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Abstract

The rising interest in Java for High Performance ComputiigQ) is based on the appealing features of this language
for programming multi-core cluster architectures, paitticly the built-in networking and multithreading supp@md

the continuous increase in Java Virtual Machine (JVM) penfance. However, its adoption in this area is being
delayed by the lack of analysis of the existing programmiptioms in Java for HPC and thorough and up-to-date
evaluations of their performance, as well as the unawaseokthe current research projects in this field, whose
solutions are needed in order to boost the embracement@frd&lPC.

This paper analyzes the current state of Java for HPC, botehfared and distributed memory programming,
presents related research projects, and finally, evaltfagserformance of current Java HPC solutions and research
developments on two shared memory environments and twaBafird multi-core clusters. The main conclusions are
that: (1) the significant interest in Java for HPC has led e&odbvelopment of numerous projects, although usually
guite modest, which may have prevented a higher developofeldava in this field; (2) Java can achieve almost
similar performance to natively compiled languages, bottséquential and parallel applications, being an altemmat
for HPC programming; and (3) the recent advances in fifigi@nt support of Java communications on shared memory
and low-latency networks are bridging the gap between Jadlanatively compiled applications in HPC. Thus, the
good prospects of Java in this area are attracting the itteoftboth industry and academia, which can take significant
advantage of Java adoption in HPC.
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1. Introduction

Java has become a leading programming language soon gfteleidse, especially in web-based and distributed
computing environments, and it is an emerging option forHrgrformance Computing (HPC) [1, 2]. The increasing
interest in Java for parallel computing is based on its ajppgeeharacteristics: built-in networking and multithdéag
support, object orientation, platform independence,gimlity, type-safety, security, it has an extensive API and
wide community of developers, and finally, it is the mainniag language for computer science students. Moreover,
performance is no longer an obstacle. The performance gagbe Java and native languages (e.g., C and Fortran)
has been narrowing for the last years, thanks to the JuBirie-(JIT) compiler of the Java Virtual Machine (JVM)
that obtains native performance from Java bytecode. Howélve use of Java in HPC is being delayed by the
lack of analysis of the existing programming options in thisa and thorough and up-to-date evaluations of their
performance, as well as the unawareness of the currentcbgaajects in Java for HPC, whose solutions are needed
in order to boost its adoption.

Regarding HPC platforms, new deployments are increasgmdfgiantly the number of cores installed in order to
meet the ever growing computational power demand. Thigottrend to multi-core clusters underscores the impor-
tance of parallelism and multithreading capabilities [B].this scenario Java represents an attractive choice éor th
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development of parallel applications as it is a multithezhthnguage and provides built-in networking support, key
features for taking full advantage of hybrid shadistributed memory architectures. Thus, Java can usedbiiea
shared memory (intra-node) and its networking support igriduted memory (inter-node) communication. Never-
theless, although the performance gap between Java amd lwatguages is usually small for sequential applications,
it can be particularly high for parallel applications whegpednding on inicient communication libraries, which
has hindered Java adoption for HPC. Therefore, currenarelseforts are focused on providing scalable Java com-
munication middleware, especially on high-speed netwodmamonly used in HPC systems, such as InfiniBand or
Myrinet.

The remainder of this paper is organized as follows. Sei@malyzes the existing programming options in
Java for HPC. Section 3 describes current resedfointe in this area, with special emphasis on providing sdalab
communication middleware for HPC. A comprehensive per&orag evaluation of representative solutions in Java for
HPC is presented in Section 4. Finally, Section 5 summadnesoncluding remarks.

2. Java for High Performance Computing

This section analyzes the existing programming optionsia Jor HPC, which can be classified into: (1) shared
memory programming; (2) Java sockets; (3) Remote Methoddation (RMI); and (4) Message-passing in Java.
These programming options allow the development of both lggel libraries and Java parallel applications.

2.1. Java Shared Memory Programming

There are several options for shared memory programmingva tbr HPC, such as the use of Java threads,
OpenMP-like implementations, and Titanium.

As Java has built-in multithreading support, the use of Jaxsads for parallel programming is quite extended
due to its high performance, although it is a rather lowd®gion for HPC (work parallelization and shared data
access synchronization are usually hard to implement).eb\ar, this option is limited to shared memory systems,
which provide less scalability than distributed memory hiaes. Nevertheless, its combination with distributed
memory programming models can overcome this restrictiamally, in order to partially relieve programmers from
the low-level details of threads programming, Java hasrparated from the 1.5 specification the concurrency utili-
ties, such as thread pools, tasks, blocking queues, antel@ihigh-performance primitives for advanced concurren
programming like CyclicBarrier.

The project Parallel Java (PJ) [4] has implemented sevaghllevel abstractions over these concurrency utilities,
such as ParallelRegion (code to be executed in parallef@llB@eam (group of threads that execute a ParallelRe-
gion) and ParallelForLoop (work parallelization amongetis), allowing an easy thread-base shared memory pro-
gramming. Moreover, PJ also implements the message-pggsamadigm as it is intended for programming hybrid
shareddistributed memory systems such as multi-core clusters.

There are two main OpenMP-like implementations in Java, P8l and JaMP [6]. JOMP consists of a compiler
(written in Java, and built using the JavaCC tool) and a matiibrary. The compiler translates Java source code
with OpenMP-like directives to Java source code with callthe runtime library, which in turn uses Java threads to
implement parallelism. The whole system is “pure” Java @¢hQlava), and thus can be run on any JVM. Although
the development of this implementation stopped in 2000a#& heen used recently to provide nested parallelism
on multi-core HPC systems [7]. Nevertheless, JOMP had toptienized with some of the utilities of the concur-
rency framework, such as the replacement of the busy-waieimentation of the JOMP barrier by the mofgatent
java.util.concurrent.CyclicBarrier. The experimenteleation of the hybrid Java message-passitiPMP config-
uration (being the message-passing library thread-shésyed up to 3 times higher performance than the equivalent
pure message-passing scenario. Although JOMP scalaisiliigited to shared memory systems, its combination
with distributed memory communication libraries (e.g.,ss8ge-passing libraries) can overcome this issue. JaMP
is the Java OpenMP-like implementation for Jackal [8], dwsafe-based Java Distributed Shared Memory (DSM)
implementation. Thus, this project is limited to this eviment. JaMP has followed the JOMP approach, but taking
advantage of the concurrency utilities, such as tasks,igs imore recent project.

The OpenMP-like approach has several advantages overeataf Uava threads, such as the higher level program-
ming model with a code much closer to the sequential versihtlae exploitation of the familiarity with OpenMP,
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thus increasing programmability. However, current OpeAM® implementations are still preliminary works and
lack dficiency (busy-wait JOMP barrier) and portability (JaMP).

Titanium [9] is an explicitly parallel dialect of Java deopkd at UC Berkeley which provides the Partitioned
Global Address Space (PGAS) programming model, like UPC @odhrray Fortran, thus achieving higher pro-
grammability. Besides the features of Java, Titanium adgsbile and éicient multi-dimensional arrays and an
explicitly parallel SPMD control model with lightweight sghronization. Moreover, it has been reported that it out-
performs Fortran MPI code [10], thanks to its source-torsewompilation to C code and the use of native libraries,
such as numerical and high-speed network communicaticeriégs. However, Titanium presents several limitations,
such as the avoidance of the use of Java threads and the Ipoktalility as it relies on Titanium and C compilers.

2.2. Java Sockets

Sockets are a low-level programming interface for netwankimunication, which allows sending streams of data
between applications. The socket APl is widely extendedzande considered the standard low-level communication
layer as there are socket implementations on almost evémorieprotocol. Thus, sockets have been the choice for
implementing in Java the lowest level of network commundcatHowever, Java sockets usually ladka@ent high-
speed networks support[11], so it has to resort tficient TCPIP emulations for full networking support. Examples
of TCP/IP emulations are IP over InfiniBand (IPolB), IPoMX on top bétMyrinet low-level library MX (Myrinet
eXpress), and SCIP on SCI.

