

Library-based solutions for algorithms

with complex patterns of parallelism

Author: Carlos Hugo González Vázquez

PhD Thesis - 2015

Advisor: Basilio Bernardo Fraguela Rodríguez

Departamento de Electrónica e Sistemas

Dr. Basilio Bernardo Fraguela Rodríguez

Profesor Titular de Universidade

Dpto. de Electrónica e Sistemas da Universidade da Coruña

CERTIFICA

Que a memoria titulada “Library-based solutions for algorithms with complex patterns

of parallelism” foi realizada por D. Carlos Hugo González Vázquez baixo a miña

dirección no Departamento de Electrónica e Sistemas da Universidade da Coruña e

conclúe a Tese de Doutoramento que presenta para a obtención do título de Doutor pola

Universidade da Coruña coa Mención de Doutor Internacional.

Na Coruña, o …… de …………….. de …….

Asdo.: Basilio Bernardo Fraguela Rodríguez

Director da Tese de Doutoramento

Asdo.: Carlos Hugo González Vázquez

Autor da Tese de Doutoramento

Resumo

Coa chegada dos procesadores multinúcleo e a cáıda do crecemento da capaci-

dade de procesamento por núcleo en cada nova xeración, a paralelización é cada

vez máis cŕıtica para mellorar o rendemento de todo tipo de aplicacións. Ademais,

hai un bo coñecemento e soporte dos patróns de paralelismo máis sinxelos, mais

non sendo aśı para patróns complexos e irregulares, cuxa paralelización require ben

ferramentas de baixo nivel que afectan negativamente á produtividade, ben solu-

cións transaccionais con requisitos espećıficos de hardware ou que implican grandes

sobrecostes. O aumento do número de aplicacións que exhiben estes patróns com-

plexos fai que este sexa un problema con importancia crecente. Esta tese trata de

mellorar a comprensión e o soporte de tres tipos de patróns complexos mediante a

identificación de abstraccións e semánticas claras que axuden a súa paralelización

en entornos de memoria compartida. O enfoque elixido foi a creación de libraŕıas,

xa que facilitan a reutilización de código, reducen os requisitos do compilador, e

teñen unha curva de aprendizaxe relativamente curta. A linguaxe empregada para a

implementación é C++, pois proporciona un bo rendemento e capacidade para ex-

presar as abstraccións necesarias. Os exemplos e avaliacións nesta tese mostran que

as nosas propostas permiten expresar de xeito elegante as aplicacións que presentan

estes patróns, mellorando a súa programabilidade ao tempo que proporcionan un

rendemento similar ou superior ao de outras solucións existentes.

v

Abstract

With the arrival of multi-core processors and the reduction in the growth rate

of the processing power per core in each new generation, parallelization is becoming

increasingly critical to improve the performance of every kind of application. Also,

while simple patterns of parallelism are well understood and supported, this is not

the case for complex and irregular patterns, whose parallelization requires either low

level tools that hurt programmers’ productivity or transactional based approaches

that need specific hardware or imply potentially large overheads. This is becoming

an increasingly important problem as the number of applications that exhibit these

latter patterns is steadily growing. This thesis tries to better understand and sup-

port three kinds of complex patterns through the identification of abstractions and

clear semantics that help bring structure to them and the development of libraries

based on our observations that facilitate their parallelization in shared memory en-

vironments. The library approach was chosen given its advantages for code reuse,

reduced compiler requirements, and relatively short learning curve. The implemen-

tation language selected being C++ due to its good performance and capability

to express abstractions. The examples and evaluations in this thesis show that our

proposals allow to elegantly express the applications that present these patterns, im-

proving their programmability while providing similar or even better performance

than existing approaches.

vii

Resumen

Con la llegada de los procesadores multinúcleo y la cáıda del crecimiento de la

capacidad de procesamiento por núcleo en cada nueva generación, la paralelización

es cada vez más cŕıtica para mejorar el rendimiento de todo tipo de aplicaciones. Por

otra parte, si bien hay un buen conocimiento y soporte de los patrones de paralelismo

más sencillos, esto no es aśı para los patrones complejos e irregulares, cuya parale-

lización requiere o bien herramientas de bajo nivel que afectan negativamente a la

productividad, o bien soluciones transaccionales con requisitos espećıficos de hard-

ware o que implican grandes sobrecostes. El aumento del número de aplicaciones que

exhiben estos patrones complejos hace que este sea un problema con importancia

creciente. Esta tesis trata de mejorar la comprensión y el soporte de tres tipos de

patrones complejos, mediante la identificación de abstracciones y semánticas claras

que ayuden su paralelización en entornos de memoria compartida. El enfoque elegido

fue la creación de libreŕıas, ya que facilitan la reutilización de código, reducen los

requisitos del compilador, y tienen una curva de aprendizaje relativamente corta.

