candidatos a ser insertados pueden ser facilmente
evaluadas a través de sus coordenadas baricéntricas. Ademas, el nivel de subdivision
puede seleccionarse en tiempo de ejecucién. La metodologia empleada se basa prin-
cipalmente en tres puntos: el uso de un patrén de subdivision fijo que se encarga de
guiar el procedimiento, el uso de test locales para decidir si un vértice se inserta o no
y un procedimiento eficiente para la reconstruccion de la malla resultante. DABT
sigue una propuesta adaptativa con tres niveles de resoluciéon por cada tridangulo
procesado. En concreto, se selecciona un nivel de resoluciéon por cada uno de los
lados de los tridngulos, y cada uno de ellos se proyecta hacia el centro baricéntrico

del triangulo, ocupando una tercera parte del triangulo.

DABT se caracteriza por una subdivision adaptativa con el objetivo de sintetizar
los menos tridngulos posibles sin perder calidad en la imagen final. Sin embargo, a
pesar de sintetizar un ntimero bastante menor de primitivas que la propuesta no
adaptativa, el rendimiento obtenido es peor, debido a la divergencia introducida
para permitir la adaptabilidad. Esta tesis resalta el impacto e inconvenientes de la

divergencia en la ejecucion en la GPU. Con el objetivo de mantener las caracteristicas

XII

mas relevantes de las propuestas completamente adaptativa y de la no adaptativa,

se ha desarrolla una propuesta semi adaptativa.

La propuesta semi adaptativa es una solucion intermedia entre la propuesta no
adaptativa y la completamente adaptativa. En este caso, se intenta mantener un
cierto grado de divergencia del flujo de los algoritmos, pero sin sacrificar por ello el
rendimiento obtenido cuando no se introduce divergencia. Este esquema reduce la
divergencia con el objetivo de conseguir una utilizacién 6éptima de los recursos com-
putacionales de la GPU, aunque sigue manteniendo cierto grado de adaptabilidad.
Con todo esto, se ha disenado una propuesta que aunque consigue sintetizar muchos
menos triangulos que la propuesta no adaptativa, consigue también reducir consid-

erablemente la divergencia introducida en la propuesta completamente adaptativa.

El esquema semi adaptativo es una version simplificada de la estrategia com-
pletamente adaptativa y estd basada unicamente en un tnico nivel de resolucién
por triangulo. Las condiciones que determinan la inserciéon o no de nuevos vértices,
solo se aplican en las posiciones candidatas localizadas en los lados originales del
tridngulo grueso. Mientras tanto, la inserciéon de nuevos vértices en el interior del

tridngulo se basa en los vértices insertados en los lados del mismo.

Aprovechando nuestras propuestas para las GPUs de escritorio hemos proyectado
una aproximacion a las GPUs de los dispositivos méviles, ya que éstos son actual-
mente los dispositivos con capacidad de sintesis graficas mas habituales. Una nueva
generacién de GPUs ha sido especificamente disenada para encajar en estos disposi-
tivos porque los consumidores demandan continuamente mejoras en las capacidades
de sintesis. Estas GPUs implementan tinicamente un subconjunto de las caracteristi-
cas disponibles en una GPU de escritorio, ya que sus caracteristicas hardware como
su reducido tamano o que estan alimentados por baterias, no permite implemen-
tar una GPU de escritorio actual. En concreto, estas GPUs han sido disenadas
para ofrecer una alto rendimiento grafico, pero mientras garantizan una reduccion
el consumo de potencia. Esta tesis presenta una propuesta para la subdivision de
superficies Bézier en esos dispositivos y se propone un esquema para la sintesis de
superficies Béziers en tiempo real, Vertex Shader Tessellation in HandHeld Devices
(VSTHD), especialmente enfocado a las caracteristicas de estos dispositivos, que
ademds de identificar los factores clave en las limitacién del rendimiento y permite

identificar aquellos aspectos mejorables.

XIII

Como las GPUs implementadas en dispositivos méviles no permiten la generacién
de primitivas en tiempo de ejecucién, VSTHD se basa en una malla de vértices vir-
tuales al igual que VST. Sin embargo, y debido al tamano de la memoria implemen-
tada actualmente en estos dispositivos, se han desarrollado dos variantes: Uniform
VSTHD que almacena en la memoria de variables uniformes y Texture VSTHD que

utiliza la memoria de texturas.

Por 1ltimo, contemplamos también el modelado con superficies NURBS, ya que
son un estandar de facto en el software CAD/CAM. Como las superficies NURBS
son considerablemente mas complejas que las Béziers, habitualmente se convierten
en superficies Béziers en la CPU y estas tltimas son enviadas a la GPU para ser
sintetizadas. Sin embargo, esta tesis va un paso mas alla y propone el diseno de una

nueva estructrua de GPU para una evaluacién y subdivision eficiente de superficies
NURBS en la GPU, llamado Rendering Pipeline for NURBS Surfaces (RPNS).

Este diseno se caracteriza por proponer una GPU completamente orientada a
superficies paramétricas, y consta de tres médulos: geometry, sampler and rasterizer.
Inicialmente, los KSQuads se procesan en la etapa del geometry, posteriormente en
la etapa de sampler se muestrean los KSQuads en KSDices, lo que permite un ajuste
detallado en la densidad de primitivas para evitar huecos o cracks en la imagen final,

y finalmente los KSDices son sintetizados para formar la imagen resultante.

RPNS propone dos nuevas primitivas: KSQuad, una primitiva de entrada y KS-
Dice una primitiva de sintesis. KSQuad es una primitiva de entrada a la GPU que
mantiene las propiedades geométricas de la superficie NURBS original y proporciona
un manejo regular y flexible lo que reduce la divergencia en la evaluacion. Por su
parte, KSDice es la primitiva de sintesis propuesta en RPNS. Como es una estructura
orientada a superficies paramétricas, en lugar de sintetizar triangulos se sintetizaran
KSDice, donde cada uno de ellos es la proyeccién de un trozo muestreado de la
NURBS original.

Por otro lado, una de las principales aportaciones de RPNS es que incluye una
formula eficiente para calcular las funciones base de las superficies NURBS, lo que
era uno de los principales inconvenientes para la evaluacién de superficies NURBS
en la GPU hasta este momento. Este método, llamado Stair Strategy, se basa en el

analisis de las caracteristicas matemaéticas de las superficies NURBS y se caracteriza

X1V

por evitar una evaluacion recursiva de las funciones base.

Ademas, técnicas de culling como el backpatch y el backface culling se han con-
templado en esta propuesta. En concreto se ha implementado una técnica de backface
culling que hemos llamado Dice Culling que se sitia al final de la etapa de sampler
ya que se evalua la orientacion de los KSDices. Por otro lado, se han introcido dos
novedosas técnicas de backpach culling, Light Quad Culling y Strong Quad Culling.
Estas técnicas de culling se caracterizan por eliminar lo antes posible aquellas re-
giones de la superficie que no van a ser visibles. Por ese motivo, se sitian al principio
de la etapa del geometry y se dedican a comprobar si los distintos KSQuad estan

orientados hacia la camara o no.

En resumen, esta memoria presenta disenos con diferentes grados de adaptabili-
dad para la subdivision de las superficies Bézier, contemplando también el caso de las
GPUs implementadas en los nuevos dispositivos moviles, y por tltimo, se propone
una estructura para la sintesis de superficies NURBS. Estas propuestas demues-
tran que incluso en las GPUs actuales orientadas a triangulos es posible sintetizar

modelos complejos de superficies Bézier y NURBS en tiempo real.

En resumen, las principales contribuciones de esta Tesis son:

1. Una nueva propuesta no adaptativa que consigue tiempo real en la sintesis
de superficies Bézier incluso en arquitecturas previas de la GPU, las cuales
no disponen de un generador de primitivas. Esta propuesta se basa en un uso
eficiente de la memoria, en una explotacion de la localidad de los datos vy,
en aquellas arquitecturas con generador de primitivas, también en una reuti-
lizacion de la evaluacion de las superficies Bézier, ya que en este caso el proceso
de muestreo es posterior a la evaluacion de la superficie lo que permite reuti-

lizar estos calculos.

2. El diseno de una técnica de particionado en zonas de la superficie paramétrica,
que permite soslayar la limitacion hardware del nimero de primitivas que
pueden generarse. En este caso, esta restriccion limitaria la maxima resolucion
que se puede aplicar a cada superficie Bézier, limitando por tanto la calidad
de la imagen resultante. Sin embargo, la técnica del particionado en zonas, a
pesar de complicar levemente el calculo de la Bézier, permite obtener cualquier

nivel de resolucién deseado.

XV

. El diseno de una técnica completamente adaptativa para la evaluacion de
superficies Bézier (DABT) basada en el uso de un patrén fijo de subdivisién y

en un procedimiento eficiente de reconstrucciéon de la malla a sintetizar.

. Un proceso de subdivisiéon de tridngulos sin ninguna estructura recursiva y
que permite aplicar un nivel de subdivision por cada uno de los lados del
triangulo. Como el nivel subdivisién se calcula en base a informacion local al
lado, este proceso permite una gran adaptabilidad sin introducir ningiin hueco
entre triangulos vecinos, ya que los lados que se solapan evaltian las mismas

condiciones de localidad.

. Una propuesta semi adaptativa que permite realizar una evaluacién adapta-
tiva mientras se minimiza la divergencia del flujo del algoritmo asociada a
este proceso adaptativo. Este técnica se caracteriza por aunar las ventajas de
una subdivision adaptativa, en la cual se reduce el nimero de tridangulos a
sintetizar, y las mejores condiciones de una subdivisién no adaptativa, que se

caracteriza por permitir una evaluacién sin divergencia.

. Un esquema VSTHD, para la evaluacion de superficies Bézier en los disposi-
tivos moviles actuales. VSTHD esta adaptado a las fuertes resticciones hard-
ware de las GPUs de estos dispositivos, ya que actualmente no implementan
ningin generador de primitivas, el tamano de la memoria que poseen es bas-

tante limitado y tienen un nimero reducido de ntcleos.

. Una propuesta, RPNS, especificamente disenada para la sintesis de superficies
NURBS en la GPU. En concreto RPNS es una estructura orientada a superfi-
cies paramétricas donde no resulta necesario hacer una conversién a mallas de
tridngulos. El diseno de RPNS consta de tres modulos diferenciados: geome-
try, sampler y rasterizer. En la etapa del geometry se procesa la primitiva de
entrada; en la etapa de sampler se realiza el muestreo correspondiente, y por

ultimo en la etapa de rasterizer se sintetiza la primitiva de salida.

. Una nueva primitiva de entrada a la GPU, llamada KSQuad que se caracteriza
por mantener las propiedades geométricas de la superficie NURBS original
mientras permite evaluar en paralelo e independientemente distintas zonas de

la misma superficie NURBS, que puede tener un nivel de detalle muy diferente.

XVI

9. Una primitiva de sintesis llamada KSDice que permite una sintesis directa de
superficies paramétricas sin ninguna conversiéon a malla de tridangulos. Cada
KSDice se genera en la etapa de sampler, donde se realiza un muestreado de
la zona de la superficie NURBS representada por cada KSQuad, siendo cada

KSDice la proyeccién de un trozo muestreado de la superficie NURBS original.

10. Una formulacion eficiente y no recursiva del célculo de las funciones base de
las superficies NURBS, llamada Stair Strategy. Este método ha sido disenado
pensando en las caracteristicas de una evaluacion en una GPU, y por ello
permite evitar la recursividad de la NURBS, principal razén que dificultaba
el calculo de estas funciones en la GPU. En concreto Stair Strategy reduce el
calculo de las funciones base a una suma de productos que pueden ser evaluados

eficientemente en GPU.

11. Diseno e implementacién de diferentes técnicas de culling que han sido situadas
en diferentes etapas de RPNS. Mientras, Dice Culling esta situada al final de
la etapa de sampler y se basa en una técnica clasica de backface culling, se
han introcido dos novedosas técnicas de backpach culling, Light Quad Culling

y Strong Quad Culling.

Todas estas contribuciones se pueden resumir diciendo que el objetivo principal
de esta tesis es proponer disenios que apoyen la implementacién de una GPU orienta-
da a superficies paramétricas en lugar de orientada a triangulos. Es decir, esta tesis
demuestra la versatilidad de las superficies paramétricas, asi como lo adecuadas que
son para la sintesis de modelos complejos. Por ltimo, destacar que a su vez, esta
tesis contribuye con varias propuestas para la evaluacion eficiente y en tiempo real

de los modelos complejos representados con superficies paramétricas en GPUs.

A padrino,

A mi famalia.

Acknowledgments

It would not have been possible to write this thesis without the help and support
of the people around me, to only some of whom it is possible to give particular

mention here.

Firstly, I owe my thanks to my thesis advisors, Marga and Montse, for the
confidence they placed in me; I especially owe my deepest gratitude to Marga for her
guidance and support, every single step of the way. I would also like to acknowledge
to the GAC group, especially Emilio and the past and present members of the Lab
0.2 for their kindness and friendship, which made my experience easier over these

years.

I would also like to acknowledge Michael Doggett and the guys from the LUGG
group for their warm welcome in Sweden. Also my acknowledgements to Marisa Gil

and Xabier Martorell for being my hosts during my visit to the UPC.

Next, and foremost, there are not enough words to thank my loving family, who
have been there for me every single day of my life. Thanks to my parents, Ruth
and madrina, for giving me solid roots from which I could grow, for encouraging
me and for their unswerving love and support. I would also like to thank Dyer for
being always positive, for making me laugh and for his friendship, affection and
unequivocal support, for which my mere expression of thanks does not suffice. Also
my acknowledgements to my grandma, my aunt Loli and my cousins Rosalia and
Xurxo for their outstanding support and for being a constant and active presence
in my life. Finally, I owe my thanks to my friends, Suso, Ana, Yoli, Lourdes, Marta
and to those for whom there is not enough space to give a particular mention here,
for their invaluable support, patience and friendship. Many thanks to all of you,
who have been helping me at different occasions and who, in one way or another,

have influenced this thesis.

Finally, I am thankful to the following institutions for funding this work: Com-
puter Architecture Group and the Department of Electronic and Systems at the

University of A Coruna for the human and material support, the Ministry of Ed-

XX

ucation and Science and the former Ministry of Science and Innovation of Spain
for the projects TIN2007-67537-C03-02, TIN2010-16735 and the FPI Grant BES-
2008-004533, Xunta de Galicia under the Program for Consolidation of Competitive
Research Groups ref. 2010/06, 08TIC001206P and INCITEOS8PXIB105161PR, par-
tially supported by FEDER funds and finally to the European Network of Excellence
on High Performance and Embedded Architecture and Compilation (HiPEAC).

For any errors or inadequacies that may remain in this work, of course, the
responsibility is entirely my own.

Raquel.

Abstract

Although the first electronic circuit specifically designed to accelerate rendering
was developed in the early 1980s, the term GPU (Graphics Processing Unit) was
popularized by the Nvidia Geforce 256 in 1999. From this first single-chip processor,
which processes a minimum of ten million polygons per second, to current GPUs,
which offer a competitive solution to massive parallel computation, there has been

continuous research and uninterrupted growth.