Java has two main sockets implementations, the widely detbdava 10 sockets, and Java NIO (Ng@)lsockets
which provide scalable non-blocking communication suppdowever, both implementations do not provide high-
speed network support nor HPC tailoring. Ibis sockets padive these issues adding Myrinet support and being the
base of Ibis [12], a parallel and distributed Java computiagnework. However, their implementation on top of the
JVM sockets library limits their performance benefits.

Java Fast Sockets (JFS) [11] is our high performance Jav@ssouplementation for HPC. As JVM IO
sockets do not provide high-speed network support nor HR®@itay, JFS overcomes these constraints by: (1) reim-
plementing the protocol for boosting shared memory (intbde) communication; (2) supporting high performance
native sockets communication over SCI Sockets, SocketsaviX Socket Direct Protocol (SDP), on SCI, Myrinet and
InfiniBand, respectively; (3) avoiding the need of primitidata type array serialization; and (4) reducindnng
and unnecessary copies. Thus, JFS is able to reduce sigtlifid¥M sockets communication overhead. Further-
more, its interoperability and user and application tramspcy through reflection allow for its immediate applidiapi
on a wide range of parallel and distributed target applicesti

2.3. Java Remote Method Invocation

The Java Remote Method Invocation (RMI) protocol allows &ject running in one JVM to invoke methods
on an object running in another JVM, providing Java with reenmcommunication between programs equivalent to
Remote Procedure Calls (RPCs). The main advantage of thisagh is its simplicity, although the main drawback
is the poor performance shown by the RMI protocol.

ProActive [13] is an RMI-based middleware for parallel, tithteaded and distributed computing focused on Grid
applications. ProActive is a fully portable “pure” Java (0 Java) middleware whose programming model is based
on a Meta-Object protocol. With a reduced set of simple giuas, this middleware simplifies the programming of
Grid computing applications: distributed on Local Areamettk (LAN), on clusters of workstations, or for the Grid.
Moreover, ProActive supports fault-tolerance, load-belag, mobility, and security. Nevertheless, the use of RMI
its default transport layer adds significant overhead totheration of this middleware.

The optimization of the RMI protocol has been the goal of ssvprojects, such as KaRMI [14], RMIX [15],
Manta [16], Ibis RMI [12], and Opt RMI [17]. However, the usérmn-standard APIs, the lack of portability, and
the insdficient overhead reductions, still significantly larger tisacket latencies, have restricted their applicability.
Therefore, although Java communication middleware (eng@ssage-passing libraries) used to be based on RMI,
current Java communication libraries use sockets due toltveer overhead. In this case, the higher programming
effort required by the lower-level API allows for higher thrdyoyt, key in HPC.



2.4. Message-Passing in Java

Message-passing is the most widely used parallel progragparadigm as it is highly portable, scalable and usu-
ally provides good performance. It is the preferred chaicgofirallel programming distributed memory systems such
as clusters, which can provide higher computational pohvan shared memory systems. Regarding the languages
compiled to native code (e.g., C and Fortran), MPI is theddathinterface for message-passing libraries.

Soon after the introduction of Java, there have been sewepidémentations of Java message-passing libraries
(eleven projects are cited in [18]). However, most of themwmehdeveloped their own MPI-like binding for the Java
language. The two main proposed APIs are the mpiJava 1.218PIyhich tries to adhere to the MPhG interface
defined in the MPI standard version 2.0, but restricted tatipport of the MPI 1.1 subset, and the JGF MPJ (Message-
Passing interface for Java) API [20], which is the propo$ahe Java Grande Forum (JGF) [21] to standardize the
MPI-like Java API. The main dlierences among these two APIs lie on naming conventions @hlas and methods.

The Message-passing in Java (MPJ) libraries can be impleaiefi) using Java RMI; (2) wrapping an underlying
native messaging library like MPI through Java Native Ifgtee (JNI); or (3) using Java sockets. Each solution fits
with specific situations, but presents associated trdfte-bhe use of Java RMI, a “pure” Java (100% Java) approach,
as base for MPJ libraries, ensures portability, but it migiitbe the mostfécient solution, especially in the presence
of high speed communication hardware. The use of JNI haslpitity problems, although usually in exchange for
higher performance. The use of a low-level API, Java socketglires an important programminfiat, especially
in order to provide scalable solutions, but it significamtiytperforms RMI-based communication libraries. Although
most of the Java communication middleware is based on RMI kbParies looking for éicient communication have
followed the latter two approaches.

The mpiJava library [22] consists of a collection of wrappksses that call a native MPI implementation (e.g.,
MPICH2 or OpenMPI) through JNI. This wrapper-based appngaovides éicient communication relying on native
libraries, adding a reduced JNI overhead. However, althdtsgperformance is usually high, mpiJava currently only
supports some native MPI implementations, as wrapping & wigmber of functions and heterogeneous runtime
environments entails an important maintainifigpet. Additionally, this implementation presents instéapiproblems,
derived from the native code wrapping, and it is not threafg;9eing unable to take advantage of multi-core systems
through multithreading.

As a result of these drawbacks, the mpiJava maintenancedesssuperseded by the development of MPJ Ex-
press [7], a “pure” Java message-passing implementatidheofnpidava 1.2 API specification. MPJ Express is
thread-safe and presents a modular design which includegjgable architecture of communication devices that al-
lows to combine the portability of the “pure” Java shared ragn{smpdev device) and NeylQ package (Java NIO)
communications (niodev device) with the high performancgiiet support (through the native Myrinet eXpress
—MX- communication library in mxdev device).

Currently, MPJ Express is the most active projects in terfnsptake by the HPC community, presence on
academia and production environments, and available destation. This projectis also stable and publicly avadabl
along with its source code.

In order to update the compilation of Java message-passiplgimentations presented in [18], this paper presents
the projects developed since 2003, in chronological order:

e MPJava [23] is the first Java message-passing library imgiéad on Java NIO sockets, taking advantage of
their scalability and high performance communications.

e Jcluster [24] is a message-passing library which providdls BVM-like and MPI-like APIs and is focused on
automatic task load balance across large-scale heterogenkisters. However, its communications are based
on UDP and it lacks high-speed networks support.

e Parallel Java (PJ) [4] is a “pure” Java parallel programmirigdleware that supports both shared memory
programming (see Section 2.1) and an MPI-like messagengpgaradigm, allowing applications to take ad-
vantage of hybrid shargdistributed memory architectures. However, the use ofiits APl makes its adoption
difficult.

e P2P-MPI [25] is a peer-to-peer framework for the executibM®J applications on the Grid. Among its
features are: (1) self-configuration of peers (through JXB&r-to-peer technology); (2) fault-tolerance, ba-
sed on process replication; (3) a data management protocdilé transfers on the Grid; and (4) an MPJ
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implementation that can use either Java NIO or Java |0 sedkecommunications, although it lacks high-
speed networks support. In fact, this project is tailoregrtd computing systems, disregarding the performance
aspects.

e MPJIbis [26] is the only JGF MPJ API implementation up to now. §hbrary can use either “pure” Java
communications, or native communications on Myrinet. Mwe, there are two low-level communication
devices available in Ibis for MAbis communications: TCPIbis, based on Java IO sockets );Ta NIOlbis,
which provides blocking and non-blocking communicatiorotigh Java NIO sockets. Nevertheless, Ni5d
is not thread-safe, and its Myrinet support is based on theliGidry, which shows poorer performance than
the MX library.

e JMPI [27] is an implementation which can use either Java RMlava sockets for communications. However,
the reported performance is quite low (it only scales up mhades).

e Fast MPJ (F-MPJ) [28] is our Java message-passing implati@mtvhich provides high-speed networks sup-
port, both direct and through Java Fast Sockets (see SefipnF-MPJ implements the mpiJava 1.2 API, the
most widely extended, and includes a scalable MPJ colkstibrary [29].

Table 1 serves as a summary of the Java message-passingpdigeussed in this section.

Table 1: Java message-passing projects overview
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MPJava [23] v v v
Jcluster [24] Vi v v
Parallel Java [4]| v v
mpiJava [22] VRN VAN | 4
P2P-MPI [25] Vv |V v
MPJ Express [7]] v V|| v v
MPJIbis [26] Vi v v v
JMPI [27] Vi v v
F-MPJ [28] Vi v VvV

3. Java for HPC: Current Research

This section describes current researftbrés in Java for HPC, which can be classified into: (1) desiuphian-
plementation of low-level Java message-passing devigggnprovement of the scalability of Java message-passing
collective primitives; (3) automatic selection of MPJ eaflive algorithms; (4) implementation and evaluation ef ef
ficient MPJ benchmarks; (5) language extensions in Javadi@ilgl programming paradigms; and (6) Java libraries
to support data parallelism. These ongoing projects arédling Java with several evaluations of their suitability f
HPC, as well as solutions for increasing their performamzkszalability in HPC systems with high-speed networks
and hardware accelerators such as Graphics Processirg(GRUS).



3.1. Low-level Java Message-passing Communication Dgvice

The use of pluggable low-level communication devices fghtperformance communication support is widely
extended in native message-passing libraries. Both MPl@tt?OpenMPI include several devices on Myrinet, In-
finiBand and shared memory. Regarding MPJ libraries, in MYé&ss the low-level xdev layer [7] provides com-
munication devices for flierent interconnection technologies. The three implentiemts.of the xdev API currently
available are niodev (over Java NIO sockets), mxdev (overimdy MX), and smpdev (shared memory communi-
cation), which has been introduced recently [30]. Thislattommunication device has two implementations, one
thread-based (pure Java) and the other based on native $8@rces.

F-MPJ communication devices conform with the xxdev API [28hich supports the direct communication of
any serializable object without dataftering, whereas xdev, the API that xxdev is extending, do¢suoeport this
direct communication, relying on a fiaring layer (mpjbuf layer). Additional benefits of the usetlis API are its
flexibility, portability and modularity thanks to its encapated design.

The xxdev API (see Listing 1) has been designed with the goléimg simple and small, providing only basic
communication methods in order to ease the developmentawaevices. In fact, this APl is composed of 13 simple
methods, which implement basic message-passing opesatiooh as point-to-point communication, both blocking
(send and recv, like MPSend and MPRecv) and non-blocking (isend and irecv, like MBEnd and MPIrecv).
Moreover, synchronous communications are also embraseddsind issend). However, these communication meth-
ods use ProcessID objects instead of using ranks as argsitneseind and receive primitives. In fact, the xxdev layer is
focused on providing basic communication methods and it do¢deal with high level message-passing abstractions
such as groups and communicators. Therefore, a Procesgtt abequivocally identifies a device object.

Listing 1: API of the xxdev.Device class

public class Device {
static public Device newlnstance (String devicelmplementation);
ProcessID[] init(String[] args);
ProcessID id ();
void finish ();

Request isend (Object message, ProcessID dstlnt tag, int context);

Request irecv(Object message, ProcessID srcibnt tag, int context, Status status);
void send(Object message, ProcessID dstlOnt tag, int context);

Status recv(Objecct message, ProcessID srclibnt tag, int context);

Request issend (Object message, ProcesslID dstliht tag, int context);

void ssend(Object message, ProcessID srclDnt tag, int context);

Status iprobe(ProcessID srclDint tag, int context);
Status probe(ProcessID srclDint tag, int context);
Request peek();

Figure 1 presents an overview of the F-MPJ communicatioitdewn shared memory and cluster networks. From
top to bottom, the communication support of MPJ applicainom with F-MPJ is implemented in the device layer.
Current F-MPJ communication devices are implementedreitheVM threads (smpdev, a thread-based device), on
sockets over the TGHP stack (iodev on Java 1O sockets), or on native commuioigddiyers such as Myrinet eXpress
(mxdev) and InfiniBand Verbs (IBV) (ibvdev), which are acaed through JNI.

The initial implementation of F-MPJ included only one commimation device, iodev, implemented on top of Java
10 sockets, which therefore can rely on top of JFS and hentarobigh performance on shared memory and Gigabit
Ethernet, SCI, Myrinet, and InfiniBand networks. Howewvee, tise of sockets in a communication device, despite the
high performance provided by JFS, still represents an itapbsource of overhead in Java communications. Thus,
F-MPJ is including the direct support of communications @htperformance native communication layers, such as
MX and IBV.

The mxdev device implements the xxdev APl on MX, which runsvesy on Myrinet and high-speed Ethernet
networks, such as 10 Gigabit Ethernet, relying on MXoE (MXokthernet) stack. As MX already provides a low-
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Figure 1: F-MPJ communication devices on shared memory laistec networks

level messaging API, mxdev deals with the Java Objects rainghand communication, the JNI transfers and the MX
parameters handling. The ibvdev device implements thewadr on IBV, the low-level InfiniBand communication
driver, in order to take full advantage of the InfiniBand netk Unlike mxdev, ibvdev has to implement its own
communication protocols, as IBV API is quite close to therlifand Network Interface Card (NIC) operation. Thus,
this communication device has implemented two commurdngtrotocols, eager and rendezvous, on RDMA (Re-
mote Direct Memory Access) WritBend operations. This direct access of Java to InfiniBandarkiwas somewhat
restricted so far to MPI libraries. Like mxdev, this devi@esto deal with the Java Objects communication and the JNI
transfers, and additionally with the communication protsoperation. Finally, both mxdev and ibvdev, althouglythe
have been primarily designed for network communicatioppsut shared memory intra-node communication. How-
ever, smpdev device is the thread-based communicatiogalé&vat should support mordieiently shared memory
transfers. This device isolates a naming space for eaclingithread (relying on custom class loaders) and allocates
shared message queues in order to implementing the comationis as regular data copies between threads.

3.2. MPJ Collectives Scalability

MPJ application developers use collective primitives ferfprming standard data movements (e.g., Broadcast,
Scatter, Gather and Alltoall —total exchange—) and basieprdations among several processes (reductions). This
greatly simplifies code development, enhancing prograrapreductivity together with MPJ programmability. More-
over, it relieves developers from communication optimaat Thus, collective algorithms, which generally consist
of multiple point-to-point communications, must providakable performance, usually through overlapping commu-
nications in order to maximize the number of operationsiedrout in parallel. An unscalable algorithm can easily
waste the performance provided by @fiaent communication middleware.

The design, implementation and runtime selection féitient collective communication operations have been
extensively discussed in the context of native messagsifplibraries [31, 32, 33, 34], while there is little dissien
in MPJ, except for F-MPJ, which provides a scalable affidient MPJ collective communication library [29] for
parallel computing on multi-core architectures. Thisaityrprovides multi-core aware primitives, implements salve
algorithms per collective operation, and explores threased communications, obtaining significant performance
benefits in communication-intensive MPJ applications.

The collective algorithms present in MPJ libraries can lassified in six types, namely Flat Tree (FT) or linear,
Minimum-Spanning Tree (MST), Binomial Tree (BT), Four-alsee (FaT), Bucket (BKT) or cyclic, and BiDirec-
tional Exchange (BDE) or recursive doubling, which are egieely described in [32]. Table 2 presents a complete
list of the collective algorithms used in MPJ Express and FdMthe prefix “b” means that only blocking point-to-
point communication is used, whereas “nb” refers to the dis®b-blocking primitives). It can be seen that F-MPJ
implements up to six algorithms per collective primitivébpaing their selection at runtime, as well as it takes more
advantage of communications overlapping, achieving highgformance scalability. Regarding the memory require-
ments of the collective primitives, some algorithms reguirore memory than others (e.g., the MST algorithm for the
Scatter and Gather demands more memory than the FT algdrittinas, when experiencing memory limitations the
algorithms with less memory requirements must be seleatedder to overcome the limitation.