In recent years, the demand for computer graphics has expanded across many
scientific and engineering areas. Hence, the interactive rendering of complex and
realistic models has become a hot topic in computer graphics, supported by unstop-
pable development in the pipeline of the GPU.

Current GPU pipelines are triangle oriented and have been designed to process
and render a large amount of triangles. Nevertheless, as the CPU-GPU bus is a
habitual bottleneck, a triangle-oriented pipeline has proved to be a limited solution.
As complex models can be more precisely described by equations than by a triangle
mesh, parametric surfaces have gained ground as a new paradigm as they introduce
relevant characteristics into the representation along with the rendering of complex
models in real time. The compact representation provided by these surfaces reduces
memory consumption and, moreover, its representation provides smoother, more
continuous models than a set of triangles. Parametric surfaces can also select the
level of detail on the fly and they are invariant under an affine transformation,
thus they can be easily scalable. In addition to their mathematical characteristics,
parametric surfaces provide interesting properties in computer graphics as animation
and collision detection become simpler and faster than a set of polygons, owing to
the fact that a much smaller number of points need to be processed. Nonetheless,

parametric surfaces are usually tessellated as set of triangles in the CPU and finally

XXII

these triangles are sent down the GPU pipeline to be rendered. This dissertation goes
a step further and proposes the evaluation and tessellation of parametric surfaces
on the GPU.

This dissertation includes a deep analysis of the rendering of parametric surfaces
on the GPU focused on the mathematical characteristics of parametric surfaces with
the aim of providing an efficient strategy for rendering complex models in real time.
Two different parametric surfaces have been analyzed: Bézier and NURBS surfaces.
Bézier surfaces have been considered as an input primitive owing to their simple and
regular representation. However, as the NURBS descriptions are more suitable for
complex models, the direct rendering of NURBS models has also been analyzed in
this thesis. In conclusion, this thesis elaborates on different strategies for the real

time rendering of complex models represented as parametric surfaces.

In this thesis a set of schemes for the tessellation of Bézier surfaces on the
GPU are designed: a non-adaptive approach, a fully adaptive proposal and a semi-
adaptive approach with an intermediate degree of flexibility. The non-adaptive
proposal is based on the on-the-fly generation of the parametric grid according to
the level of resolution of each object and the camera position that determines the
refinement degree of the surface. This proposal considers each Bézier surface as the
input primitive to the pipeline, thus Bézier surfaces are tessellated and evaluated on
the GPU and the computational power of current GPUs is exploited with a com-
putational complex shader and an optimized memory access is designed. Although
a single version of the proposal is possible, generating two different variants allows
many specific details to be tweaked for optimal performance, depending on the spe-
cific GPU architecture. Therefore, a Vertex Shader Tessellation (VST) variant is
designed for GPU which could only operate on existing data, such as pipelines based
on DirectX9 Meanwhile a Geometry Shader Tessellation (GST) variant is designed
for GPUs which allows the generation and destruction of geometric primitives, such
as those based on DirectX10 or DirectX11.

With respect to the fully adaptive, Dyanamic and Adaptive Bézier Tessellation
(DABT), and semi-adaptive proposals, the aim is to reduce the number of triangles
in the final mesh while maintaining the quality of the resulting image. Surface tessel-
lation must be sufficiently fine to capture geometric and appearance details. Never-

theless, overtessellating results in an increasing surface evaluation and rasterization

XXIII

workload. Both schemes are based on a 3-stage pipeline: first, a fixed tessellation
pattern is computed to guide the adaptive procedure for the patch; next, the new
vertices obtained from the first step are conditionally inserted by applying a set of
heuristics consisting of tests local to the patch; finally, a specific scheme is employed
to represent the inserted vertices and the reconstruction methodology based on the
preprocessing of this information. The quality of the final triangle mesh is deter-
mined by both the inserted vertices and the reconstruction method employed to
generate the resulting mesh. These proposals allow all triangles generated by them

to be processed independently without introducing T-junctions or mesh cracks.

Unlike the DABT proposal, which permits multiple levels of resolution inside a
patch, the semi adaptive proposal is characterized by a lower degree of divergence,
reducing the adaptive degree of flexibility. This latter scheme is a tradeoff between a
non-adaptive tessellation scheme and a fully adaptive proposal. The objective is to
reduce the irregularity of the algorithm and the associated divergence of the DABT
in order to optimize the graphics hardware utilization.

The final chapter in this dissertation goes a step further, and a new pipeline
called Rendering Pipeline for NURBS Surfaces (RPNS) is presented. RPNS is a
novel solution for the direct rendering of NURBS surfaces on the GPU with no
previous tessellation procedure or preprocessing. A deep analysis of current GPU
pipeline evinces that the current stages for primitive generation, such as geometry
shader or tessellator, are not suitable for the direct rendering of NURBS surfaces on
the GPU. Hence, a NURBS-oriented pipeline (RPNS) has been designed according
to the geometric characteristics of NURBS surfaces. The aim is to efficiently render
each surface so that the final image has no cracks or holes, neither inside each
surface nor between neighbor surfaces, making it possible to exploit the parallelism
of the GPU to perform common operations, such as sketching on surfaces, interactive
trimming or surface intersection. RPNS is based on a new primitive called KSQuad,
which allows the direct rendering of NURBS surfaces. The design of RPNS relies
on two mainstays to achieve sound performance and high-qualilty results: adaptive

discretization of KSQuad and evaluation of NURBS surfaces with no approximation.

To test our proposals, and even though this thesis focuses principally on algo-
rithmic improvements to the rendering pipeline rather than an optimized imple-

mentation, these proposals have been implemented to measure their performance

XXIV

on current GPUs, achieving real-time rendering rates.

Contents

1. Tessellation of parametric surfaces
1.1. Tessellation options in current graphics cards
1.2. Parametric surfaces oL
1.2.1. Bézier Representation
1.2.2. Non Uniform Rational B-Splines (NURBS)

1.3. Thesis structure

2. Non-Adaptive Tessellation
2.1. Structure of the Non-Adaptive tessellation proposal
2.2. Vertex Shader Tessellation (VST)
2.2.1. Implementation Details
2.3. Geometry Shader Tessellation (GST)
2.3.1. Implementation Details
2.4. Experimental Results o0

2.5. Conclusions

3. Dynamic and Adaptive Bézier Tessellation

3.1. Adaptive and Dynamic Mesh Refinement

XXV

10

11

16

24

29

30

33

36

38

42

44

51

53

XXVI CONTENTS

3.1.1. Tessellation Pattern 56

3.1.2. Strips of Vertices Representation 58

3.1.3. Adaptive Tessellation Procedure 62

3.2. Structure of Dynamic and Adaptive Bézier Tessellation 65
3.2.1. Utilization of a Fixed Pattern to Guide the Adaptive Tessel-

lation Procedure 66

3.2.2. Selection of Tests Employed to Guide the Adaptive Tessellation 70

3.3. Implementation of the DABT Algorithm on the Geometry Shader . . 74

34. Results 78

3.5. Conclusions 82

4. Semi Adaptive Tessellation Proposal 85

4.1. Structure of the tessellation proposals 86

4.2. Semi adaptive Tessellation Strategy 88

4.3. Experimental Results 0oL 94

4.3.1. Performance in terms of quality 96

4.3.2. Performance in terms of fps for a medium degree tessellation . 99

4.3.3. Performance in terms of fps with a high degree of tessellation . 102

4.4. Conclusions 104

5. Rendering of Bézier surfaces on Handheld Devices 107

5.1. GPU Architectures on Mobile Devices 109

5.1.1. OpenGL ES 114

5.2. Vertex Shader Tessellation on Handheld devices 120

5.3. Implementation details 122

CONTENTS XXVII
5.3.1. Uniform method 124

5.3.2. Texture VST for handheld devices 125

5.4. Experimental results oL 126
5.5. Conclusions 134

6. Rendering Pipeline for NURBS Surfaces 137
6.1. Rendering Pipeline for NURBS Surfaces 139
6.2. KSQuad Primitive 141
6.3. KSDice: Adaptive sampling of KSQuad primitives 145
6.4. Culling techniques for NURBS surfaces 150
6.4.1. Backfaceculling 151

6.4.2. Backpatch culling 152

6.5. Explicit equations: Stair strategy 155
6.6. RPNS with DirectX11 on current GPUs 160
6.7. Experimental Results 164
6.8. Conclusions 173

7. Conclusions and Future Work 175
7.1. Future Work 180
References 183

List of Tables

2.1.

3.1.

4.1.

4.2.

5.1.

D.2.

5.3.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

Number of triangles generated (in K) for each scene 46

Number of triangles generated with the different tests presented and

Number of triangles generated (in thousands, L., = 3) and number

of input surfaces.o L 97

Number of output triangles for the three test models (in thousands). . 104

Number of surfaces and triangles generated (in K') for each scene . . 129
Vertex buffer size (in K B) for each scene 133
Npp for each scene 133
Non-zero basis functions on knot span [z;, ;1) forp=5 156
Number of surfaces and KSQuad for each test model 164
#KS with different culling techniques for Killeroo model 165
#KS with different culling techniques for Head model 165
#KS with different culling techniques for Hinge model 165
#KS with different culling techniques for Car model 166
PSNR with different culling techniques for Killeroo model 166

XXIX

XXX LIST OF TABLES
6.8. PSNR with different culling techniques for Head model 166
6.9. PSNR with different culling techniques for Hinge model 166
6.10. PSNR with different culling techniques for Car model 167
6.11. FPS with different culling techniques for Killeroo model 167
6.12. FPS with different culling techniques for Head model 167
6.13. FPS with different culling techniques for Hinge model 167
6.14. FPS with different culling techniques for Car model 169
6.15. Frame rate (FPS) of RPNS implementations with Dice Culling 173

List of Figures

1.1. DirectX 9 pipelineo 5t
1.2. DirectX 10 pipelineo oL 6
1.3. DirectX 11 pipelineo 7
1.4. Tessellation structure in the DX11 pipeline 8

1.5. Comparison of two different tessellation methods (a) DirectX11 Tes-

sellation Unit (b) DiagSplit [40] 9
1.6. Cubic Bézier curve, n =3 13
1.7. Bicubic Bézier surface, n=m=3 15
1.8. Cubic NURBS curve 17
1.9. A cubic curve represented as (a) a group of Bézier curves or 20
1.10. Bi-quadratic NURBS surface 21
1.11. Pattern to compute N;, L 25
1.12. Dependence of N;,, 26
1.13. Influence of N;o 27
2.1. Parametric space and model space for a Bézier surface 32
2.2. Samples evaluated to resolution level Tand 2. 33
2.3. Structure of the VST algorithm 37

XXXI

XXXII LIST OF FIGURES
2.4. vertex shader pseudocode for the VST method 38
2.5. DirectX10 pipeline where the iterative procedure through the Stream

Output is remarked. L 40
2.6. Structure of GST proposal 41
2.7. Parametric map partitioning in zones 42
2.8. Structure of the GST algorithm 43
2.9. Models employed in the test scenes (a) Teacup (b) Teapot (c) Elephant 45
2.10. VST proposal for S; with L = 4, L = 5 and L = 6 in an Nvidia
GeForce 9800 GTX 47
2.11. Performance of the GST alternative in an ATI 3870x2 48
2.12. Comparative for L = 4 (a) Nvidia GeForce 9800 GTX and (b) ATI
Radeon 3870 X2 49
2.13. Comparative for L =4 in an ATI 5870 50
3.1. Tessellation patterns for L =9{0,1,2,3} 57
3.2. Tessellation Pattern employed 59
3.3. Adaptive tessellation according to the pattern of strips of vertices . . 60
3.4. Diagonal organization. 62
3.5. Example of extreme vertex incorporation 63
3.6. Example of tessellation for a list with reused limit vertices 64
3.7. Example of tessellation for a list with reused limit vertices and incor-
porated extreme vertices Lo 65
3.8. Scheme of the DABT algorithm 66
3.9. Initial coarse tessellation of the Bézier surface 67
3.10. Resolution areas inside a triangle 68

LIST OF FIGURES XXXIII

3.11

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

. Unified resolution L, fi.q=11 for a system with L ={0,1,2,3} ... 69
Example of triangle with three different resolution areas. 70
Example of candidate vertices under test 71
DABT structure using the Geometry Shader 76
Access to tbuffer to recover control points 7
Models employed: (a) Teacup, (b) Teapot and (c) Elephant 79
Zoom of the tessellated teacup model obtained with the three tests:
Distance, Flat and Length 81
Error obtained with the teacup model for L,,,, = 3 and three different
quality levelso 82
FPS with tessellation level L,,,, = 3 for a high quality threshold (a)
Nvidia Geforce 295 GTX (b) ATI Radeon 5870 83
Structure of the tessellation algorithms. 87

Adaptive tessellation (a) Fully adaptive pattern (b) Semi-adaptive
pattern (c) Fully adaptive tessellation and (d) Semi-adaptive tessel-
lation. 90

Examples of semi adaptive tessellations (a) No empty rows (b) Empty
row, upper row with no missing vertex (c) Empty row, upper row with

a missing vertex. 93
Models employed: (a) Teapot (b) Teacup and (c) Elephant. 95

Examples of tessellation: (a) Non adaptive (b) Semi adaptive (c) Fully
adaptive. 98

Mean absolute error obtained for the Teacups scene with L,,.. = 3

for the fully adaptive and semi adaptive proposals. 99

Processing Speed in Frames per Second (L. = 3) (a) Teapots (b)
Teacups (c) Elephants. 100

XXXIV LIST OF FIGURES
4.8. Frame rate using higher tessellation factors (a) Teapots (b) Teacups
(c) Elephants. 103
5.1. Tegra 3 structure 110
5.2. ULP Geforce Architecture in Tegra 3 111
5.3. Tile base deferred pipeline 113
5.4. Mali 400 Architectureo 114
5.5. Screen split into tiles: (a) small tiles (b) large tiles 115
5.6. OpenGL ES 2.0 Graphic Pipeline 116
5.7. OpenGL ES 2.0 vertex shader 117
5.8. OpenGL ES 2.0 fragment shader 118
5.9. Example of parametric maps for {=2. 123
5.10. Structure of the method 124
5.11. Models employed in the test scenes (a) Teacup (b) Teapot 127
5.12. Screenshots of the teacup model with (a) L=1, (b) L=3 and (c¢) L=5 127
5.13. FPS of our proposal implementated in Mali with different levels of
resolutiono 128
5.14. FPS of our proposal implementated in Tegra with different levels of
resolution L 128
5.15. Frame rate in Mali with different Ny and considering: (a) L =1 (b)
L=3 . . e 129
5.16. Frame rate comparative in Adreno, Mali and Tegra with Ssp.s and
different resolution levels: (a) L=1 (b) L=2 (¢) L=3 (d) L=4 130
5.17. Frame rate comparative in Adreno, Mali and Tegra with Saopes and
different resolution levels : (a) L=1 (b) L=2 (¢) L=3 (d) L=4 131
5.18. Performance of scene Sspos with texture access in: (a) Mali (b) Adreno132

LIST OF FIGURES XXXV

6.1.

6.2.
6.3.

6.4.

6.5.

6.6.
6.7.
6.8.

6.9.

6.10.
6.11.

6.12.

6.13.