Table 2: Algorithms implemented in MPJ collectives libeaxi

Primitive MPJ Express Collectives Library | F-MPJ Collectives Library

Barrier Gathenr-Bcast nbFTGatherbFaTBcast, GatheBcast, BT
Bcast bFaTBcast bFT, nbFT, bFaTBcast, MST
Scatter nbFT nbFT, MST

Scatterv nbFT nbFT, MST

Gather nbFT bFT, nbFT, nb1FT, MST

Gatherv nbFT bFT, nbFT, nb1FT, MST

Allgather nbFT, BT nbFT, BT, nbBDE, bBKT, nbBKT, GatheBcast
Allgatherv nbFT, BT nbFT, BT, nbBDE, bBKT, nbBKT, GatheBcast
Alltoall nbFT bFT, nbFT, nb1FT, nb2FT

Alltoallv nbFT bFT, nbFT, nb1FT, nb2FT

Reduce bFT bFT, nbFT, MST

Allreduce nbFT, BT nbFT, BT, bBDE, nbBDE, Redusd3cast
Reduce-Scatte Reduce-Scatterv bBDE, nbBDE, bBKT, nbBKT, RedueeScatterv
Scan nbFT nbFT, linear

3.3. Automatic Selection of MPJ Collective Algorithms

The F-MPJ collectives library allows the runtime selectadrthe collective algorithm that provides the highest
performance in a given multi-core system, among the seafgatithms available, based on the message size and the
number of processes. The definition of a threshold for eathesie two parameters allows the selection of up to four
algorithms per collective primitive. Moreover, these girelds can be configured for a particular system by means of
an autotuning process, which obtains an optimal selecti@gorithms, based on the particular performance results
on a specific system and taking into account the particidaritf the Java execution model.

The information of the selected algorithms is stored in digomation file that, if available in the system, is loaded
at MPJ initialization, otherwise the default algorithms aelected, thus implementing a portable and user trangpare
approach.

The autotuning process consists of the execution of our oWd kbllectives micro-benchmark suite [18], the
gathering of their experimental results, and finally theagation of the configuration file that contains the algorishm
that maximize performance. The performance results haga bbtained on a number of processes power of two,
up to the total number of cores of the system, and for message gower of two. The parameter thresholds, which
are independently configured for each collective, are ttioaemaximize the performance measured by the micro-
benchmark suite. Moreover, this autotuning process isiregto be executed only once per system configuration in
order to generate the configuration file. After that MPJ aygpions would take advantage of this information.

Table 3 presents the information contained in the optimunfigaration file for the x86-64 multi-core cluster used
in the experimental evaluation presented in this papeni@ed). The thresholds between short and long messages,
and between small and large number of processes are specifiach collective, although in the evaluated testbeds
their values are generally 32 Kbytes and 16 processes,ataslg.

3.4. Implementation and Evaluation off€ient HPC Benchmarks

Java lacks ficient HPC benchmarking suites for characterizing its perémce, although the development of
efficient Java benchmarks and the assessment of their perfoersamghly important. The JGF benchmark suite [35],
the most widely used Java HPC benchmarking suite, preseittsigdiicient codes, as well as it does not provide
the native language counterparts of the Java parallel cpdegenting their comparative evaluation. Therefore, we
have implemented the NAS Parallel Benchmarks (NPB) suitéffeJ (NPB-MPJ) [36], selected as this suite is the
most extended in HPC evaluations, with implementationdviet (NPB-MPI), OpenMP (NPB-OMP), Java threads
(NPB-JAV) and ProActive (NPB-PA).

NPB-MPJ allows, as main contributions: (1) the comparagiveuation of MPJ libraries; (2) the analysis of MPJ
performance against other Java parallel approachesJewa threads); (3) the assessment of MPJ versus native MPI
scalability; (4) the study of the impact on performance ef dptimization techniques used in NPB-MPJ, from which



Table 3: Example of configuration file for the selection ofiedtive algorithms

Primitive short message / small short message/ large long message/ small | long message/ large
number of processes number of processes number of processes | number of processes
Barrier nbFTGatherbFatBcast nbFTGatherbFatBcast GatherBcast GatherBcast
Bcast nbFT MST MST MST
Scatter nbFT nbFT nbFT nbFT
Gather nbFT nbFT MST MST
Allgather GatherBcast GatherBcast GatherBcast GatherBcast
Alltoall nb2FT nb2FT nb2FT nb2FT
Reduce nbFT nbFT MST MST
Allreduce Reduce-Bcast Reduce-Bcast Reduce-Bcast Reduce-Bcast
Reduce-Scattef bFTReducenbFTScatterv| bFTReducenbFTScatterv BDE BDE
Scan linear linear linear linear

Java HPC applications can potentially benefit. The desonpif the NPB-MPJ benchmarks implemented is next
shown in Table 4.

Table 4: NPB-MPJ Benchmarks Description

. T| O
Name Operation Communicat. | £ 5
intensiveness | v | &
CG Conjugate Gradient Medium v
EP Embarrassingly Paralle| Low v
FT Fourier Transformation High v
IS Integer Sort High v
MG Multi-Grid High v
SP Scalar Pentadiagonal Low v

In order to maximize NPB-MPJ performance, the “plain olgédesign has been chosen as it reduces the overhead
of the “pure” object-oriented design (up to 95% overheadictidn). Thus, each benchmark uses only one object
instead of defining an object per each element of the problemaih. Thus, complex numbers are implemented as
two-element arrays instead of complex numbers objects.

The indficient multidimensional array support in Java f@dimensional array is defined as an arraynct 1
dimensional arrays, so data is not guaranteed to be contiggnanemory) imposed a significant performance penalty
in NPB-MPJ, which handle arrays of up to five dimensions. Tisrhead was reduced through the array flattening
optimization, which consists of the mapping of a multidirsiemal array in a one-dimensional array. Thus, adjacent
elements in the Fortran versions are also contiguous in Java, allowing #ta lbcality exploitation.

Finally, the implementation of the NPB-MPJ takes advant#dghe JVM JIT (Just-in-Time) compiler-based op-
timizations. The JIT compilation of the bytecode (or evanrécompilation in order to apply further optimizations)
is reserved to heavily-used methods, as it is an expenseemtpn that increases significantly the runtime. Thus,
the NPB-MPJ codes have been refactored towards simplemaleggéndent methods, such as methods for mapping
elements from multidimensional to one-dimensional arraysl complex number operations. As these methods are
invoked more frequently, the JVM gathers more runtime imfation about them, allowing a moré&ective optimiza-
tion of the target bytecode.

The performance of NPB-MPJ significantly improved usingthtechniques, achieving up to 2800% throughput
increase (on SP benchmark). Furthermore, we believe that dava HPC codes can potentially benefit from these
optimization techniques.

3.5. Language Extensions in Java for Parallel Programmiaggdigms

Regarding language extensions in Java to support varicadiglgprogramming paradigms, X10 and Habanero
Java deserve to be mentioned. X10 [37, 38] is an emerginghls@d programming language developed in the
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DARPA program on High Productivity Computer Systems (HPG&)reover, it is an APGAS (Asynchronous Parti-
tioned Global Address Space) language implementatiorsixtan programmability which supports locality exploita-
tion, lightweight synchronization, and productive pagbfirogramming. Additionally, an ongoing project based on
X10 is Habanero Java [39], focused on supporting produgkirallel programming on extreme scale homogeneous
and heterogeneous multicore platforms. It allows to takeaathge of X10 features in shared memory systems to-
gether with the Java Concurrency framework. Both X10 andardalo Java applications can be compiled with+C

or Java backends, although looking for performance the tifeedC++ one is recommended. Nevertheless, these
are still experimental projects with limited performanespecially for X10 arrays handling, although X10 has been
reported to rival Java threads performance on shared me@@ly

3.6. Java Libraries to Support Data Parallelism

There are several ongoingferts in the support in Java of data parallelism using hardveacelerators, such
as GPUs, once they have emerged as a viable alternativegfufisantly improving the performance of appropri-
ate applications. On the one hand this support can be implisdeén the compiler, at language level such as for
JCUDA [41]. On the other hand, the interface to these aca&les can be library-based, such as the following Java
bindings of CUDA: jcuda.org [42], JCUDA [43], JaCuda [44hclizzi [45], and java-gpu [46].

Furthermore, the bindings are not restricted to CUDA asthes several Java bindings for OpenCL.: jocl.org [47],
JavaClL [48], and JogAmp [49].

This important number of projects is an example of the irsieod the research community in supporting data
parallelism in Java, although theiffieiency is lower than using directly CUD®penCL due to the overhead associ-
ated to the Java data movements to and from the GPU, the digfploe execution of user-written CUDA code from
Java programs and the automatic support for data transferiroftives and multidimensional arrays of primitives.
An additional project that targets these sources dfiiciency is JCudaMP [50], an OpenMP framework that exploits
more dficiently GPUs. Finally, another approach for Java perforreaptimization on GPUs is the direct generation
of GPU-executable code (without JNI access to ClUDPenCL) by a research Java compiler, Jikes, which is able to
automatically parallelize loops [51].

4. Performance Evaluation

This paper presents an up-to-date comparative perfornesatagation of representative MPJ libraries, F-MPJ and
MPJ Express, two shared memory environments and two InfidBaulti-core clusters. First, the performance of
point-to-point MPJ primitives on InfiniBand, 10 Gigabit Etimet and shared memory is presented. Next, this section
evaluates the results gathered from a micro-benchmarkipPd collective primitives. Finally, the impact of MPJ
libraries on the scalability of representative paralledes, both NPB-MPJ kernels and the Gadget2 application [52],
has been assessed comparatively with MPI, Java threadsmenmMP performance results.

4.1. Experimental Configuration

Two systems have been used in this performance evaluatian|tacore x86-64 Infiniband cluster and the Finis
Terrae supercomputer [53]. The first system (from now on &8@&luster) is a 16-node cluster with 16 Gbytes of
memory and 2 x86-64 Xeon E5620 quad-core Nehalem-basedtt@ul’ processors at 2.40 GHz per node (hence
128 physical cores in the cluster). The interconnectiomag is InfiniBand (QLogic IBA7220 4x DDR, 16 Gbps),
although 2 of the nodes have additionally a 10 Gigabit EteieNIC (Intel PRQ10GbE NIC). As each node has
8 physical cores, and 16 logical cores when hyperthreadirmabled, shared memory performance has been also
evaluated on one node of the cluster, using up to 16 progdsssals. The performance results on this system have
been obtained using one core per node, except for 32, 64 ahgrb2esses, for which 2, 4 and 8 cores per node,
respectively, have been used.

The OS is Linux CentOS 5.3, thgkbrtran compilers are the Intel compiler (used with -fag)fleersion 11.1.073
and the GNU compiler (used with -O3 flag) version 4.1.2, boitihn @penMP support, the native communication
libraries are OFED (OpenFabrics Enterprise Distributibry and Open-MX 1.3.4, for InfiniBand and 10 Gigabit
Ethernet, respectively, and the JVM is Oracle JDK 18530 Finally, the evaluated message-passing libraries are
F-MPJ with JFS 0.3.1, MPJ Express 0.35, and OpenMPI11.4.1.
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The second system used is the Finis Terrae supercomput@iHags), an InfiniBand cluster which consists of
142 HP Integrity rx7640 nodes, each of them with 16 Montvidailm2 (1A64) cores at 1.6 GHz and 128 Gbytes of
memory. The InfiniBand NIC is a 4X DDR Mellanox MT25208 (16 GlppAdditionally an HP Integrity Superdome
system with 64 Montvale Itanium 2 dual-core processorsa(tb®8 cores) at 1.6 GHz and 1 TB of memory has
also been used for the shared memory evaluation. The OS &t Terrae is SUSE Linux Enterprise Server 10
with Intel compiler 10.1.074 (used with the -fast flag) and \Gompiler (used with the -O3 flag) version 4.1.2.
Regarding native message-passing libraries, HP MPI 2.2%been selected as it achieves the highest performance
on InfiniBand and shared memory on the Finis Terrae. The Bdind drivers are OFED version 1.4. The JVM is
Oracle JDK 1.6.(0 for IA64. The poor performance of Java on 1A64 architezsudue to the lack of mature support
for this processor in the Java Just-In-Time compiler, hauaied the selection of this system only for the analysis
of the performance scalability of MPJ applications, duggdiigh number of cores. The performance results on this
system have been obtained using 8 cores per node, the recatacheonfiguration for maximizing performance. In
fact, the use of a higher number of cores per node increagesicantly network contention and memory access
bottlenecks.

Regarding the benchmarks, Intel MPI Benchmarks (IMB, fatynBallas) and our own MPJ micro-benchmark
suite, which tries to adhere to IMB measurement methodglogye been used for the message-passing primitives
evaluation. Moreover, the NPB-MMPB-OMP version 3.3 and the NPB-JAV version 3.0 have beed tegether
with our own NPB-MPJ implementation [36]. The metrics thaté been considered for the NPB evaluation are the
speedup and MOPS (Millions of Operations Per Second), whigasures the operations performed in the benchmark,
that difer from the CPU operations issued. Moreover, NPB Class C lovads have been selected as they are the
largest workloads that can be executed in a single node hirnigoses the restriction of using workloads with memory
requirements below 16 Gbytes (the amount of memory availiabd node of the x86-64 cluster).

4.2. Performance Evaluation Methodology

All performance results presented in this paper are the anedi 5 measurements in case of the kernels and
applications and the median of up to the 1000 samples mehfur¢he collective operations. The selection of the
most appropriate performance evaluation methodologwia Bas been thoroughly addressed in [54], concluding that
the median is considered one of the best measures as itaagsa@ems to improve with the number of measurements,
which is in tune with the results reported in this paper.

Regarding the influence of JIT compilation in HPC performeanesults, the use of long-running codes (with
runtimes of several hours and days) generally involves #geai a high percentage of JIT compiled code, which
eventually improves performance. Moreover, the JVM exeounode selected for the performance evaluation is the
default one fhixed modewhich compiles dynamically at runtime, based on profilinfprmation, the bytecode of
costly methods to native code, while interprets inexpenpieces of code without incurring in runtime compilation
overheads. Thus, this mode is able to provide higher pedonomthan the use of the interpreted and even the compiled
(an initial static compilation) execution modes. In fact have experimentally assessed the higher performance of
the use of the mixed mode for the evaluated codes, whoserpageeof runtime of natively compiled code is generally
higher than 95% (hence, less than 5% of the runtime is gepelgaloted to interpreted code).

Furthermore, the non-determinism of JVM executions leadsstillations in the time measures of Java applica-
tions. The main sources of variation are the JIT compilatind optimization in the JVM driven by a timer-based
method sampling, thread scheduling, and garbage colfectitnwever, the exclusive access to HPC resources and
the characteristics of HPC applications (e.g., numeritaiisive computation and a restricted use of object ordente
features such as extensions and handling numerous oljettshe variations in the experimental results of Java. In
order to assess the variability of representative Javasiod¢PC, the NPB kernels evaluated in this paper (CG, FT, IS
and MG with Class C problem size) have been executed 40 timogis using F-MPJ and MPI, on 64 and 128 cores of
the x86-64 cluster. Regarding message-passing primjtdath point-to-point and collectives include calls to wati
methods, which providefcient communications on high-speed networks, thus olmigiperformance results close
to the theoretical limits of the network hardware. Moreovkeir performance measures, when relying on native
methods, provide results with little variation among itemas. Only message-passing transfers on shared memory
present a high variability due to the scheduling of the ttisean diferent cores within a node. In this scenario the
performance results depend significantly on the schedofitige threads on cores that belong to the same processor
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and that even can share some cache levels. Nevertheless sip@ce restrictions a detailed analysis of the impact
of thread scheduling on Java communications performantectbe included in this paper. Thus, only the NPB
kernels have been selected for the analysis of the perfarenaariability of Java in HPC due to their balance in the
combination of computation and communication as well astfeir representativeness in HPC evaluation.