6.14.

6.15.

Generic structure of the rendering pipeline for NURBS surfaces based

on KSQuad 140
KSQuad primitive defined by a knot interval 144
Head model: (a) Surfaces (b) KSQuads, 146

Killeroo model rendered using as input primitives: (a) NURBS sur-
faces with a uniform tessellation per surface (b) KSQuads, which are

adaptive allowing triangles to be placed more appropriately 147

Boundary edges between surfaces (a) KSQuads with boundary edges
(b) Oversampling all boundary edges (c) Oversampling only non G*

boundary edgeso 149
Backface culling 151
Backpatch culling o oo 153

KSQuad-based culling (a) high degree NURBS (b) low degree NURBS 155

Dependence of (a) N;_o5 and (b) Nj_sp5 157
Stair strategy (a) Ni—2,5 (b) Ni_3’5 158
Memory layout of the data structures 161

Killeroo model with the GS-based RPNS and two passes through the
GSstage 163

Test models: (a) Killeroo (b) Head (c) Hinge (d) Car 168

Frame rate with the different culling approaches for the four test
models: (a) Killeroo (b) Head (c) Hinge (d) Car 171

Head model rendered with different screen area (a) =1, (b) u =38
and (c) =16 (d) 1 KSDice per KSQuad (¢) RPNS-NU 172

Chapter 1
Tessellation of parametric surfaces

For the last thirty years, interactive graphic systems have become a hot topic
widely developed by the community with unstoppable growth. GPU (Graphics
Processing Unit) research has been supported by an increasing real-time rendering
demand for complex and realistic models across many engineering and scientific
areas, such as medicine, computer-aided design (CAD), virtual reality, video games
and computational biology. Hence, the interactive rendering of complex and realistic

images in GPUs has been a longstanding goal in computer graphics.

Real time rendering of scenes is the traditional mainstay of computer graphics.
Even though an off-line renderer that takes minutes is acceptable, real-time graphics
should synthesize frames in a few milliseconds. However, owing to the high cost of 3D
graphic operations, it is critical for GPU implementations of the real-time graphics
pipeline to be highly efficient systems. Hence, a scene is usually represented using a
low-resolution mesh in interactive graphics, and accordingly designers usually omit
complex objects from environments or approximate them coarsely using polygons

that cover many pixels on the screen.

Nevertheless, graphic designers have been demanding powerful creative control
over image generation and a realistic and detailed image synthesis. The most com-
mon complex models are designed with parametric and subdivision surfaces. Sub-
division of surfaces [16, 32, 59] is a powerful tool for modelling smooth surfaces of
arbitrary topology with complex details from coarse meshes with complex details,

and it is used in a wide range of applications, such as 3D games, movie produc-

2 Chapter 1. Tessellation of parametric surfaces

tion and commercial modelers from coarse meshes. Evaluating subdivision surface
involves a recursive linear interpolation to refining the coarse mesh. An approxi-
mate conversion from subdivision surfaces into parametric surfaces is viable [60, 93].
Hence, this thesis is focused in parametric surfaces. Specifically NURBS (Non-
uniform rational B-splines) surfaces are one of the most useful primitives employed
for high quality modelling, as they are de facto standard in CAD/CAM tools and
graphic software. Despite the fact that computational capability continues to in-
crease, current interactive graphics systems are still a long way off being able to

interactively synthesize realistic and detailed scenes.

Traditionally, GPUs pipelines are triangle-oriented, hence they have been de-
signed for the efficient processing of triangles and they do not work properly with
parametric surfaces. Since direct evaluation of NURBS surfaces on the GPU is
a highly complex task, they are usually converted into Bézier surfaces as a pre-
processing step and then Bézier surfaces are usually tessellated in the CPU (Central
Processing Unit) and the set of generated triangles is sent to the GPU. Obviously,
for numerous reasons, it is not practical for an interactive application to compute in
the CPU and send a high-resolution mesh representation of an entire scene to the
GPU. For example, doing so would incur substantial storage and bandwidth costs;
increase the cost of non-rendering operations, such as simulation and animation,
which do not require high-resolution meshes; and make it challenging to provide the

appropriate level of mesh detail for all possible views.

An alternative proposal for reducing triangle mesh costs is to compute Bézier
surfaces on the GPU. In this process, the NURBS surfaces are converted into Bézier
surfaces on the CPU, and then evaluated and tessellated on the GPU. As Bézier
structures are simpler than NURBS, evaluating the former is easier and faster. De-
spite this mathematical conversion being a high-consumption process unsuitable for
interactive graphics, current proposals and current GPU designs focus on this ap-
proach owing to the fact that NURBS surfaces are too complex to be processed on
the GPU on the fly.

In the literature, there have principally been two different approaches to the syn-
thesis of parametric surfaces on the GPU: tessellation and direct evaluation. The for-
mer performs the tessellation of the parametric models directly on the GPU. Recent

tessellation proposals exploit the programmable capabilities of current graphics cards

to achieve the real-time rendering of parametric models on the GPU [21, 33, 47, 93].
In these proposals the rendering process is performed per patch [21, 47] or per set
of patches, depending on the level of detail required [33]. In this approach the
computational cost increases with the number of patches, owing to the amount of
synchronous calls between CPU and GPU. [93] renders pixel-accurate Bézier sur-
faces using the tessellation unit of modern GPUs. Since the tessellation units added
to the current GPUs do not provide a high enough level of tessellation to generate
continuous, hole-free surfaces from a NURBS surface. Another tessellation approach
is presented in [34, 35, 84], where the tessellation of bicubic Bézier surfaces is per-
formed following a GPGPU strategy (General-Purpose Computation on GPU) using
CUDA.

A different approach to tessellating parametric surfaces is the dicing of these sur-
faces into micropolygons, small quadrilaterals each less than one pixel in size. The
starting point of this approach is the Reyes rendering system [29], based on the de-
velopment of a new and different pipeline. Even though the rendering performance
of the Reyes system is far from meeting real-time requirements, different character-
istics of this pipeline have been ported to GPUs [77, 92, 95]. Other proposals based
on the modification of the GPU pipeline for implementing micropolygon rendering
are found in [39, 41, 93].

The second approach to the synthesis of parametric models is their direct eval-
uation on the GPU [50, 55]. However, this alternative either needs to use multiple
fragment programs for the different surface degrees, [50] or presents the require-
ment of complex fragment shaders with several stages and with the parametric grid
determined on the CPU [55].

One strategy which is close to the direct evaluation of parametric surfaces is the
synthesis with Ray tracing algorithms [1, 65, 71]. These algorithms produce very

good visual results but with high timing requirements.

This chapter is organized as follows. Firstly in Section 1.1 tessellation capabilities
of current graphics card are summarized. In Section 1.2 an introduction to the
parametric surface focused on Bézier and NURBS surfaces is given. Lastly, an

overview of this thesis content is given in Section 1.3.

4 Chapter 1. Tessellation of parametric surfaces

1.1. Tessellation options in current graphics cards

In this section we briefly summarize the structure of current GPUs and the avail-
able hardware options for tessellation. The objective is to provide a brief revision
of the hardware possibilities and to summarize the working framework and the rea-
sons behind our proposals. With the tessellation procedure in mind, we shall focus
our analysis on the programmable stages and the possibilities for implementing a

tessellation procedure on them.

Until the end of 2006, the programmable vertex and pixel shaders found in the
GPUs could only operate on existing data [2, 42, 46, 88] (see Figure 1.1). The vertex
shader has traditionally been employed for vertex transformations and per-vertex
computations. No vertices can be generated or destroyed in this unit and each
vertex has no access to the information associated with another vertex. The pixel
shader is usually employed for the computation of each fragment’s color. Neither of
these two units could be employed for generating/destroying geometry in a direct
way. The scene changed a few years ago with the introduction with DirectX 10
(see Figure 1.2) of a new programmable unit, the geometry shader [9, 72, 91]. The
geometry shader allows the generation and destruction of geometry data on the
graphics processor introducing, with this characteristic, an incredible range of new
possibilities. In consequence, computer graphics algorithms that were traditionally
condemned to have limitations in their GPU implementation can be reconsidered
again for an efficient GPU implementation. Clear examples are mesh simplification
[30] and mesh tessellation [62].

The geometry shader works with primitives (point, line segment, or triangle) and
the output number of primitives may be higher or lower than the input number.
Adjacent information is available so that for each triangle the information of the
three neighbouring triangles can be accessed. However, the main drawback is the
limitation on the number of output primitives per invocation, as currently only 1024
32-bit values can be output [9, 72]. The intermediate results processed by the vertex
shader or the geometry shader can either be sent back to the pipeline through stream

out, allowing iterative processing, or sent directly to the rasterization stage.

1.1 Tessellation options in current graphics cards 5)

Input
Assembler

Memory

Rasterizer

4

Pixel

Shader /"

Y

Output
Merger

Figure 1.1: DirectX 9 pipeline

With DirectX11 three new stages (hull shader, tessellator unit and domain
shader) were introduced to support programmable tessellation (see Figure 1.3) [15,
63, 90]. These new stages are inserted between the vertex and the geometry shader.
The hull shader and the domain shader are programmable stages, whereas the unit
where the real data expansion takes place, the tessellator, is a configurable stage.
As is shown in Figure 1.4, the hull shader is invocated once for each input primitive;
in the figure is invocated once for each Bézier patch. It is the first stage of the tessel-
lation procedure and it configures tessellator and domain shader execution. Hence,
the hull shader generates two different outputs to guide the tessellation procedure:
one is sent to the domain shader while the other is sent to the tessellator. Both
outputs include the tessellation factors which are generated on the fly in the hull
shader. More specifically, from the hull shader the DirectX11 tessellator receives six
independent tessellation factors, one for each domain edge and two for the internal
axes of the patch. This new tessellation unit [90] offers a high performance solution,

but with reduced flexibility in its current implementation, as it applies a fixed or

6 Chapter 1. Tessellation of parametric surfaces

A Input |_
Assembler |
l .vl
vO0
o2
vl
l % Buffer
vO0
V2
l Stream >
t
E{% v Oulpu Memory
[@@% Rasterizer
Pixel ™\
Y
Output -
Merger ["
I——

Figure 1.2: DirectX 10 pipeline

a semi-regular tessellation pattern (see Figure 1.4). Once these factors are set, the
edges and the inside of the patch are uniformly tessellated in the parametric domain
(see Figure 1.4). Finally, the domain shader receives the parametric coordinates
from the tessellator as well as the input primitive and the tessellator factors from
the hull shader. According to the recived data, these parametric coordinates are
evaluated in the domain shader; i.e. they are invocated once for each paramet-
ric coordinate generated in the tessellator. In [93] an implementation of a tight
estimator of the variance between the screen projection of the exact surface and
its triangulation is proposed using the GPU tessellation engine. This tessellation
unit also supports regular fractional tessellation, and some works, such as [6, 67],
add a non-uniform, fractional tessellation to achieve a more uniform screen-space
triangle area. Nevertheless, this scheme does not provide enough support for free

adaptive tessellation, and the independent primitive process requires special care by

1.1 Tessellation options in current graphics cards 7

A Input | _

l Assembler |

Buffer
Memory
l[% i) Output "
E@ a%ﬂa@ Rasterizer <
Pixel ™ _
R=s Shader /)
Y
Output -
Merger g
I

Figure 1.3: DirectX 11 pipeline

application developers to prevent cracks.

In DiagSplit proposal [40], a modification of the DirectX11 hardware structure
is proposed to allow greater adaptability, though still keeping a uniform strategy
per surface patch. The DiagSplit algorithm [40] generates view-dependent adap-

tive tessellation with a recursive approach, where sub-patches are created with the

8 Chapter 1. Tessellation of parametric surfaces

HS input:
- bicubic Bézier
patch control
points

Hull
Shader

HS output:
- Tessellation factors

edge factors: {4,3,6,2}
HS output: internal factors:{5,2}
-bicubic Bézier patch
control points.
Tessellation factors Y

I Tessellator \

Tessellation output:
-parametric coordinates

DS input (from tessellator):
- parametric coordinate NN
(one vertex for each execution)| {3

Domain
Shader
DS output:

-one tessellated
and evaluated vertex

»
N
»

N

Figure 1.4: Tessellation structure in the DX11 pipeline

evaluation of edges if non-uniform tessellation is required. DiagSplit performs a
non-uniform tessellation along an edge by applying a recursive process: first, the
edge is partitioned at its parametric midpoint, and then seven factors are used, one
for each edge of the two sub-patches. This proposal, however, is a long way off
obtaining an adaptive tessellation inside the patch as the interior of each sub-patch

or patch is uniformly diced according to the tessellation factor of their edges.

Figure 1.5 depicts how a patch is partitioned into triangles with the DirectX11

tessellation unit compared to the DiagSplit proposal. In this example it is assumed

1.1 Tessellation options in current graphics cards 9

>
subpatch 1 subpatch r
(b)

Figure 1.5: Comparison of two different tessellation methods (a) DirectX11 Tessel-
lation Unit (b) DiagSplit [40]

that the left side of the patch has a greater complexity and needs a higher tessel-
lation factor. Figure 1.5(a) shows the patch after being tessellated by DirectX11
using the factors {4, 3 ,6, 2} for the edges and {5, 2} inside the patch, resulting
in a mesh of triangles with similar shape and size. In Figure 1.5(b), the partition-
ing proposed in DiagSplit is applied. In an intitial step the patch is partitioned
into two sub-patches (sub-patch [and sub-patch r). Each sub-patch is subsequently
split according to four tessellation factors, {1,3,3,2} and {2,2,2,2}, respectively.
As shown, DirectX11 tessellator provides a configurable tessellation factor where
this tessellation process cannot be modified inside the patch; consequently it is not
suitable for the tessellation of surface with a high degree of variability inside the sur-
face, such as NURBS surfaces. DiagSplit provides a more configurable and recursive

tessellation procedure, with a regular tessellation pattern inside each patch.

10 Chapter 1. Tessellation of parametric surfaces

Broadly speaking, the tessellation of surfaces in the DirectX11 pipeline is known
for the lack of flexibility of sampling schemes in the tessellation unit, as well as for

the independent evaluation of each sample in the domain shader.

1.2. Parametric surfaces

Curves and surfaces are mathematically represented either explicitly, implicitly
or parametrically [42]. As coefficients of many parametric functions introduce con-
siderable geometric significance, the parametric form is more natural for designing
and representing shape in a computer. Hence, the present thesis is concerned with
parametric representation; more specifically, Béziers and NURBS surfaces are con-

sidered.

Parametric representation is extremely flexible as each of the coordinates on the
curve or on the surface is represented separately as an explicit function, so they are
axis independent. Although not strictly necessary, a function defined in the interval

[a, b] is usually normalized to [0, 1].

Despite the advantageous characteristics of parametric surfaces, several typical
operations, such as determining the intersection of two parametric curves or finding
the distance from a point to a curve, are considerably more difficult in a parametric

representation.

Although many surfaces can be analytically represented, there are also many
surfaces for which an analytical description does not exist. In this case, surfaces are
represented in a piecewise fashion, where each individual patch is joined together
along the edges to create a complete surfaces. Within this context, a patch is a
curve or surface which represent a piece of the model and it is joined together with

another patches to represent the whole model.