Figure 2 presents speedup graphs with box and whisker diegfer the evaluated benchmarks, showing the
measure of the minimum sample, the lower quartile (Q1), tediem (Q2), upper quartile (Q3), and the maximum
sample. The selected metric, speedup, has been selectddrftyrpurposes, as it allows a straightforward analysis o
F-MPJ and MPI results, especially for the comparison ofrtteige of values, which lie closer using speedups than
other metrics such as execution times.

The analysis of the variability of the performance of thegBN\ernels shows that F-MPJ results present similar
variability as MPI codes, although for CG and FT on 128 canedNPB-MPJ measures present higher variations than
their natively compiled counterparts (MPI kernels). Hoegeven in this scenario the variability of the Java codes is
less than 10% of the speedup value (the measured speedipgHalrange of 90% and 110% of the median value),
whereas the average variation is less than 5% of the speetug. iFurthermore, there is no clear evidence of the
increase of the variability with the number of cores, exéepNPB-MPJ CG and FT.
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Figure 2: NPB performance variability on the x86-64 cluster

4.3. Experimental Performance Results on One Core

Figure 3 shows a performance comparison of several NPB mgiéations on one core from the x86-64 cluster
(left graph) and on one core from the Finis Terrae (right byajphe results are shown in terms of speedup relative to
the MPI library (using the GNU Eortran compiler), Runtim&PB-MPI benchmark/ Runtime(NPB benchmark
Thus, a value higher than 1 means than the evaluated benkchutdaeves higher performance (shorter runtime) than
the NPB-MPI benchmark, whereas a value lower than 1 meanmsttigaevaluated code shows poorer performance
(longer runtime) than the NPB-MPI benchmark. The NPB immatations and NPB kernels evaluated are those that
will be next used in this section for the performance analg$iJava kernels (Section 4.6.1). Moreover, only F-MPJ
results are shown for NPB-MPJ performance for clarity psgsp as other MPJ libraries (e.g., MPJ Express) obtain
quite similar results on one core.

The diferences in performance that can be noted in the graphs daregby the dierent implementations of
the NPB benchmarks, the use of Java or native codéoi@an), and for native code the compiler being used (Intel
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or GNU compiler). Regarding Java performance, as the JVM us¢his performance evaluation, the Oracle JVM
for Linux, has been built with the GNU compiler, Java perfarmoe is limited by the throughput achieved with this
compiler. Thus, Java codes (MPJ and Threads) cannot ggneugberform their equivalent GNU-built benchmarks.
This fact is of special relevance on the Finis Terrae, whieeeGNU compiler is not able to take advantage of the
Montvale Itanium2 (IA64) processor, whereas the Intel cibanploes. As a consequence of this, the performance of
Java kernels on the Finis Terrae is significantly lower, es@order of magnitude lower, than the performance of the
kernels built with the Intel compiler. The performance ofal&ernels on the x86-64 cluster is close to the natively
compiled kernels for CG and IS, whereas for FT and MG Javapednce is approximately 55% of the performance
of MPI kernels built with the GNU compiler.

This analysis of the performance of Java and natively cadpibdes on the x86-64 cluster and the Finis Terrae
has also verified that the use of the Intel compiler showgbptrformance results than the use of the GNU compiler,
especially on the Finis Terrae. Thus, from now on only thellnbmpiler has been used in the performance evalu-
ation included in this paper, although a fair comparisorhwiva would have considered the GNU compiler (both
Oracle JVM and the GNU compiler are freely available sofyaHowever, the use of the compiler provided by the
processor vendor is the most generally adopted solutioPi@ Hrurthermore, a wider availability of JVMs built with
commercial compilers would improve this scenario, esplyada Itanium platforms.
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Figure 3: NPB relative performance on one core

4.4, Message-passing Point-to-point Micro-benchmarking

The performance of message-passing point-to-point priesihas been measured on the x86-64 cluster using our
own MPJ micro-benchmark suite and IMB. Regarding Finisderits results are not considered for clarity purposes,
as well as due to the poor performance of Java on this systemnedver, Finis Terrae communication mechanisms,
InfiniBand and shared memory, are already covered in the®dB@uster evaluation.

Figure 4 presents message-passing point-to-point laerifor short messages) and bandwidths (for long mes-
sages) on InfiniBand (top graph), 10 Gigabit Ethernet (na@dgthph) and shared memory (bottom graph). Here, the
results shown are the half of the round-trip time of a pingptast or its corresponding bandwidth.

On the one hand these results show that F-MPJ is quite cldgBtperformance, which means that F-MPJ is able
to take advantage of the low latency and high throughputigealiby shared memory and these high-speed networks.
In fact, F-MPJ obtains start-up latencies as low as @n shared memory, 13 on InfiniBand and 12s on 10 Gigabit
Ethernet. Regarding throughput, F-MPJ significantly otftgens MPI for 4 Kbytes and larger messages on shared
memory when using smpdev communication device, achieyirtg 81 Gbps thanks to the exploitation of the thread-
based intra-process communication mechanism, whereasténgrocess communication protocols implemented in
MPI and the F-MPJ network-based communication devicesléiand mxdev) are limited to less than 31 Gbps.
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Figure 4: Message-passing point-to-point performancenfiniBand, 10 Gigabit Ethernet and shared memory
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On the other hand, MPJ Express point-to-point performaniers from the lack of specialized support on Infini-
Band, having to rely on NIO sockets over IP emulation IPolfi8] the use of a Hiering layer, which adds noticeable
overhead for long messages. Moreover, the communicatmogols implemented in this library show a significant
start-up latency. In fact, MPJ Express and F-MPJ rely on #imescommunication layer on shared memory (intra-
process transfers) and 10 Gigabit Ethernet (Open-MX lifrdout MPJ Express adds an additional overheadof 8
and 11us, respectively, over F-MPJ.

4.5. Message-passing Collective Primitives Micro-beratkimg

Figure 5 presents the performance of representative megsssing data movement operations (Broadcast and
Allgather), and computational operations (Reduce andedlice double precision sum operations), as well as their
associated scalability using a representative messagé3dKbytes). The results, obtained using 128 processes on
the x86-64 cluster, are represented using aggregated lidthdwetric as this metric takes into account the global
amount of data transferred, generatfigssage sizenumber of processes

The original MPJ Express collective primitives use the dgtgms listed in Table 2 (column MPJ Express), whereas
F-MPJ collectives library uses the algorithms that maxentize performance on this cluster according to the automatic
performance tunning process. The selected algorithmsasepted in Table 5, which extracts from the configuration
file the most relevant information about the evaluated pives.

The results confirm that F-MPJ is bridging the gap between BRIMPI collectives performance, but there is
still room for improvement, especially when using severalcpsses per node as F-MPJ collectives are not taking
full advantage of the cores available within each node. Tadability graphs (right graphs) confirm this analysis,
especially for the Broadcast and the Reduce operations.

Table 5: Algorithms that maximize performance on the x8Gleéter

Primitive short message / small short message/ large long message / small long message/ large
number of processes number of processes number of processes number of processes
Bcast nbFT MST MST MST
Allgather | nbFTGathernbFTBcast| nbFTGatherMSTBcast| MSTGathe+MSTBcast | MSTGathe+MSTBcast
Reduce bFT bFT MST MST
Allreduce | bFTReducenbFTBcast| bFTReduceMSTBcast | MSTReduceMSTBcast| MSTReduce MSTBcast

4.6. Java HPC Kernghpplication Performance Analysis

The scalability of Java for HPC has been analyzed using th8 Rarallel Benchmarks (NPB) implementation
for MPJ (NPB-MPJ) [36]. The selection of the NPB has been vatdid by its widespread adoption in the evaluation
of languages, libraries and middleware for HPC. In factréhere implementations of this benchmarking suite for
MPI (NPB-MPI), Java Threads (NPB-JAV), OpenMP (NPB-OMPYl &ybrid MPyOpenMP (NPB-MZ). Four repre-
sentative NPB codes, those with medjlalgh communication intensiveness (see Table 4), have bednated: CG
(Conjugate Gradient), FT (Fourier Transform), IS (Inte§ert) and MG (Multi-Grid). Furthermore, the jGadget [55]
cosmology simulation application has also been analyzed.