As parametric curves and surfaces are created as a join of patches, continuity is
a relevant factor to curve or surface smoothness. Specifically, two different kinds of
continuity associated to parametric curves and surfaces can be defined: geometric,
G, and parametric continuity, C'. According to geometric continuity, a curve or

surface has a G° continuity at the join if two curves or surface segments are joined

1.2 Parametric surfaces 11

together at their respective end point. Meanwhile, the resulting curve is G* if the

slope of the tangent vectors at the join are geometrically equals;

Like geometric continuity, if two curves or surfaces are joined together, the re-
sulting curve or surface is said to have C° continuity at the join. However, the curve
or surface is said to be C'* continuous if the tangent vectors at the join have the same
direction and the same magnitude. Hence, parametric continuity is more restrictive

than geometric continuity.

If the resulting curve or surface is C! at the join, there is a smooth transition
from one curve or surface segment to the next. However, if the curve or surface is

only G' at the join, there is a more abrupt transition.

In the next, the most usual parametric representation, Bézier and NURBS, are
detailed.

1.2.1. Bézier Representation

In this section a brief introduction to the Bézier representations is presented
(37, 38, 79, 82]. Bézier representations are a special case of NURBS and they are
commonly used owing to their regular structure and simplicity. For reasons of clarity
we start the presentation by introducing Bézier curves and we subsequently extend

the description to Bézier surfaces.

Bézier curves

A Bézier curve is specified by giving a set of coordinate positions, called control
points, which indicate the general shape of the curve, as shown in Figure 1.6. These
control points are then fitted with piecewise continuous parametric polynomial func-

tions. Mathematically, a parametric n-degree Bézier curve is defined by:

P(t) = iBZ-Jm(t), 0<t<1 (1.1)

where B; are the control points and J, ; are the classical n-degree Bernstein poly-

nomials defined by:

12 Chapter 1. Tessellation of parametric surfaces

Lm@y:<7>u—¢%"“# (1.2)

]

where n is the degree of the Bézier basis function. These functions decide the extent
to which a particular control point controls the surface at a particular parametric
value t. Only n + 1 control points and the n-degree Bernstein polynomials are

required for the computation of each point of the curve.

The equation for a Bézier curve can be also expressed in matrix form:

P(t) = [T][N][G] (1.3)

where [T] = [t" t"7'... t' 1%, the geometry of the curve is represented as [G]T =
[By B ...B,;], and the [N] matrix is defined by:

G CED OGDED™ o G2 D

-1 3 -3 1 By
3 =6 3 0 B
P(t) = [T][N][G] = [t* ¢* t' 1] '
-3 3 0 0 B,
1 0 0 0 B

First of all, Bernstein basis functions properties derived from Equation 1.2 are
detailed:

1. The basis functions are real.

2. Non-negativity:
Ji(u) > 0Viand0 < u < 1 (1.4)

1.2 Parametric surfaces 13

Figure 1.6: Cubic Bézier curve, n = 3

3. Partition of unity:
d Jiw)=1v0< u <1 (1.5)

5. Symmetry: for any ¢, the set of polynomials J;(u) is symmetric with respect

1

tou:i.

6. Recursive definition: J;(u) = (1 — w)J;(u) + uJ;—1(u); defining J;(u) = 0 if
1< 0ori>n.

Next, properties summarize the geometric characteristics of Bézier curves:

1. The degree of the polynomial defining the curve segment is one less than the

number of control polygon points.
2. The curve generally follows the shape of the control polygon.

3. The first and last points on the curve are coincident with the first and last

points of the control polygon; i.e., P(0) = By and P(1) = B,.

4. The tangent vectors at the ends of the curve have the same direction as the

first and last polygon spans, respectively.

5. Convex hull property: the curve is contained within the convex hull of the

control polygon; i.e., within the largest convex polygon defined by the control

14 Chapter 1. Tessellation of parametric surfaces

polygon vertices. In Figure 1.6, the convex hull is shown by the dashed line

and an imaginary straight line from the start point to the last point.

6. Variation diminishing property: As a Bézier curve follows its control polygon
rather closer and does not wiggle more than its control polygon, no straight line

intersects the Bézier curve more times than it intersects the control polygon.

Bézier surfaces

Likewise, the shape of a (n,m)-degree Bézier surface is controlled by a set of

control points through the equation:

Q(u,0) =Y BijJni(u)Jm;(v), 0<uv<1 (1.6)

i=0 j=0

where J, ;(u) and J,, ;(v) are the Bernstein basis functions in the v and v parametric
directions and B;; are the vertices of a polygonal control net. Again, the number
of control points in the u and v directions are n + 1 and m + 1, respectively. As an

example, Figure 1.7 shows a bicubic Bézier surface, n = m = 3.

In matrix form, a Bézier surface is given by:

Q(u,v) = [UI[N][B][M]"[V] (1.7)

For the specific case of a bicubic Bézier surface, the matrix form is given by:

-1 3 =3 1
3 —6 3 0
3 .2
w,v) = |u> u” u 1
Qlu,v) — | |20 e
1 0 0 0
(1.8)
B070 Bo,l BO,2 BO73 -1 3 -3 1 ’U3
By Biqx Bia DBigs 3 =6 3 0 v?
Byy Bsy By B -3 3 0 0 v
Bso Bsi1 Bsz Bsgs 10 0 0 1

1.2 Parametric surfaces 15

Figure 1.7: Bicubic Bézier surface, n =m =3

As a Bernstein basis is used for surface blending functions, many properties of

the Bézier surfaces are known. Below, several properties are summarized:

1. Non-negativity:

Jin(u) > 0Vinand0 < u <1 (1.9)
2. Partition of unity:
Y Jinlw) = 1V0 < u <1 (1.10)
i=0

3. Jin(0) = Jua(1) =1

4. Symmetry: for any n, the set of polynomials J; ,(u) is symmetric with respect

1

tou:g.

5. Recursive definition: J;,(u) = (1 — u)J;pn_1(u) + uJi1pn—1(u); we define

Jin(u)=0if i <0ori>n.

The following properties summarize the geometric characteristics of Bézier sur-

faces:

1. The degree of the surface in each parametric direction is one less than the

number of control net vertices in that direction.

16 Chapter 1. Tessellation of parametric surfaces

2. The continuity of the surface in each parametric direction is two less than the

number of control net vertices in that direction.
3. The surface generally follows the shape of the control net.

4. Only the corner points of the control net and the resulting Bézier surface are

coincident.
5. The surface is contained within the convex hull of the control net.

6. The surface is invariant under an affine transformation.

It is interesting to note that there is no known variation diminishing property

for Bézier surfaces [80].

1.2.2. Non Uniform Rational B-Splines (NURBS)

In this section an introduction to NURBS surfaces is presented. A more detailed
review can be found in [37, 38, 79, 82]. In order to clarify the explanation, we start
by introducing NURBS curves and then go on to extend the description to NURBS

surfaces.

NURBS are de facto standard to CAM/CAD applications. According to [79], the
main reason for the widespread acceptance and popularity of NURBS representation
is their common mathematical form for representing and designing both standard
analytic shapes and free-form curves and surfaces. Moreover, they provide the flex-
ibility to design a large variety of shapes by manipulating the control points and
weights. NURBS evaluation is reasonably fast and computationally stable and they
are invariant under scaling, rotation, translation and shear as well as parallel and
perspective projection. NURBS are genuine generalizations of non-rational B-spline
forms as well as rational and non-rational Bézier curves, and a powerful geometric
tool kit, including knot insertion, refinement, removal, degree elevation and split-
ting, has been designed. Furthermore, NURBS have clear geometry interpretations,

making them particularly useful for designers.

1.2 Parametric surfaces 17

. Bs

Figure 1.8: Cubic NURBS curve

NURBS Curves

A pth-degree NURBS curve (see Figure 1.8) is defined by:

i Ni7p<u) ’lUZ.BZ
1=0

Clu) = =%
Z Ni,p(u)wi

where n 4+ 1 is the number of control points, B; are the control points, w; are the

L a<u<b (1.11)

weights and the N;,(u) are the pth-degree B-spline basis functions defined on the

non-periodic (and non-uniform) knot vector.

[J:{O7 707'Ip+17“' ’l‘m_p_hl’... ’1}

p+1 p+1

(1.12)

where m = n + p + 1. Unless otherwise stated, we assume that a = 0,b = 1 and
w; > 0 for all 4.

18 Chapter 1. Tessellation of parametric surfaces

The basis function V;, of degree p is defined for the parametric u direction as

U — x; T —u
Nip-1(u) + LNMLP—I(U) (1.13)

Nip(u) =
Litp — Ty Litp+1 — Titl

with

(1.14)

()_ 1 if Ty < U< Tjyq
“0 "] 0 otherwise

The knot vectors are non-decreasing sequences of real numbers that make a
partition on the parametric domain. This partition defines the relation between
different ranges of the parametric coordinates, known as knot spans or knot intervals,
with the control points. Since basis functions are non-zero only in part of the domain,
the functions NV;,_; and N;;1,-1, used for the computation of JV; ,, are non-zero for

p knot spans, overlapping for p — 1 knot spans.

Figure 1.8 shows a cubic NURBS curve defined by its control point net B =
{By, By, By, B3, By, Bs, Bg}, its knot vector U = {0,0,0,0,%,2,3,1,1,1,1} and the

Y49 29 40
curve weights are equal to 1.

First of all, basis function properties derived from Equation 1.21 are explained:

1. Step function: N, is a step function, equal to zero everywhere except on the
half-open interval u € [z, z;41).

2. For p > 0, N;,, is a linear combination of two (p — 1)-degree basis functions.

3. Non-negativity: Basis functions are positive and real functions for each knot,

degree and parametric position:

Nip(u) > 0 Vi,pand u € [0,1] (1.15)
4. Partition of unity:
> Nip(w) =1V u €[0,1] (1.16)
i=0

5. Local support: N;,(u) = 0foru ¢ [z, 2;+p41). Furthermore, in any given knot
span, at most p + 1 of the N; ,(u) are non-zero (in general N;_, ,(u),...N; ,(u)

are non-zero in [x;, x;11)).

1.2 Parametric surfaces 19

6. All derivatives of N;,(u) exist in the interior of a knot span, where it is a
rational function with non-zero denominator. At a knot, N;,(u) is p—k times

continuously differentiable, where k is the multiplicity of the knot.

The following properties summarize the geometric characteristics of NURBS

curves:

1. The control polygon represents a piecewise linear approximation to the curve;
this approximation is improved by knot insertion or degree elevation. As a

general rule, the lower the degree the closer a curve follows its control polygon.

2. A curve C(u) with degree p, number of control points n + 1 and number of

knots m + 1 are related by:

m=n+p+1 (1.17)

3. C(0) = By and C(1) = B,.

4. Affine invariance: an affine transformation is applied to the curve by applying
it to the control points; NURBS curves are also invariant under perspective

projections, a fact which is important in computer graphics.

5. Strong convex hull property: if v € [z;,xi+ 1), then C(u) lies within the

convex hull of the control points B;_,, - - , B;.

6. C(u) is infinitely differentiable on the interior of the knot spans and is p — k
times differentiable at a knot of multiplicity k.

7. Variation diminishing property: no plane has more intersections with the curve

than with the control polygon.

8. A NURBS curve with no interior knots is a rational Bézier curve, since the
N, ,(u) reduce to the B;,(u). So, NURBS curves contain non-rational and
rational Bézier curves as a special case, as shown in Figure 1.9. In this Figure,
the same curve which is drawn as a set of Bézier curves in Figure 1.9(a) is also
drawn as a NURBS Curve in Figure 1.9(b).

20 Chapter 1. Tessellation of parametric surfaces

Bézier;

Bézier;
BI4 11

Bézier,

Bézier,

(a)

Figure 1.9: A cubic curve represented as (a) a group of Bézier curves or
(b) a NURBS Curve

9. Local approximation: if the control point B; is moved, or the weight w; is
changed, it affects only that portion of the curve on the interval u € [z;, T4 p+1)
This property is highly important for interactive shape design, as control point

movement and weight modification can be used to attain local shape control.

NURBS Surface

A NURBS surface (see Figure 1.10) is obtained as the tensor product of two
NURBS curves, and is defined by its degree, a set of weighted control points, and a
knot vector. Thus, using two independent parameters v and v, the NURBS surface

of degree (p, q), respectively in both parametric directions, is given by the equation:

Nip(uw) Njg(v) w; ;B

n m
0

S(u,v) = =07 , 0<u,v<1 (1.18)

ZNi,p(u) Njqg(v) wi;

i=0 j=0

where B, ; are the control points, w;; are the weights, n +1 and m + 1 are the
number of control points in v and v parametric directions, respectively, and N;,

and N, , are the non-rational B-spline basis function defined on two knot vectors of

1.2 Parametric surfaces 21

Figure 1.10: Bi-quadratic NURBS surface

p+n+1and ¢+ m + 1 elements, respectively:

U:{O, 707'Tp+17". 7'T7”—p_171’“. ’1,} (119)
p+1 P+l

V:{OJ 707yq+17"' 7ys—q—1717"' ’1,} (120)
q+1 atl

wherer =n+p+land s=m+qg+1

The basis function V;, of degree p is defined for the parametric u direction as

U —T; Litp+1 — U
N (u) = —N; ,_1(u) + —————— N, 1,1 (u 1.21
o) = N+ TR N) (120
with
1 if i Su <
Nio(u) = b te (1.22)
0 otherwise

Analogously, the basis function N, of degree g is defined for the parametric direction
q.
Figure 1.10 shows a bi-quadratic NURBS surface and its control net, where

B = {B0,07 s 7BO747 R ,B4,0, R ,B4’4}, U = V = {070,0 L2 1, 1, 1} and WelghtS

) 3939

22 Chapter 1. Tessellation of parametric surfaces

equal to 1.

The important properties of the functions N; ;(u,v) are summarized as follows:

1. Non-negativity: N; ;j(u,v) > 0V i, j, v and v.

2. Partition of unity:

i]\fi,j(u,v) =1V (u,v) €][0,1] x [0, 1] (1.23)

3. Local support: N; ;(u,v) = 0if (u,v) is outside the rectangle given by [x;, Z;4p41) X
(Y5> Yjqr1)-
4. In any given rectangle of the form [z;,, iy,) X [Yjo, Yjos.)» at most (p+1)(¢+1)

basis functions are non-zero, in particular the N, (u,v) for ig —p < 1 < 4

and jo — q < k < jp are non-zero.

5. Extreme: if p > 0 and ¢ > 0, then N, ;(u,v) attains exactly one maximum

value.

6. Differentiability: interior to the rectangles formed by the v and v knot lines,
all partial derivatives of N, j(u,v) exist. At a u knot (v knot) it is p—k (¢ — k)
times differentiable in th w (v) direction, where k is the multiplicity of the
knot.

Following properties summarize the geometric characteristics of NURBS surfaces:

1. The control net forms a piecewise planar approximation to the surfaces; as is

the case for curves, the lower the degree the better the approximation.

2. Curve degree in parametric direction u,v (p,q), number of control points in
each direction (n+ 1, m+ 1) and number of knots (r+ 1, s+ 1) are related by:

r=n+p+1 s=m+q+1 (1.24)

3. Corner point interpolation: S(0,0) = By, S(1,0) = By, S(0,1) = By, and
S(1,1) = Bym.

1.2 Parametric surfaces 23

4. Affine invariance: an affine transformation is applied to the surface by applying

it to the control points.

5. Strong convex hull property: assume w; ; >0 V ¢,7. If (u,v) € [z, Tig+1) X
[Yjos Yjo+1), then S(u,v) is in the convex hull of the control points B; ;,ip —p <
@ <19 and jo—q < j < Jjo.

6. Local modification: if B;; is moved, or w;; is changed, it affects the surface

shape only in the rectangle [x;, Ti1p1) X [yj,y7 + ¢+ 1).

7. Non-rational B-spline and Bézier and rational Bézier surfaces are special case
of NURBS surfaces. The same example of cubic curves shown in Figure 1.9

can be extended to cubic surfaces.

8. Differentiability: S(u,v) is p— k (¢ — k) times differentiable with respect to u
(v) at a u knot (v knot) of multiplicity k.

It should be noted that there is no known variation diminishing property for
NURBS surfaces [80].

Note that the computation of the p-degree basis functions detailed in Equation
1.21 is a recursion relation of a degree p, which depends on lower-order basis func-
tions down to order 1. These basis functions generate a truncated triangle basis
table as illustrated in Figure 1.11. This pattern is based on a list of important prop-
erties of the NURBS basis functions, which determine the many desirable geometric
characteristics of NURBS curves and surfaces. Specifically, two different features of
the NURBS basis functions should be considered in order to analyze the recursivity
of this basis function: the dependence of a basis function (see Figure 1.12) and its

influence (see Figure 1.13).

According to the local support property, N; ; = 0 if u is outside the knot interval
[wi, wiypi1). Hence, a basis function N;, of degree p is computed as a combination of
Nip—1, Nit1,p-1, two basis functions of p— 1-degree, and subsequently, this recursion
is repeated until the order 1 is reached. Therefore, N;, is a combination of p + 1

basis functions of order 1, {N; o, Nit1,0, - -+ Nitpo} (see Figure 1.12).

On the other hand, in any given knot span [u;, u;11) the only non-zero zeroth

degree function is N; . Consequently, in the same given knot span [u;, u;11) at most

24 Chapter 1. Tessellation of parametric surfaces

p + 1 of the basis functions are non-zero, namely the functions N;_,,---N;,, as

illustrated in Figure 1.13.

1.3. Thesis structure

The real-time tessellation of parametric surfaces is the mainstay of this thesis.
As parametric surfaces, and specifically NURBS surfaces, are fairly flexible and
compact, they are considered a standard in graphic design for the rendering of com-
plex models. In this dissertation, different proposals for tessellating parametric sur-
faces based on different hardware capabilities are presented. As parametric surfaces,
specifically Bézier surfaces, are a new trend as tessellation primitives in computer
graphics, the initial chapters of this thesis focused on them. Another parametric
primitive, NURBS surface is also considered. NURBS curves and NURBS surfaces
are genuine generalizations of non-rational B-spline forms as well as rational and
non-rational Bézier curves and surfaces. As more complex models can be codified

in a NURBS representation, they are the standard in computer aided design.

Bézier surfaces are the more common examples of parametric surfaces in graphics
rendering. In recent years, they have become new trendy primitives owing to their
flexibility and simplicity. Hence, current graphics pipeline has been specifically
designed for tessellating Bézier surfaces. However, this dissertation analyzes the
rendering of Bézier surfaces in simpler pipelines, even with high performance. Hence,
different techniques for evaluating Bézier surfaces in real time, exploiting different
hardware features, are described (see Chapters 2, 3, 4 and 5). The present thesis
goes an step further and also suggests the design of adaptive hardware units for

tessellating Bézier surfaces.

Chapter 2 introduces two non-adaptive tessellation proposals for Bézier surfaces:
VST and GST. Both proposals synthesize the Bézier models on the GPU. VST
tessellates Bézier surfaces in the vertex shader as well as minimizing the CPU-
GPU transfers. VST tessellation is guided by a pre-computed parametric grid of
virtual vertices and it optimizes the GPU memory accesses to increase data locality.
However, GST generates the parametric grid in the geometry shader on the fly,

requiring neither pre-computation nor storage of predefined grids. Furthermore, the

1.3 Thesis structure 25

’

Ni+1,2

Ni+2,2

180

Ni+p-2,2

Figure 1.11: Pattern to compute V;,

GPU memory is not a limiting factor in model tessellation. This work has been
published in [20], [21], [22] and [23].

Chapter 3 focuses on the adaptive tessellation of Bézier surfaces. Adaptive and
Dynamic Mesh Refinement (ADMR) as well as Dynamic and Adaptive Bézier Tes-
sellation (DABT) are summarized; there is an in-depth analysis of geometry tessel-
lation and geometry adjacency capabilities are detailed. ADMR is based on three
mainstays: firstly the tessellation is guided by a tessellation pattern according to a
local test, with no pre-computed pattern; secondly, inserted vertices are organized in
strips; and, finally, the triangle mesh is generated by linking inserted vertices on the
fly. Nevertheless, DABT extends ADMR to the tessellation of parametric surface
and it introduces a higher adaptively. DABT does not just have one fixed tessel-
lation level across the whole patch, but three: one for each triangle side. Hence,
DABT reduces the number of processed triangles without reducing the quality of

the final rendering. Furthermore, three different tests have been considered to guide

26 Chapter 1. Tessellation of parametric surfaces

Ni,p-2 I
Ni+1,p-2|

)
|
)

Nj,2
Ni+2,0 Ni+1,2 I

Figure 1.12: Dependence of N;

this tessellation process: distance between mesh and ideal surface, flatness of the
mesh and size of the triangles. This work has been published in [10], [24] and [25].

Chapter 4 details a semi adaptive proposal based on Chapter 2 and Chapter 3.
Regarding adaptive tessellation, the semi adaptive approach is midway between the
non-adaptive strategy and the fully adaptive strategy. The semi adaptive strategy
is characterized by a regular grid pattern as well as a level of resolution per triangle.
In this tessellation procedure, local tests evaluate the candidate positions located
in the edges of the coarse triangle. Finally, a reconstruction of generated triangles

links vertices in two consecutive rows. This work has been submitted to [28].

Chapter 5 describes a new method for rendering Bézier surfaces on the GPU

1.3 Thesis structure 27

N‘-p+2,p-;<
N'-p+3,p-]<

Ni-1,2 ‘

Nj 1 Ni-l,p-2l<

Ni,p-2 Ni-1,p I

Ni-p+2,p-]

Nj-2,2

Ni,0

Figure 1.13: Influence of N,

of handheld devices. This proposal is based on VST detailed in Chapter 2. No
other Bézier proposals detailed in this thesis can be selected as the baseline, since
they are all implemented in GPU pipelines that are more complex than the one
implemented in modern handheld devices. As this proposal has been designed for
handheld devices, hardware constraints were considered. In fact, Bézier evaluation
and rendering have been designed as a benchmark for testing hardware features.
This work has been published in [83] and submitted to [27].

Finally, another type of parametric surfaces, NURBS surfaces, are considered
as they are the standard in CAD/CAM applications. NURBS are more complex
than Bézier surfaces, thus NURBS surfaces are habitually converted into Bézier
surfaces before the rendering process. As parametric surfaces are the vogue, they
have been considered in the design of the latest generation of GPUs. Therefore,

current GPUs allow the tessellation and direct evaluation of bicubic Bézier surface

28 Chapter 1. Tessellation of parametric surfaces

on the fly, however, they are not flexible enough for the tessellation and evaluation
of NURBS.

Chapter 6 introduces a new proposal for tessellating and evaluating NURBS
surfaces on the GPU with no previous computation. The rendering Pipeline for
NURBS Surfaces (RPNS) is based on the geometric characteristics of NURBS sur-
faces and it also details the entire process through the GPU pipeline in order to
obtain real-time rendering on the GPU. RPNS proposes a new primitive, KSQuad
which maintains the main geometric properties of NURBS surfaces. The adaptive
discretization of KSQuad and the stair strategy to explicit evaluation are the key
points of RPNS. Culling and sampling processes have also been considered. This
work has been submitted to [26].

Chapter 2
Non-Adaptive Tessellation

Bézier representations have been widely employed as a standard way of designing
complex scenes with high-quality results. In many applications involving CAD/-
CAM, virtual reality, animation and visualization, object models are described in
terms of Bézier surfaces. The excellent mathematical and algorithmic properties
[79, 82], combined with successful industrial applications, have contributed to the
popularity of this representation. One of the main advantages of this representa-
tion is its compactness and, as a consequence, the low storage and transmission
requirements of the resulting models. Additionally, graphics designers can produce
animations in a simpler and faster way as fewer points need to be controlled than for
triangle meshes. On the other hand, these representations are easily scalable so a
surface can be converted into a triangle mesh with few or many triangles, depending
on the required level of detail (LOD).

There are currently two main approaches to the synthesis of parametric surfaces:
tessellation on the CPU or on the GPU. In the former, these representations are
tessellated into triangles in the CPU before being sent to GPU to be displayed.
This strategy presents a number of disadvantages that could reduce the system
performance: the amount of information to be sent from CPU to GPU and the
increment in the storage requirements in the GPU associated with the triangle mesh.
The second approach performs the tessellation of the parametric models directly on
the GPU [21, 33, 47]. In these proposals the tessellation level is selected per patch
[21, 47] or per set of patches [33].

29

30 Chapter 2. Non-Adaptive Tessellation

This chapter describes a non-adaptive proposal for tessellating Bézier surfaces
into high-quality meshes which accurately represent complex surfaces and contain
no artefacts, such as T-junctions or cracks. Furthermore, in order to achieve real-
time rendering, the tessellation is performed on the GPU and two alternatives have
been designed to tweak many specific details for optimal performance, depending
on the GPU architecture. The VST (Vertex Shader Tessellation) alternative has
been designed for a GPU without primitive generator, such as GPUs implemented in
handheld devices. VST consists in using a parametric map of virtual vertices [11, 47]
with an efficient exploitation of the information stored on the GPU. More specifi-
cally, a technique that permits the optimization of the memory usage of the GPU
to increase the data locality exploitation is proposed. This strategy allows the mini-
mization of draw calls and the CPU-GPU communications. Nevertheless, our second
alternative, GST (Geometry Shader Tessellation) has been designed based on the
capabilities of a primitive generator on the GPU. Therefore, it is based on the on-
the-fly generation of the parametric grid; thus, as the tessellation can be executed
on-the-fly, it avoids the pre-computation and storage of predefined grids in the local
memory. Therefore, the GPU memory does not limit the level of resolution per
surface. Both designs have being tested under different GPU platforms and good
results in terms of quality and timing requirements have been obtained for both.
As result of our analysis, we conclude that the adequate exploitation of the GPU
capabilities is close to permitting the real-time rendering of parametric models, even

for very complex scenes.

This work has been published in [20], [21], [22] and [23].

2.1. Structure of the Non-Adaptive tessellation

proposal

In this chapter we present our proposal for the evaluation of Bézier surfaces on the
GPU based on the exploitation of spatial coherence of data within each surface. This
proposal considers each Bézier surface as the input primitive to the pipeline; thus,
Bézier surfaces are tessellated and evaluated on the GPU instead of the evaluation

of independent samples. Furthermore, we provide a computationally complex but

2.1 Structure of the Non-Adaptive tessellation proposal 31

efficient shader which exploits the computational power of current GPUs as well as

optimized memory access.

The representation of a Bézier surface Q(u,v), 0 < u,v < 1 (see Equation 1.6)
is based on the utilization of two parametric values defined in a normalized interval
[0,1]. In our non-adaptive proposal, the tessellation is performed on the GPU and
this implies the evaluation of the surface equation Q(u,v) for different parametric
values (u,v) (see Figure 2.1). The resulting points are vertices that are connected in
order to build the triangles of the final mesh. For the sake of clarity we work with
a simple algorithm that performs a uniform subdivision of the parametric space in
the two dimensions. More specifically and for a tessellation level [, 2+! parametric
values in each dimension are considered. The grid of parametric values P’ to be

evaluated are:

(ur,v1) - (ug, vge)
Pl = (u27lvl) (u27'l.}2l+1) (2'1)
(u21+1 s Ul) ce (u21+1, 1)21+1)
where _
=1
Ui Ui = o g

with i € {1,---,21+1}.

For a resolution level I, the grid of parametric values to be evaluated P! is made
up of 2171 x 241 samples (see Figure 2.2). The resolution level to be applied to each
Bézier surface is selected by the application taking into account different factors such
as screen space error, model complexity or computational requirements. Taking this
into account, a system of L grids of parametric values for the different resolution
levels {P*, P2 ... PL} can be computed a priori, L being the highest resolution

level.

Here we should stress that our proposal takes advantage of the constant result
of [N][B][M]* for every point in the surface and that every control point [B] is only

accessed once, transforming the Equation 1.7 into

Q(u,v) = [U][A][V] 0<u,v<1 (2.2)

32 Chapter 2. Non-Adaptive Tessellation

Parametric Space Model Space

Figure 2.1: Parametric space and model space for a Bézier surface

with [A] = [N][B][M]*. Note that while in our proposal the [A] matrix is computed
only once per surface, the most advanced tessellation units recently included with
DirectX11 would evaluate the [B] matrix once per sample. Features and performance

of this GPU pipeline will be analyzed in the following chapters.

Our proposal exploits two different alternatives for the tessellation. The first
is based on the exploitation of the vertex shader (VST, Vertex Shader Tessellation
see Section 2.2). In this case, and due to the impossibility of generating geome-
tries, the utilization of techniques based on virtual vertices [11, 47] is the key for
a multi-resolution application. This idea is based on the pre-computation of a set
of parametric maps on the CPU. The selection and evaluation of the final vertices,
according to the resolution level selected, is performed on the vertex shader. This
alternative allows the information stored in the GPU to be used and exploited effi-

ciently. The geometry shader is not required in this strategy.

The second alternative is based on the generation of primitives on the GPU
(GST, Geometry Shader Tessellation see Section 2.3). In this case, the surface
tessellation is performed on the geometry shader. The resolution level can be selected
on-the-fly and the generated geometry can be fed back to the standard pipeline
through the stream-out unit. This alternative reduces storage requirements and
geometry capabilities for primitive generation are exploited. Despite the limitations
and drawbacks of the geometry shader unit, promising results have been obtained

with our application and tests performed.