These MPJ codes have been selected for showing poor siglabithe related literature [1, 52]. Hence, these
are target codes for the analysis of the scalability of auk&PJ libraries, which have been evaluated using up to 128
processes on the x86-64 cluster, and up to 256 processes &inth Terrae.

4.6.1. Java NAS Parallel Benchmarks Performance Analysis

Figures 6 and 7 present the NPB CG, IS, FT and MG kernel resultthe x86-64 cluster and Finis Terrae,
respectively, for the Class C workload in terms of MOPS (Mdiiks of Operations Per Second) (left graphs) and their
corresponding scalability, in terms of speedup (right ggap These four kernels (CG, IS, FT and MG) have been
selected as they present medium or high communicationsiviemess (see Table 4). The two remaining kernels, EP
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and SP, were discarded due to their low communication iltensss (see Table 4) so their results show high scala-
bility, having limited abilities to assess the impact of tithreading and MPJ libraries on the scalability of pafdalle
codes. The NPB implementations used are NPB-MPI and NPB{siRhe message-passing scalability evaluation
on distributed memory and NPB-OMP and NPB-JAV for the evidueof shared memory performance.

Although the configuration of the shared and the distribumednory scenarios areftkrent, they share essential
features such as the processor and the architecture ofdtensyso their results are shown together in order to ease
their comparison. Thus, Figure 6 presents NPB results oésland distributed memory implementations measuredin
the x86-64 cluster. The selected NPB kernels (CG, IS, FT aBfl &e implemented in the four NPB implementations
evaluated, in fact the lack of some of these kernels has ptegiehe use of additional benchmark suites, such as the
hybrid MP/OpenMP NPB Multi-Zone (NPB-MZ), which does not implemeny afithese kernels.

NPB-MPI results have been obtained using the MPI librarydlchieves the highest performance on each system,
OpenMPI on the x86-64 cluster and HP-MPI on the Finis Teiireleoth cases in combination with the IntelRortran
compiler. Regarding NPB-MPJ, both F-MPJ and MPJ Express baen benchmarked using the communication
device that shows the best performance on InfiniBand, tlegdahnection network of both systems. Thus, F-MPJ
has been run using its ibvdev device whereas MPJ Express aliniodev over the IP emulation IPolB. NPB-OMP
benchmarks have been compiled with the OpenMP suppordedlin the Intel ¢Fortran compiler. Finally, NPB-JAV
codes only require a standard JVM for running.

The analysis of the x86-64 cluster results (Figure 6) firseatés that F-MPJ achieves similar performance to
OpenMPI for CG when using 32 and higher number of cores, stphigher speedups than the MPI library in this
case. As this kernel only includes point-to-point commatian primitives, F-MPJ takes advantage of obtaining
similar point-to-point performance to MPI. However, MP Jifass and the Java threads implementations present poor
scalability from 8 cores. On the one hand, the poor speedulgd®d Express are direct consequence of the use of
sockets and IPoIB in its communication layer. On the otherdhahe poor performance of the NPB-JAV kernels
is motivated by their infiicient implementation. In fact, the evaluated codes obtairet performance on a single
core than the MPI, OpenMP and MPJ kernels, except for NPBM&/ which outperforms NPB-MPJ MG (see in
Subsection 4.2 the left graph in Fig. 3). The reduced perdmice of NPB-JAV kernels on a single core, which can
incur up to 50% performance overhead compared to NPB-MPds;atktermines the lower overall performance in
terms of MOPS.

Additionally, the NPB shared memory implementations, gsdpenMP and Java Threads, present poorer scala-
bility on the x8664 cluster than distributed memory (message-passing eimgahtations, except for NPB-OMP IS.
The main reason behind this behavior is the memory accesteae when running 8 and even 16 threads on 8
physical cores, which thanks to hyperthreading are ablanaip to 16 threads simultaneously. Thus, the main per-
formance bottleneck for these shared memory implememtaitothe access to memory, which limits their scalability
and prevents taking advantage of enabling hyperthreading.

Regarding FT results, although F-MPJ scalability is highan MPI (F-MPJ speedup is about 50 on 128 cores
whereas the MPI one is below 36), this is not enough for adingesimilar performance in terms of MOPS. In this
case MPJ performance is limited by its poor performance anaame, which is 54% of the MPI performance (see
in Subsection 4.2 the left graph in Fig. 3). Moreover, thdauéty of this kernel relies on the performance of the
Alltoall collective, which has not prevented F-MPJ scdiapi As for CG, MPJ Express and the shared memory
NPB codes show poor performance, although NPB-JAV FT pteseslightly performance benefit when resorting to
hyperthreading, probably due to its poor performance oncome, which is below 30% of the NPB-MPI FT result.
In fact, a longer runtime reduces the impact of communicatemd memory bottlenecks in the scalability of parallel
codes.

The significant communication intensiveness of IS, the&édghmong the evaluated kernels, reduces the observed
speedups, which are below 20 on 128 cores. On the one hanchetbsage-passing implementations of this kernel
rely heavily on Alltoall and Allreduce primitives, whose erhead is the main performance penalty. In fact, F--MPJ
scalability drops from 64 cores (MPJ Express from 32 cokelgreas MPI shows poor scalability from 64 cores (the
performance comparison between 64 and 128 cores showhéhase of the additional 64 cores only increases the
speedup in 3 units, from 16 to 19). On the other hand, OpenM1&ins the best results on 8 cores, showing a high
parallel éficiency, and even takes advantage of the use of hyperthgeddowever, the implementation of IS using
Java threads shows very poor scalability, with speedujpsio2|
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Figure 6: NPB Class C results on the x86-64 cluster

40
36
32
28
24
20
16
12

56

48

40

32

24

16

20

16

12

72

48
40
32
24
16

Speedup

Speedup

Speedup

Speedup



The highest MG performance in terms of MOPS has been obtaiited/PI, followed at a significant distance by
F-MPJ although this Java library shows higher speedupscésly on 128 cores. The reason, as for FT, is that MPJ
performance is limited by its poor performance on one cotechvis 55% of the MPI performance (see in Subsection
4.2 the left graph in Fig. 3). The longer MPJ runtime contidsuto achieve high speedups in MG, tradiffjtbe
bottleneck that represents the extensive use by this kefridlreduce, a collective whose performance is lower for
MPJ than for MPI. In fact, the message-passing implemamsif this kernel, both MPI and MPJ, present relatively
good scalability, even for MPJ Express which achieves sgesdround 30 on 64 and 128 cores. Nevertheless, the
shared memory codes show little speedups, below 4 on 8 cores.

Figure 7 shows the Finis Terrae results, where the messaggng kernel implementations, NPB-MPI and NPB-
MPJ, have been run on the rx7640 nodes of this supercompgiag 8 cores per node and up to 32 nodes (hence
up to 256 cores), whereas the shared memory results (NPB-@MMPB-JAV) have been obtained from the HP
Integrity Superdome using up to 128 cores. Although theltefiave been obtained using twdtdrent hardware
configurations, both subsystems share the same featurésebhmemory architecture, which is distributed in rx7640
nodes and shared in the Integrity Superdome, as presentedsection 4.1.