2.2 Vertex Shader Tessellation (VST) 33

Control points Grids Tessellated and
evaluated mesh

Resolutiom
level 1 level 2

X EXIEEEEEEE
XX
Bl PP P
XX K
e000c000o0
0000000
e0000000
®© © € © © 0 0 O
XX EEEEEEEE
XXX EK
XEERICEEEEEEK
XXX
22x22000000e. ey
samplesje e o0 0 00 0 l‘:'.:“\‘\\\\
/ 23X23
samples

Figure 2.2: Samples evaluated to resolution level 1 and 2

2.2. Vertex Shader Tessellation (VST)

VST is a tuning alternative that optimizes the utilization of GPU resources and
a series of performance features. In this alternative, L-grids {P*, P2 --- PL} are
computed and stored in the GPU to be selected and employed for the different
surfaces of the model. Taking into account that this alternative is based on the
storage of pre-computed information, an analysis of the storage requirements and the
consequent implications should be performed. Specifically, the memory requirements

for the application are:

L
M =" Mpi + Mgy x Ns
=1
where Mp: is the memory requirements for the grid, P!, of resolution level [and Ng
is the number of surfaces in the scene. Mjps) includes the amount of memory used

for the control points of each surface. For a (n,n)-degree surface this amount is:

34 Chapter 2. Non-Adaptive Tessellation

M[Bs]:?)x(n—i—l)x(n—i—l)

However, the utilization of a single system of grids limits the speed of the appli-
cation. If a unique system of grids stored in memory is accessed by all surfaces in
the scene, a sequential procedure is forced. This means that for each frame there are
as many Draw Primitive calls as surfaces Ng, so the performance decreases owing to
the amount of calls. Therefore, the amount of synchronizations, Npp, per frame is
Npp = Ng. As only one surface is computed per Draw Primitive call, GPU paral-
lelism is not exploited. Additionally, a large amount of synchronous calls adversely

affects performance as a Draw Primitive is a slow operation.

Therefore, VST uses several copies of the system of grids of parametric values to
process more surfaces per draw call; i.e. several copies of { P!, P? ... PL} are used.
By way of an example, Figure 2.2 shows the evaluation of two input Bézier surfaces
that are tessellated with a different resolution level. The utilization of different
copies of the grid systems permits the simultaneous evaluation of the two surfaces,

with the consequent increment in the processing speed.

To evaluate the number of surfaces that can be processed per Draw Primitive call
the storage requirements of the application have to be evaluated. In our application,
and due to the global memory latency, the control points [B?] of the surfaces are
stored in the texture memory. This memory is cached, so if there is a cache miss,
the information is obtained from global memory, with the consequent delay. The
desirable framework is storing all surface control points in the texture memory and
performing one single draw call. But when the storage requirements exceed the
texture cache capacity, the performance decreases due to the latency of the global
memory in each cache miss. Taking this into account, we have developed a technique
whereby the number of draw calls is selected as a trade-off between two objectives:
minimizing the number of draw calls and assuring that the storage requirements per
draw call do not exceed the texture memory capabilities. As a result, VST performs

Npp draw calls, processing and rendering Ny surfaces per call:

2.2 Vertex Shader Tessellation (VST) 35

with 1 < N; < Ng. Thus, the required amount of memory is

L
M =" Mp x Ng+ Mg x Ng

=1

In detail, and to obtain an optimum application in terms of speed, the following

transmission and storage requirements have to be verified:

1. The data transfer between CPU and GPU has to be minimized. In VST the
information required (parametric grids and control points of the surfaces) is
sent once to the GPU. The information is efficiently stored and re-employed

for optimum performance.

2. The storage requirements associated with the grids of parametric values should
not exceed the global memory capabilities. Taking into account that the global
memory is used for more purposes, not all the space is available for the grids
storage, only a fraction thereof. Specifically, in our application the grids are
stored in a vertex buffer, but exceeding the recommended capabilities would
result in limitations for other utilizations and could affect resource swapping.

As result the following condition has to be verified:

L

ZMpz X Ny < per - Meapy
=1

Megpy being the GPU global memory size and per a percentage value that
depends on each GPU.

3. The storage of the control points associated to the Bézier surfaces to be pro-
cessed per draw call should not exceed the capabilities of the texture memory;
i.e., Mips)x Ng < My being My the texture memory size. Therefore, the cache
properties of the texture memory are efficiently exploited and the data loaded
to this memory are fully processed for all surfaces to be rendered in a draw

call before being replaced.

4. The number of draw calls (Npp) should be minimized owing to their fixed-cost
overhead [2]. The basic idea of our batching strategy is to combine many small

transfers into one large one to optimize the data communication procedure.

36 Chapter 2. Non-Adaptive Tessellation

The analysis of the storage requirements, along with the recommended number

of draw calls according to our tests, is included in the results section.

2.2.1. Implementation Details

In this subsection, we summarize the details of our VST kernel implementation.
The kernel processes bicubic Bézier surfaces and exploits the capabilities of the
DirectX 10 Microsoft’s HLSL [66].

The VST algorithm is shown in Figure 5.10 and it consists of two stages: Prepro-
cessing Stage and Synthesis Stage. In the Preprocessing Stage two tasks are carried
out: the control points (Task 1) and the grids of virtual vertices P!, 1 <[< L (Task
2) are sent from CPU to GPU. In the Synthesis Stage the LOD per surface is selected
(Task 3) and the Bézier surfaces is tessellated (Task 4) and rendered on the GPU.
While the Pre-processing Stage is processed once per scene, the Synthesis Stage can
be performed multiple times per data set for successive frames f (see feedback in

the figure). The tasks to be carried out and their optimizations are explained below.

In Task 1, the Bézier surfaces control points [B®], 1 < s < Ng are sent from CPU
to GPU. Unlike previous proposals [11, 47], in our application the information is sent
only once from CPU to GPU and stored in the texture memory. This improvement,
a key point in our proposal, is possible thanks to the improved storage capabilities of
current graphics cards. As a consequence, VST reduces CPU-GPU communication.
The control points of the surface [B?] are stored in three float 4x4 arrays [B3, B;, B:],
one per coordinate. As texture memory provides better performance that constant
or global memory, these data are stored in a texture buffer (tbuffer) [66]. Therefore,
the texture memory has less restrictive access patterns and it hides memory latency
accesses. Furthermore, tbuffer allows the simultaneous access to different variables

packed in the same buffer, thus improving performance.

Zle Mpi x Ny virtual vertices grids are sent to GPU and stored in the Vertex
Buffer [66] in Task 2; thus, the vertex buffer accelerates the synthesis of geometries.
As geometries are stored in the vertex shader following a specific pattern which

contains connectivity information, no Index Buffer is required.

During the synthesis stage and for each frame Npp draw calls are performed.

2.2 Vertex Shader Tessellation (VST) 37

PREPROCESSING STAGE
CPU GPU

2N T
Gl‘id-on >
’ L2

CPU GPU

LOD

selection

Figure 2.3: Structure of the VST algorithm

In each call N, surfaces are selected to be tessellated and rendered. Following a
similar strategy to previous proposals [33, 47], Ny surfaces grouped in the same
draw call are represented with the same level of detail [. As a consequence, the
mesh connectivity can be directly extracted from the systems of grids and no Index
Buffer is required, with the consequent advantages in terms of time and storage
requirements. Note that the classification into groups of Ny surfaces could imply
small adjustments of the real levels of details in some surfaces. However, small
variations of the levels of detail are not noticeable, while a considerable reduction
in the timing requirements is achieved with this simplification. In summary and
according to the surfaces selection strategy in terms of their level of detail, Task 3
sends the level of detail [and an index D P which identify the set of surfaces to be

rendered in that draw call.

Finally, Task 4 is executed in the vertex shader of the GPU and Equation 2.2

38 Chapter 2. Non-Adaptive Tessellation

VS_OUTPUT DefaultVS(VSINPUT P!)
{

float4x4 [N]={ -1, 3, -

o o o

))

-1, 3,
3, -6
_37 37
3, 0

)

) i

O O wWw

}

u=Plx;v=Ply;
s = Pl.z x dp x Ng;
float1x4 [U]=(u?, u?, u, 1);

10 float1x4 [V]=(v3, v2, v, 1);

11 floatdx4 {[B;],[B;],[B;]} = read from texture (s);
12 float3 vertex = mul([U], [N],[B?], [N], [V]);

13 return vertex;

14 }

i)

CO O UL i W N+

NeJ

Figure 2.4: vertex shader pseudocode for the VST method

is evaluated. Due to its efficiency in a GPU implementation, VST employs a direct

evaluation strategy instead of the de Casteljau algorithm [88].

Figure 2.4 shows the simple vertex shader pseudocode of VST for the bicubic
surface evaluation. The input parameters of the vertex shader (line 1) are the grid
parametric values P!, which will be employed in the evaluation. Note that the Ny
surfaces have the same level of detail [and the same group identification indexed by
DP. The (u,v) parametric values are stored in P' coordinates x and y while the z
coordinate stores a surface index {0, -+, Ny —1}. In consequence, the identification
of each surface can be performed directly (line 8). To evaluate Equation 1.7 (line 12)
[U] and [V] are calculated (lines 9 and 10), the control points of the surface are read
from the texture memory (line 11), and the basis function coefficients (lines 3 to 6)
are employed. As a result, the vertices of the final tessellated mesh are obtained
(line 12). As will be shown in the results section, the simplicity of the strategy and
the efficient management of the information storage are key points for the real-time

rendering of high-quality models.

2.3. Geometry Shader Tessellation (GST)

In this section, we include our second alternative. This is based on the exploita-
tion of the geometry shader for the Bézier surface tessellation (GST). The objective

2.3 Geometry Shader Tessellation (GST) 39

is to exploit the geometry shader capabilities for geometry generation. This, in
contrast to the VST, permits the generation of geometry without the need to use a
virtual vertex strategy. As a result, the storage requirements are reduced and the

new capabilities of current graphics cards are exploited.

The key idea of GST is the on-the-fly computation of the P' values for each
input surface. As a consequence, no pre-computed grids are employed and the
storage requirements are reduced since only the control points of the surfaces are
required. Although the possibilities of the geometry shader as a geometry generator
are promising, current implementations still have strong limitations [2]. Specifically,
current versions permit the generation of 1024 32-bit elements per input primitive.
In our implementation, this limits the number of triangles to be generated per
Bézier surface and, in consequence, the maximum resolution level to be generated.
Specifically, the maximum resolution level allowed is [= 3; i.e., 2% x 2* triangles can
be generated. In future graphics cards we expect this limitation to be reduced or

eliminated, with the consequent benefits for our technique.

The method currently employed to obtain a higher level of detail is an iterative
execution of the geometry shader for each surface. GST is based on the geometry
shader output which can be stored in output stream and feedback as input for the
rendering pipeline (see Figure 2.5). However, the inherent timing costs of iterative
procedures render the reduction in the number of iterations relevant. The mainstay
of GST is to reduce this number of iterations using an efficient method to increase

the highest level of detail that can be managed per iteration.

The key idea of GST for increasing the resolution level is partitioning the para-
metric map into zones and the parallel evaluation of these zones on the geometry
shader. That is, the P! grid (see Equation 2.1) with 2!+ x 2!+ parametric values is
partitioned and the corresponding parametric values groups processed in parallel in
the geometry shader. Considering groups of m x m parametric values the P! matrix

of values can be rewritten as a system of sub-matrices:

P[ll,l} P[ll,Nz’“]
P[lNz“,l} P[lNzu,Nz”]

40 Chapter 2. Non-Adaptive Tessellation

Buffer
Memory
1
Rastprizer 1«
1
Pigel
Shader
Output R
Merger i
——

Figure 2.5: DirectX10 pipeline where the iterative procedure through the Stream
Output is remarked.

Nz" and Nz" are the number of zones in u and v directions, respectively:

ol+1 ol+1

Nz=——; Nz'=—

m m
The structure of GST is schematically depicted in Figure 2.6. Two geometry
shader kernels are devoted to two tasks: zone identification and tessellation per

zone.

The first task partitions the parametric grid into zones. As indicated in Equa-
tion 2.3 the P! matrix is generated with a set of sub-matrices P'[i, j], where i =
1,--- ,Nz%and j =1,--- , Nz". In GST the first shader calculates the parametric
map through the identification of the first element of each sub-matrix, (t(i.m)+1, V(jm)+1))-
Once this value is calculated, the remaining parametric values can be generated with

simple incremental operations. As indicated in the figure, the possibility of an it-

2.3 Geometry Shader Tessellation (GST) 41

P iteration t

z

No

i \ v ion of

s - Computation of > es Comgl(JLtja\tll)on of |1
[s,ui,vj,t] / [s,ui,vj,l] ’

€D,

Memory

Figure 2.6: Structure of GST proposal

erative process is considered. As a result, the first shader generates four values per
zone |s, U(i-m)+15 V(G-m)+1 t], where s is the surface index and ¢ indicates the iteration
number. Due to the limitations of the geometry shader (only 1024 32-bit data can
be generated per input primitive) only up to 1024/4 = 256 zones can be processed
in each step of the iterative algorithm. In consequence, the resolution level that can

be obtained with GST per iteration is 2L¢ - m x 2L¢ - m, with m = 4, lgg = 4.

The second shader performs the surface evaluation (Equation 2.2) for the points
assigned to each zone. The zones will be managed by the geometry shader as isolated
input primitives, thus the vertices located in the border among zones are evaluated
more than once. This means that cracks between contiguous zones can be avoided.
Consequently, the matrices are of size (m+ 1) x (m+ 1) with an overlap of elements

between matrices with consecutive indices:

(Wim)+15 V(Gm)+1)) o (Wam)+1 V(Gm)+(mt1)))
P'li,jl= | (2.4)

(u(i~m)+(m+1)7v(j~m)+1)> (u(i~m)+lav(j-m)+(m+1)))

An example of the parametric map generation is depicted in Figure 2.7 where

42 Chapter 2. Non-Adaptive Tessellation

____zoneld _ _ _ zonel2 —__zonel3d _ _
| 11 12 1.3 4 ;_15|_16__17__18_|_1,g_I
I 17 |
: 2,1 2.2 3 24| 25 26 27 28 | 29|
I
I 3.1 3.2 33 3.4 as| a6 37 38 39|
I
I 41 4,2 4,3 44 | \]45] 4,6 47 48] 4,9|
I I |
||_51 52 b3 _5_4 N 6 57 58 5,?I_| _______
[——— 1 | |
zone 2,1 zone 2,2 zone 3,1

Figure 2.7: Parametric map partitioning in zones

m = 4. In this case, each zone has 5 x 5 elements with an overlap of points between
neighbouring zones. For example, zones labeled as (1,1) and (1,2) in the figure share
the following points: {(uy,vs), (us2,vs), (us,vs), (ug,vs), (us,v1), (us,ve), (us,vs),

(us,va)}-

Here we should stress that GST uses a regular grid in the (u,v) parametric
directions and could exploit the GPU vector computation capabilities by computing

sixteen points of the Bézier surface simultaneously, Q(tcsx, vj1x) with 0 < k < 4.

2.3.1. Implementation Details

In this subsection, the details of our GST kernel implementation are summa-
rized. The kernel processes bicubic Bézier surfaces and exploits the capabilities
of the DirectX 10 Microsoft’s HLSL [66]. The structure of the implementation is
schematically depicted in Figure 2.8. Similarly to VST, the algorithm has two stages:
Preprocessing Stage and Synthesis Stage. In the Preprocessing Stage two tasks are
performed: the control points (Task 1) and the surface indices (Task 2) are sent from
CPU to GPU. In the Synthesis Stage, the LOD per surface is selected (Task 3), the
parametric map partitioned into zones (Task 4), and the corresponding tessellated

surface sections are evaluated (Task 5) and finally rendered on the GPU. As for

2.3 Geometry Shader Tessellation (GST) 43

PREPROCESSING STAGE
CPU GPU
Vg
Index
enerat b
g on 1,2..5 [2

SYNTHESIS STAGE
CPU| [====== ——=——<=-=< J GPU

Bézier

I 4% patches 4

11 tessellation |
oo 3/ LSv| i — ™ Rasten'zer--—' A

selection

Figure 2.8: Structure of the GST algorithm

the VST algorithm, while the Preprocessing Stage is performed once per scene, the
Synthesis Stage can be performed multiple times per data set for successive frames

f. We now to on to explain these tasks and the optimizations thereof.