The analysis of the Finis Terrae results (Figure 7) showsttiebest performer is OpenMP, showing signifi-
cantly higher MOPS than the other implementations, exaapgiG where it is outperformed by MPI. Nevertheless,
OpenMP sffers scalability losses from 64 cores due to the access totesretls and the relative poor bidirectional
traffic performance in the cell controller (the Integrity Supendois a ccNUMA system which consists of 16 cells,
each one with 4 dual-core processors and 64 Gbhytes memscamnected through a crossbar network) [56]. The
high performance of OpenMP contrasts with the poor resaltsrims of MOPS of NPB-JAV, although this is moti-
vated by its poor performance on one core, which is usuallgrder of magnitude lower than MPI (Intel Compiler)
performance (see in Subsection 4.2 the right graph in Fig AXhough this poor runtime favors the obtaining of
high scalability, in fact NPB-JAV obtains speedups abovéoB@G and FT, this is not enough to bridge the gap with
OpenMP results as NPB-OMP codes achieves even higher speetkeept for FT. Furthermore, NPB-JAV results are
significantly poorer than those of NPB-MPJ (around 2-3 titoaer), except for MG, which confirms the ifieciency
of this Java threads implementation.

The performance results of the message-passing codesMi?Bnd NPB-MPJ, are between NPB-OMP kernels
and the shared memory implementations, except for NPB-MBI, Mhich is the best performer for MG kernel.
Nevertheless, there are significanffeiiences among the libraries been used. Thus, MPJ Expresnfgenodest
speedups, below 30, due to the use of a sockets-based (hmmemunication device over the IP emulation IPolIB.
This limitation is overcome in F-MPJ, relying more directiy IBV. Thus, F-MPJ is able to achieve the highest
speedups, motivated in part by the longer runtimes on oree(see in Subsection 4.2 the right graph in Fig. 3) which
favor this scalability (a heavy workload reduces the imphcommunications on the overall performance scalability)
The high speedups of F-MPJ, which are significantly highan tihose of MPI (e.g., up to 7 times higherin CG), allow
F-MPJ to bridge the gap between Java and natively compilegllages in HPC. In fact, F-MPJ performance results
for CG and FT on 256 are close to those of MPI, although theifopmance on one core is around 7 and 4 times
lower than MPI results for CG and FT, respectively.

The analysis of these NPB experimental results show thgpeéhfermance of MPJ libraries heavily depends on
their InfiniBand support. Thus, F-MPJ, which relies dirgath 1BV, outperforms significantly MPJ Express, whose
socket-based communication device runs on IPolB, obtgirgtatively low performance, especially in terms of start-
up latency. Furthermore, NPB-MPJ kernels have revealeeé thé most fiicient Java implementation, significantly
outperforming Java threads implementations, both in tefrperformance on one core and scalability. Moreover, the
comparative evaluation of NPB-MPJ and NPB-MPI results aé/that éicient MPJ libraries can help to bridge the
gap between Java and native code performance in HPC. Fitiedlgvaluated libraries have shown higher speedups on
Finis Terrae than on the x86-64 cluster. The reason behiatéavior is that the obtaining of poorer performance on
one core allows for higher scalability given the same indarection technology (both systems use 16 Gbps InfiniBand
DDR networks). Thus, NPB-MPJ kernels on the Finis Terraewsing some of the poorest performance on one core,
are able to achieve speedups of up to 175 on 256 cores, wh¥PEad/1P| scalability on the x86-64 cluster is always
below a speedup of 50. Nevertheless, NPB-MPI on the x86-@gten shows the highest performance in terms of
MOPS, outperforming NPB-MPI results on the Finis Terraeiclwthas double the number of available cores (256
cores available on the Finis Terrae vs. 128 cores availabth@x86-64 cluster).
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4.6.2. Performance Analysis of the jGadget Application

The jGadget [55] application is the MPJ implementation ofiGet [57], a popular cosmology simulation code
initially implemented in C and parallelized using MPI thaitised to study a large variety of problems like colliding and
merging galaxies or the formation of large-scale structuféie parallelization strategy, both with MPI and MPJ, is an
irregular and dynamically adjusted domain decompositidth copious communication between processes. jGadget
has been selected as representative Java HPC applicatisnpasformance has been previously analyzed [52] for
their Java (MPJ) and C (MPI) implementations, as well asttocdmmunication intensiveness and its popularity.

Figure 8 presents jGadget and Gadget performance resulte 0i86-64 cluster and the Finis Terrae for a galaxy
cluster formation simulation with 2 million particles ingtsystem (simulation available within the examples of Gad-
get software bundle). As Gadget is a communication-intenapplication, with significant collective operations
overhead, its scalability is modest, obtaining speedupgpdb 48 on 128 cores of the x86-64 cluster and speedups
of up to 57 on 256 cores of the Finis Terrae. Here F-MPJ achigeeerally the highest speedups, followed closely
by MPI, except from 64 cores on the Finis Terrae where MPIdgmaformance. This slowdown is shared with MPJ
Express, which shows its highest performance on 64 cordmtbrsystems. Nevertheless, MPJ Express speedups on
the Finis Terrae are much higher (up to 37) than on the x86k&star (only up to 16), something motivated by the
different runtime of the application on the x86-cluster and ihesHerrae. In fact, MPI Gadget presents numerous li-
brary dependencies, such as FFTW-MPI, Hierarchical Datan&b(HDF) support, and the numerical GNU Scientific
Library (GSL), which are not fully optimized for this systethus increasing significantly its runtime. An example
of inefficiency is that GSL shows poor performance on the Finis Telrige the use of Intel Math Kernel Library
(MKL) would show higher performance but the support for thisnerical library is not implemented in Gadget. As a
consequence of this jGadget performs better, comparediativeeterms with MPI, on the Finis Terrae (only 2 times
slower than MPI) than on the x86-64 cluster (3 times slowantPI), although the performance of Java on IA64
architectures is quite poor.
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Figure 8: Gadget runtime and scalability on the x86-64 eluahd the Finis Terrae supercomputer
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Moreover, the performance gap between Gadget and jGadgetigated by the poor performance of the numer-
ical methods included in jGadget, which consist of a traiwheof the GSL functions invoked in the Gadget source
code, without relying on external numerical libraries. Tise of an ficient Java numerical library [58], comparable
in performance to Fortran numerical codes, would have ingutidhe performance of jGadget. The development of
such a library is still an ongoingffert, although it started a decade ago when it was demondtthét Java was
able to compete with Fortran in high performance numerioatputing [59, 60]. In the last years a few projects are
being actively developed [61], such as Universal Java Md&eckage (UIMP) [62], ficient Java Matrix Library
(EJML) [63], Matrix Toolkit Java (MTJ) [64] and jblas [65],ch are replacing more traditional frameworks such as
JAMA [66]. Furthermore, a recent evaluation of Java for ntioa computing [67] has shown that the performance of
Java applications can be significantly enhanced by detegatimerically intensive tasks to native libraries (egtel
Math Kernel Library -MKL-) which supports the developmehefiicient high performance numerical applications
in Java.

5. Conclusions

This paper has analyzed the current state of Java for HP@ ftwoshared and distributed memory programming,
showing an important number of past and present projectshndrie the result of the sustained interest in the use of
Java for HPC. Nevertheless, most of these projects ardctestto experimental environments, which prevents its
general adoption in this field. However, the analysis of tkistang programming options and available libraries in
Java for HPC, together with the presentation in this pap@uofcurrent researchfferts in the improvement of the
scalability of our Java message-passing library, F-MPdjldvdefinitively contribute to boost the embracement of
Java in HPC.

Additionally, Java lacks thorough and up-to-date evabretiof their performance in HPC. In order to overcome
this issue this paper presents the performance evaluationrent Java HPC solutions and research developments
on two shared memory environments and two InfiniBand muaiteclusters. The main conclusions of the analysis
of these results is that Java can achieve almost similaopeénce to natively compiled languages, both for sequen-
tial and parallel applications, being an alternative forGHprogramming. In fact, the performance overhead that
Java may impose is a reasonable traffder the appealing features that this language providesdaalfel program-
ming multi-core architectures. Furthermore, the recemtindes in the fficient support of Java communications on
shared memory and low-latency networks are bridging thébpaance gap between Java and more traditional HPC
languages.

Finally, the active researchferts in this area are expected to bring in the next future neveldpments that will
continue rising the interest of both industry and academébimcreasing the benefits of the adoption of Java for HPC.
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