In Task 1, the control points of the Bézier surfaces [B®], 1 < s < Ng are sent
from CPU to GPU. These control points are stored in the GPU’s texture buffer
(tbuffer) as three arrays [B;, By, BS].

Task 2 is required to generate the vertex buffer. This simple vertex buffer com-
prises a surface index which is required by the geometry shader for the surfaces
identification. The geometry shader receives the surface indices as input, which is

then used to recover the corresponding control points from the texture memory.

44 Chapter 2. Non-Adaptive Tessellation

During the synthesis stage, each Bézier surface is selected and processed on the
geometry shader to generate a triangle mesh according to the desired level of detail
specified by the application. Surface index and level of detail are sent from CPU to
GPU in Task 3. Hence, this proposal minimizes transmission requirements between

CPU and GPU.

The partitioning of the parametric map into zones is associated with Task 4. This
simple kernel, to be executed on the geometry shader, generates as output a tuple
(S, Uim) 115 V(j-m)+1, t]; 1.e., the surface identifier s, the zone identifier (first parametric
coordinate of each submatrix), and an iteration index t. As has previously been
indicated, up to 256 tuples can be generated in each iteration of the algorithm. For
a higher resolution, an iterative process can be executed (see feedback in the figure).
Finally, Task 5 includes the evaluation of the Bézier surfaces for values associated
with each zone of the parametric map. As the new vertices are generated using the
gometry shader, the memory requirements are minimized. Note that two buffers
are required for the passes of the geometry shader to hold the stream-out results
[70]. In this manner, the shader can ping-pong between them using an initial buffer
for input and a second one for output on odd-numbered passes, and vice versa on

even-numbered passes.

As will be shown in next section, the utilization of the geometry shader for the

direct tessellation of the Bézier surfaces on the GPU is a promising technique.

2.4. Experimental Results

In this section we present the results of the evaluation of VST and GST. We
have implemented both algorithms by exploiting the capabilities of the DirectX 10
Microsoft’s HLSL [66]. Comparisons in terms of performance with the algorithm
presented in [47], employed as a benchmark test in recent publications, are also
included. We have run our implementations on a Intel Core 2 2.4 GHz with 2 GB
of RAM and on two different GPUS: GeForce 9800 GTX and ATI Radeon 3870 X2.

VST and GST are evaluated in different scenes that are composed of replicated
versions of a small set of models. The models (Teacup, Teapot and Elephant) em-

ployed are depicted in Figure 2.9 at different resolution levels. The final images have

2.4 Experimental Results 45

L1 L4 L6

(c)

Figure 2.9: Models employed in the test scenes (a) Teacup (b) Teapot (c) Elephant

a screen resolution of 1280 x 1024 pixels. In Table 2.1 we include the results obtained
for 16 of those scenes, denoted as .S;, with i = 1,--- ,16. Column N, shows the num-
ber of Bézier surfaces while column N2 indcates the number of triangles generated
for the coarsest level of detail; i.e., L = 1. Columns N} and NS show the number
of triangles generated with L = 4 and L = 6 for a non-adaptive tessellation; i.e.,
all surfaces were tessellated with the same level of detail. Columns N; Adpt. and
NS Adpt. show the mean number of triangles generated for an adaptive tessellation
proposal with L = 4 and L = 6; i.e., when the resolution level of each surface is up
to 4 or 6 respectively. In the adaptive approach, the same LOD is applied to the
whole model and it is modified on the fly according to the model position respect to
the viewpoint. In this case, the resolution of each surface is selected on the basis of

its position in the scene with a varied set of viewpoints. Note that complex scenes

46 Chapter 2. Non-Adaptive Tessellation
|Scene | N, | Ny | N;p | NjAdpt.| N§ | N Adpt. |
Sh 26 0.46 48.80 25.49 819.05 432.66
So 32 0.56 60.06 34.39 1008.06 554.98
S3 260 4.57 488.01 254.86 8190.51 3815.56
Sy 320 5.63 600.62 343.95 | 10080.63 5206.89
Ss 520 9.14 976.02 509.72 | 16381.02 6935.26
Se 640 | 11.25 | 1201.25 687.90 | 20161.25 9454.31
Sy 780 | 13.71 | 1465.02 764.59 | 24571.52 9259.56
Sy 811 14.26 | 1522.21 1241.23 | 25548.08 | 14923.50
Sy 960 | 16.88 | 1801.88 1031.84 | 30241.88 | 12856.10
S1o 1040 | 18.28 | 1952.03 1019.45 | 32762.03 | 10801.40
S11 1280 | 22.50 | 2402.50 1375.79 | 40322.50 | 15142.10
S12 1300 | 22.85 | 2440.04 1274.31 | 40952.54 | 11495.80
S13 1600 | 28.13 | 3003.12 1719.74 | 50403.13 | 16525.70
S14 2600 | 45.70 | 4880.08 2548.62 | 81905.08 | 38865.80
Sis 3200 | 56.25 | 6006.25 3439.48 | 100806.25 | 30826.25
S16 8110 | 142.56 | 15222.09 | 12421.30 | 255480.84 | 55340.50

Table 2.1: Number of triangles generated (in K) for each scene

with a high number of surfaces were used.

First, and for the VST alternative, the number of draw calls Npp were ana-
lyzed. As an example of our analysis, Figure 2.10 shows the frames per second in
scene Sy for different Npp and L values, considering GeForce 9800 GTX. Similar
behaviour was obtained for all the scenes tested. As can be observed in the fig-
ure, the number Npp has a strong influence on the algorithm’s performance. For
example, the obtained speedup is 1.42 with L = 5 for Npp = 4, and up to 1.31
with L = 6 for Npp = 8. Initially, and for a small number of Npp, the frames per
second are increased. The good performance in terms of frames per second is due to
the reduction in global memory accesses and the efficient utilization of the texture
memory. The good results are associated with the exploitation of data locality and
the scheduling strategy employed. For larger Npp values, this trend changes owing
to the overhead of each draw call. With respect to the dependence, with the value
L, for larger L values the best frames-per-second values are obtained for larger Npp
values. According to Wloka’s rule [2], this is due to the larger number of polygons

per surface and the rasterization costs that become the standard GPU pipeline in

2.4 Experimental Results 47

100

FPS

Figure 2.10: VST proposal for S5 with L =4, L = 5 and L = 6 in an Nvidia GeForce
9800 GTX

the bottleneck of the application.

With respect to GST, Figure 2.11 shows the influence of the number of iterations
in the performance, due to GST partitioning the parametric maps into zones. The
influence of the feedback process is analyzed. With L. = 1 only one geometry shader
stage is computed, while L = 2 computes two passes through the geometry shader.
As can be seen in the figure, the feedback process through the GPU pipeline reduces
the performance dramatically. In both, L = 1 and L = 2, the computational power
of the GPU core is underused; however, the performance with L = 2 is considerable
reduced. This gap in the performance is due to the fact that L = 2 iterates two
passes through the GPU pipeline and a geometry shader stage is computed twice
for each Bézier surface (Task 4 and Task 5 in Figure 2.8). The same trend can be
observed for L = 4 (see Figures 2.11 and 2.12). However, as both, L = 2 and L = 4,
pass twice through the GPU pipeline (geometry shader is executed twice) there is a

smaller gap when comparing L = 2 and L = 4 than with L =1 and L = 2. In this

48 Chapter 2. Non-Adaptive Tessellation

L L=1
300 3 e - L2
‘. e L=4
n !
2 200 \:
(S \
\
L
100 \
‘C‘\\ -----------------------------------
0 ' — =
0 2000 4000 6000 8000

S

Figure 2.11: Performance of the GST alternative in an ATT 3870x2

case, as L = 4 evaluates and renders a greater amount of primitives than L = 2,
because L = 2 renders about a 5% of the primitives of L = 4, and consequently

lower performance is obtained in L = 4.

Figure 2.12 depicts the performance obtained with L = 4 in two different GPUs
architectures considering the same number of triangles. As a first step in our analy-
sis, we compare our designs with the proposal presented in [47] - our baseline, as it
is one of the most classical algorithms in surface tessellation. Our proposal clearly
achieves better performance in all cases and in all architectures.VST and GST obtain
good performance in terms of FPS, allowing real time adaptive tessellation, includ-
ing a large tessellation with a high number of triangles. For example, as shown in
Table 2.1 and in Figure 2.12 for 9.14 K input triangles (scene S5), 976.02 output
triangles are generated in a non-adaptive tessellation, where more than a hundred
output triangles are generated for each input triangle. Considering the performance
113.8 fps for VST and 10.04 for GST are obtained with GeForce 9800GTX while
74.163 and 49.886 fps are obtained with VST and GST, respectively in ATI Radeon
3870 X2. In this case, as indicated in Table 2.1, the number of triangles generated
with an adaptive approach is 509.72 K. On the other hand, GST performs worse

than VST, although in the latter case a greater amount of memory is used. As in all

2.4 Experimental Results

49

20y ol
1% --- GST
: e [47]
150—_
n i |
4 4
H- 100—'.‘|
1
1
50
11
11
I T
0 B e ' ! 8000I
0 2000 4000 6000
Ns
(a)
T VST
] --- GST
250
: e [47]
i |
2(1)—_\'.
1n
i
& 1503+
TH I
- \I‘
1004 '
1.
1\
5041 ‘o
E\ TN et
0 T PR '______8000T
0 2000 400 6000
S

Figure 2.12: Comparative for L = 4 (a) Nvidia GeForce 9800 GTX and (b) ATI
Radeon 3870 X2

50 Chapter 2. Non-Adaptive Tessellation

30004 VST
i - -~ GST
l| —--—- Tess

2000 |

n 1!

[a W 41

@ 3
1\

1
1000 3: \,
I
1 RN
; \) ‘Ti\. == N
0 l— —_-—l = T = T T I T _'--F-l
0 2000 4000 6000 8000

S

Figure 2.13: Comparative for L = 4 in an ATI 5870

cases we compare equivalent systems with the same resolution level, the differences
in performance seems to stem from the limitation of the geometry shader. More
specifically, for L = 4 the computation of two geometry shaders (two stages) is
required to obtain the desired resolution level.

Furthermore, both GPUs, Nvidia and ATI, are from the first generation of graph-
ics cards with a geometry shader stage, where a non-optimal implementation of the
geometry shader is included, whereas the next generation of GPU has been pro-
vided with an improved geometry shader implementation, as shown in Figure 2.13.
This ATI 5870 GPU offers a better geometry shader implementation than previ-
ous versions, thus the GST alternative obtains a better performance than the VST
one. Moreover, in this case both alternatives demonstrate better performance than
the tessellator stage included with DX11. A different computation scheme is consid-
ered in DX11 implementation, as the Bézier surface has to be evaluated for each new
sample, instead of reusing the computation, as this non-adaptive proposal does. Fur-
thermore, this ATI card includes two hardware tessellators(one for high tessellation
factors and the other for low tessellator factors), and as rendered models are quite
compact, they select a similar tessellator factor for their surfaces. Consequently, the
selected hardware tessellator is the bottleneck of this rendering.

2.5 Conclusions 51

In summary, the results demonstrate that both proposals obtains a good perfor-
mance on current GPU.

2.5. Conclusions

In this chapter we have presented a non-adaptive proposal for the tessellation
of Bézier surfaces on the GPU based on the exploitation of spatial coherence, with
two different alternatives considering different GPU features. The first alternative,
VST, performs the tessellation by exploiting the vertex shader as a vertex coordinate
evaluator, while the second one, GST, exploits the capabilities of the geometry

shader as a primitive generator.

VST is based on the utilization of virtual vertex strategy and a system of multi-
resolution parametric maps. The utilization of this system of maps to evaluate
the final coordinates of the virtual vertices allows multiple surfaces to be processed
in parallel. Additionally, and in order to exploit the data locality and reduce the
number of global memory accesses, an analysis of the optimum number of surfaces

to be processed in parallel was performed.

With respect to the second alternative, GST, it is based on the exploitation of
the geometry shader as a primitive generator. Due to the current limitations of the
shader, in terms of number of primitives generated per input primitive, GST is based
on the utilization of a smaller primitive: a parametric map section. This strategy
leads to an increment in the output resolution while keeping all the advantages of a

direct implementation.

We have obtained highly satisfactory results in terms of timing requirements for
complex scenes, with VST being slightly superior to GST.

Chapter 3

Dynamic and Adaptive Bézier

Tessellation

Non-adaptive tessellation has a number of different drawbacks. These include
producing an excessive amount of triangles without increasing the quality of the
final mesh, and not generating sufficient triangles in highly complex areas. The
best solution is a high-quality adaptive tessellation that can be run on the fly and
characterized with a high degree of freedom in the tessellation pattern generation.
A desirable adaptive subdivision strategy adapts the tessellation pattern depending

on a certain measure, such as view-dependent parameters or flatness [5, 31].

There are two main approaches to performing the adaptive tessellation on the
GPU [12, 34, 35, 62, 76, 85] with DirectX10. The first solutions [12, 62] are based
on the computation and storage of a set of tessellation patterns on the GPU and the
selection of the correct pattern for each triangle of the incoming mesh at run time.
The disadvantage of the proposal is that the number of available patterns is lim-
ited and must be pre-computed, reducing the adaptability of potential tessellations
patterns. The second group proposals [34, 35, 76, 85] perform a per primitive view-
dependent adaptive tessellation with a fixed pattern where the same tessellation

pattern is applied to everything.

Previous proposals in the bibliography work with more flexible adaptive subdi-
vision strategies [5, 31]. These proposals were oriented towards early GPUs with a

lower degree of programmability. For this reason the adaptive tessellation was de-

23

54 Chapter 3. Dynamic and Adaptive Bézier Tessellation

signed not to be programmed but to be implemented in an additional specific hard-
ware unit. The adaptive tessellation algorithms employed are based on recursive
tessellation strategies, where each edge of the triangle is conditionally subdivided
into two in each iteration. Owing to this recursive structure, the mesh has to be
reconstructed after each iteration, resulting in irregular memory access patterns and

complex control flow or hardware implementations.

In this chapter we present a new method for adaptively tessellating Bézier sur-
faces on the GPU. Our Dynamic and Adaptive Bézier Tessellation (DABT) is based
on the Adaptive and Dynamic Mesh Refinement (ADMR) [10] tessellation scheme for
triangle meshes. Tessellation is performed according to a local test to generate prim-
itives dynamically. The refinement procedure does not require the pre-computation
of any refinement pattern. The resulting adaptive procedure is efficient, simple and
generates the tessellation pattern of each triangle dynamically. The non-recursive
strategy simplifies mesh reconstruction, avoids irregular memory access patterns,
and uses simple control flow to make it a good candidate for guiding the evolution

of tessellation algorithms on future graphics cards.

However, DABT has been designed to tessellate parametric surface meshes with
a higher level of adaptively. So, DABT extends the capabilities of the proposal pre-
sented in [10] as different levels of resolution inside the patch are allowed. Further-
more, DABT permits the minimization of the number of triangles to be processed
without reducing the quality of the final images. In our method, the tessellation
level is not fixed for the full patch and can be locally changed as a function of dif-
ferent speed/quality parameters. The adaptive tessellation procedure is guided by
local tests that avoid cracks between adjacent patches. More specifically, in this
chapter we work with three tests that analyze different properties as guidance for
the tessellation: distance between mesh and ideal surface, flatness of the mesh and

size of the triangles.

This chapter is organized as follows: firstly, in Section 3.1 the Adaptive and
Dynamic Mesh Refinement scheme is detailed. In Section 3.2 our Dynamic and
Adaptive Tessellation of Bézier surfaces procedure is presented. In Section 3.3 the
implementation we performed to test our proposal is detailed. The results obtained
are included in Section 3.4. Finally, in Section 3.5 the main conclusions are high-
lighted.

3.1 Adaptive and Dynamic Mesh Refinement 55

Experimental results and methodology have been published in [10], [24] and [25].

3.1. Adaptive and Dynamic Mesh Refinement

In this section we describe the proposal, ADMR [10], for performing adaptive
tessellation on GPUs. This proposal was originally developed for the adaptive tes-
sellation of triangle meshes as the result of the collaboration of different research
groups: GAC at UDC, GAC at USC and Graphics Group at Lund University. We
have subsequently developed the DABT algorithm by extending, improving and
adapting the ADMR algorithm to the of case of Bézier surfaces. The ADMR strat-
egy is to tessellate the mesh by computing the tessellation pattern on the fly for each
incoming triangle without employing any pre-computed pattern. The objective is
a freely adaptive tessellation of triangle meshes where the resolution and number
of triangles generated per incoming triangle can be selected as a trade-off between

quality and computational requirements.

The ADMR method performs the tessellation on an independent triangle basis,
so the procedure can be applied to any triangle mesh. The coarse mesh is transmitted
from CPU to GPU and the tessellation is performed completely on the GPU without
the supervision of the CPU. The proposal can be implemented in current GPUs by
exploiting their geometry shader capabilities. However, the simplicity and good
results obtained make it a good candidate for integration into future graphics cards

as a tessellation unit.

The tessellation pattern is computed on the fly and any local test can be em-
ployed to guide the tessellation. The tests employed for the tessellation can be freely
selected; for example, tests based on camera position, normal analysis, displacement
map analysis, curvature analysis, etc. could be implemented [5, 31]. Note that a
combination of tests can be applied before inserting each candidate position. This
increases the flexibility of the tessellation technique, as a wide range of different
criteria can be simultaneously employed in each area of the mesh. Additionally, the
adaptive tessellation procedure can be guided by any tests local to the edges or to
the full triangle, or could be extended to the neighbor triangles. For example, for a

geometry shader implementation the subdivision quality can be enriched by exploit-

56 Chapter 3. Dynamic and Adaptive Bézier Tessellation

ing the data accessibility available [9, 25]. The candidate vertices to be inserted are

checked and conditionally inserted.

The tessellation is guided by a fixed tessellation pattern, where each vertex loca-
tion is tested and conditionally inserted. Once the inserted vertices are calculated,
the next step is to connect the vertices to construct a new mesh. The tessellation

should generate triangles covering the surface with no holes or cracks.

ADMR is based on the representation and management of these tessellation
decisions. More specifically, the method we employ is based on the classification
and organization of the new vertices into strips. The representation and utilization
of these strips of vertices permits the construction of an adaptive tessellation in a

simple, efficient way without requiring a recursive procedure.

In summary, the ADMR proposal is based on three key ideas: the tessellation
pattern employed, the representation of inserted vertices and an efficient tessellation
procedure based on this representation. We now go in to present each key point of

our proposal.

3.1.1. Tessellation Pattern

Tessellation algorithms with a recursive nature have a number of disadvantages.
With these strategies each triangle is recursively subdivided and the mesh has to
be reconstructed and stored after each iteration. This results in complex meshing
algorithms with irregular memory access patterns that are not adequate for either
a direct GPU implementation on the geometry shader or for a specific hardware
implementation. Hence, the ADMR method employs a non-adaptive tessellation
pattern as a basis for the adaptive case. The resolution level of this pattern can
be selected, for example, by using a view point criteria and is applied to the entire
mesh. Once the tessellation level of the pattern is selected only the positions in this

tessellation pattern are evaluated for conditional insertion at each position.

Figure 3.1 shows the tessellation patterns for four different levels of resolution
L = {0,1,2,3}. The original coarse triangle is depicted with bold lines and the
sampling points corresponding to the candidate vertices with a cross. The paramet-

ric coordinates (up,vg) of the sampling point associated with a candidate vertex

3.1 Adaptive and Dynamic Mesh Refinement 57

V1 V1
V2 Vi V2 V3
L=0 L=1
V1 V1
V2 Vi V2 V3
L=2 L=3

Figure 3.1: Tessellation patterns for L = {0,1,2, 3}

Vg that lies on the Bézier surface are computed through its barycentric coordinates
with:

(up, vp)(w;, wj, wy) = w; X (ur,vy) +w; X (ug,ve) +wy X (us,vs)

where (uy,v1), (ug,v2) and (us,v3) are the parametric coordinates of the vertices
of the initial coarse triangle and (w;, w;, wy) are the barycentric coordinates of the
candidate vertex. The barycentric values are in the interval [0, 1] and verify w; =
i X 0w, w; = jxow and wy = kxdw with4, j,k = {0, ---, L+1} and 6w = 755.The
tessellation is performed in the parametric domain, so to obtain the Euclidean space

coordinates of the vertex Vp Equation 1.8 is evaluated.

The positions associated with this non-adaptive pattern are classified into strips
of candidate vertices. Figure 3.2 shows the tessellation pattern we employ for five
strips of vertices. The original coarse triangle is depicted with a bold line and the
triangles generated for the non-adaptive case with dashed lines. In our ADMR
proposal, the vertices (indicated with labels in the figure) are evaluated and are

conditionally inserted depending on the result of a specific test.

This tessellation methodology is generic and can be applied to any number of

58 Chapter 3. Dynamic and Adaptive Bézier Tessellation

strips, where this number is selected according to the resolution desired. The ad-
vantages of this simple tessellation methodology are multiple. First, the tessellation
has a non-recursive structure and for each triangle, once its tessellation level is se-
lected, the locations of the candidate vertices are determined. On the other hand,
the positions of the final vertices to be inserted can easily be evaluated through their
barycentric coordinates. In the case of a hardware implementation, the barycentric
coefficients could be stored to be applied in run time. Moreover, the tessellation pro-
cedure is not limited to specific pre-stored patterns, but can be determined on the
fly, depending on the tessellation level selected and the tessellation test employed.
The lack of recursiveness and the simplicity of the algorithm make it suitable for
including a full adaptive tessellation unit based on our tessellation strategy on a
GPU.

3.1.2. Strips of Vertices Representation

In our ADMR proposal the adaptive tessellation is generated once the vertices are
conditionally inserted. Our tessellation algorithm, explained below, is based on the
efficient management of the tessellation pattern representation. This representation,
dealt with in this section, is based on the classification of the inserted vertices in
strips. This simple representation, together with the efficient management thereof,
leads to a simple tessellation algorithm, as will be shown in the remainder of this

chapter.

Let us represent the strips of vertices as, Sv, a tuple of s lists Sv = (Svy, -+, Svs)
corresponding to the s strips. Each list includes the vertices inserted in each strip;
i.e., vertices that comply with the tessellation criterion. Non-inserted vertices are
not included in the list and their positions are empty. We define a limit vertex as
one on the edge of the original triangle with a vertex on the left edge of the triangle
being an opening limit vertex and on the right edge of the triangle a closing limit
vertex. We also define an extreme vertex as the first/last vertex in a strip when
there is no opening/closing limit vertex. By way of example, with a non-adaptive

tessellation with five strips (see Figure 3.2) the system of lists is:

n <= 1. The limit vertices in each strip are indicated in bold typeface.

3.1 Adaptive and Dynamic Mesh Refinement 59
1 Strip 1
|4/ ------- > i ------- 6\\| Strip 3
| 7 beoosoe: 80 -------- 9D ----- 10\| Strip 4
ry 5 - = 9 Strip 5
11 12 13 14 15
Figure 3.2: Tessellation Pattern employed
Sv; = {1}
SUQ = {2, 3}
Svs = {4,5,6}
Svy = {7,8,9,10}
Svs = {11,12,13, 14,15}
where each list Sv; includes the vertices j in the ¢ —th strip, with j = 1,--- ,n being

An example with an adaptive tessellation is shown in Figure 3.3 where vertices

5,6, 7, 9 and 10 are inserted. In this case the strips of vertices are represented

according to the following lists:

Sv; = {1}

Svy = {}

Svz = {5,6}
Suy = {7,9,10}
Svs = {11,15}

The limit vertices for this example, indicated in bold typeface, are: 1 in the first

strip, none in the second strip, 6 in the third strip, 7 and 10 in the fourth strip, and

11 and 15 in the last strip. On the other hand, vertex 5 is an extreme vertex. As

will be shown below, the identification of limit and extreme vertices will be the key

60 Chapter 3. Dynamic and Adaptive Bézier Tessellation

11 15

Figure 3.3: Adaptive tessellation according to the pattern of strips of vertices

to our reconstruction algorithm.

To avoid generating overlapping triangles, when the tessellation procedure is
applied two modifications are introduced into the representation. These updatings

are expounded in the following two subsections.

Reuse of limit vertices

The first modification, reuse of limit vertices from previous strips, is required
when a limit vertex is missing in the current strip. For each non-empty list, when
no opening/closing limit vertex is included, the limit vertex in the previous strip is
copied. Note that only opening limit vertices can be employed for opening positions
and closing limit vertices for closing positions with the unique exception of vertex 1
that can be employed for both purposes. By way of example, the extended lists for
the tessellation pattern of Figure 3.3 becomes (limit vertices reused are indicated
with a hat):

S?Jl == {1}

Svy ={}

Svs = {1, 5,6} (3.1)
SU4 = {7, 9, 10}

Svs = {11, 15}

3.1 Adaptive and Dynamic Mesh Refinement 61

That is, the third strip is extended with the reuse of vertex 1 as an opening limit

vertex.

Incorporation of extreme vertices

For the second modification we add an additional notation. We enrich the vertex
classification with the definition of two kinds of diagonals in the tessellation pattern:
opening diagonals D and closing diagonals D¢. For the example of Figure 3.4 with

five strips, there are three diagonals of each type:

Dy ={-,3,5,8,12} Df={-,2,5,9,14}
D9 ={-,—,6,913} D5={—, — 4,813}
D§:{—,—7—,10,14} D§: —,—,—,7, 12}

where Dj,[i] is the vertex of Strip ¢ in diagonal D;, with ¢ = 1,2,---,s. This

classification of the diagonals is used in the ADMR tessellation procedure.

The second modification is the incorporation of new vertices in non-empty strips
with no opening or closing vertex in Sv; and Sv;_; with ¢ > 2. For these strips an
additional vertex is conditionally incorporated. For the situation with no opening
vertices the procedure is as follows: first the opening diagonal D7 that includes the
extreme vertex in Sv;_, that is, Sv;_1[1] € D, has to be identified. Additionally,
the opening diagonal strip, that is, Sv;[1] € Dj, also has to be identified. If DY is
on the left of Dy, i.e. j < k, a vertex has to be incorporated into the current Sv; in

the position indicated by the diagonal associated to the extreme vertex above Df[i].

Similarly, for closing vertices, if the closing diagonal of the extreme vertex of
Svi_1, Dj

VK
strip, Dy, that is j < k, a vertex has to be incorporated into the current strip in the

is on the right of the closing diagonal of the extreme vertex of current

position indicated by the diagonal of the extreme vertex above Df[d].

As an example let us consider the tessellation pattern indicated in Figure 3.5(a).
In this example we find one example of an extreme vertex incorporation when the
third and fourth strips are analyzed. In this case the original list of vertices are:
Svy = {5, 6} and Svs = {9}. The upper strip has a closing limit vertex, vertex 6,

and no opening limit vertex. The lower strip has no opening or closing limit vertex.

62 Chapter 3. Dynamic and Adaptive Bézier Tessellation

PY P
9

11 ,1’2 13 14 15

Figure 3.4: Diagonal organization

As both strips have no opening limit vertices the left extreme vertices have to be
analyzed. The diagonal of the left most extreme vertex above, vertex 5, is D{ and
it is on the left of the D associated to the left most extreme vertex below, vertex 9.
This indicates that an extreme vertex has to be incorporated into Sv4 in the position
associated to D{[4], i.e. position 8. This insertion is depicted in Figure 3.5(b) where
the new vertex is indicated with a circle. Taking into account this new configuration

the resulting lists of vertices are:

Sv1 == {1}
S’Ug = {1,3}
Svs = {1, 5,6} (3.2)

Sv, = {1,8,9,6}
Svs = {11,12,13,14,15}

Note that there is no mark to distinguish an incorporated extreme vertex from

an original vertex.

3.1.3. Adaptive Tessellation Procedure

In this section we present the adaptive tessellation algorithm. The tessellation

procedure works by processing pairs of consecutive strips of vertices. The method is

3.1 Adaptive and Dynamic Mesh Refinement 63

Figure 3.5: Example of extreme vertex incorporation

based on the utilization of the lists of vertices presented so far. Using these lists of
vertices a simple and efficient tessellation procedure is obtained. In the following we

present our meshing algorithm that permits the encoding/reconstruction of triangles.

In the method we propose the triangles are generated by joining the vertices be-
tween consecutive strips (parent-children relation) taking into account the following

rules:

» Two consecutive vertices in the same strip are connected (sibling relation).
» Two identical vertices are not considered for connection.

» A reused opening/closing limit vertex has a limited connection with the fol-
lowing non empty strip. More specifically, it can only be connected with a

non-reused opening/closing limit vertex.

» Each non-reused vertex of each strip, considered as parent, is connected with
consecutive children in the following strip. The following parent is connected
with another group of consecutive children. There is an overlap of one common

child between two consecutive parents.

The application of these rules to each pair of extended vertex lists generates the

final tessellation. For the sake of clarity, let us once again consider the example of

64 Chapter 3. Dynamic and Adaptive Bézier Tessellation

1

Figure 3.6: Example of tessellation for a list with reused limit vertices

Figure 3.3 and its extended list of vertices indicated in Equation 3.1. The resulting
tessellation generated by our proposal is shown in Figure 3.6. The procedure for
generating this tessellation is as follows. For the analysis of the first two strips,
{1} and {1,5,6}, vertex 1 is connected with vertices 5 and 6. The following set
of two strips are {1,5,6} and {7,9,10}. As vertex 1 is a reused vertex, it is only
connected with vertex 7. After this, vertex 5 is the first non-reused parent vertex,
so it is connected with a set of consecutive children {7, 9}. After this, vertex 6 is
the last parent and is connected with the remaining children with an overlap of one
vertex with t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>