El lenguaje empleado para la implementación es C++, pues proporciona un buen

rendimiento y capacidad para expresar las abstracciones necesarias. Los ejemplos y

evaluaciones en esta tesis muestran que nuestras propuestas permiten expresar de

manera elegante las aplicaciones que presentan estos patrones, mejorando su pro-

gramabilidad al tiempo que proporcionan un rendimiento similar o superior al de

otras soluciones existentes.

ix

Prólogo

No campo da arquitectura de computadores véñense dando importantes e con-

tinuos avances nas últimas décadas. Desde o fito da invención do microprocesador

4004 de Intel, houbo unha progresión tanto en métodos de fabricación como en

deseño de microarquitectura que produciu unha mellora continua no rendemento

dos computadores. Unha das caracteŕısticas máis viśıbeis é o aumento da frecuencia

de reloxo, que permite a un procesador executar máis instrucións na mesma canti-

dade de tempo, sen necesidade de modificar o código do programa nin de empregar

optimizacións epeciais á hora de compilar. Pero a mellora dos deseños dos micro-

procesadores tamén permite aumentos de rendemento, agora si cunha programación

mellor enfocada ou compiladores máis intelixentes. Os procesadores modernos con-

tan con unidades de procesamento replicadas (ALUs, acceso a memoria, etc.) que

permiten executar varias instrucións simultaneamente, co requerimento de estaren

correctamente ordenadas e non se produciren conflitos. A combinación de soporte

hardware e compiladores avanzados permite que os programas desenvolvidos cum-

pran estas condicións con relativa facilidade.

Porén, a mellora de frecuencia e deseño de microarquitectura está a chocar na

actualidade coa limitación f́ısica do tamaño mı́nimo co que se pode fabricar un

transistor. Isto impide aumentar as frecuencias de reloxo, alén de introducir novos

problemas no deseño de microprocesadores. Isto levou ao crecemento do interese

e a investigación en sistemas multiprocesador e multinúcleo (varios procesadores

no mesmo chip). Estes sistemas permiten a execución de múltiples programas si-

multaneamente, e áında que adoitaban estar reservados para entornos con grandes

necesidades de rendemento ou throughtput, a d́ıa de hoxe atópanse mesmo en compu-

tadores persoais de calquera gama, ou dispositivos móbeis ou embebidos. É por iso

que é fundamental mellorar a programabilidade nestes sistemas, pois actualmen-

xi

xii

te as ferramentas de programación para entornos multiprocesador son demasiado

complexas por un lado, ou de aplicabilidade limitada por outro.

Nesta tese preséntanse unhas libraŕıas para a linguaxe de programación C++,

amplamente extendida, que permiten paralelizar con facilidade tres tipos de proble-

ma moi comúns, e suficientemente configurábeis para permitir o seu uso en grande

variedade de circunstancias. Os tres patróns cubertos son:

Divide-e-vencerás Moitos problemas poden resolverse subdivid́ındoos en proble-

mas máis pequenos. Estes subproblemas son con frecuencia resolúbeis máis

facilmente, e aliás son independentes entre eles, de xeito que poden resolverse

en paralelo.

Paralelismo de datos amorfo Cando a estrutura de datos empregada para a re-

solución dun problema é irregular resulta complicada a súa distribución entre

diversas unidades de procesamento. Isto é debido a que unha estrutura irregu-

lar non ten un patrón de almacenamento definido. O exemplo paradigmático

de estrutura irregular é o grafo, onde cada nodo é creado e enlazado con ou-

tros nodos dinamicamente, e durante a execución o número de nodos e as

súas conexións pode variar. A problemática da paralelización de algoritmos

que operan sobre sobre estruturas deste tipo tamén ven dada a miúdo pola

imposibilidade de determinar a priori a independencia das tarefas a realizar

e/ou a distinta carga computacional destas tarefas.

Pero unha análise coidadosa deste tipo de algoritmos desvela que adoitan axus-

tarse a un patrón de procesamento, onde en cada momento hai un subconxunto

de nodos activos que precisan un procesamento. Se os conxuntos formados por

cada un destes nodos e os seus veciños non se intersecan, estes procesamentos

pódense facer en paralelo, feito que explota a nosa libraŕıa

Tarefas superescalares Noutros casos, un programa está composto por tarefas

que seŕıan candidatas a se executar paralelamente. Pero cando estas tarefas

traballaren sobre datos comúns, deben ser ordenadas para non se produciren

conflitos, só se executaren en paralelo aquelas que foren independentes en ca-

da momento, e esperando á finalización daquelas tarefas que sexa preciso para

manteren a semántica secuencial do programa. Estas tarefas pódense por tan-

to executar fora de orde, coa condición de se manter a semántica secuencial

xiii

do programa, dun xeito similar a como executan as instruccións os procesa-

dores superescalares modernos, do que procede o termo tarefa superescalar

comunmente usado na bibliograf́ıa.

Nesta tese desenvolveronse libraŕıas orientadas a facilitar a paralelización de cada

un dos tipos de problemas expostos. Estas libraŕıas están desenvolvidas para C++,

por ser esta unha das linguaxes de programación de uso máis extendido, tanto para

aplicacións cient́ıficas en entornos de computación de altas prestacións, como para

aplicacións de escritorio, videoxogos ou entornos de traballo. Orientando as libraŕıas

a unha linguaxe como C++ garantimos que poderán ser empregada en numerosos

ámbitos.

Como base para o noso traballo usamos a API de baixo nivel das Intel Threading

Building Blocks. Esta ferramenta proporciona unha serie de construcións de alto ni-

vel que permiten paralelizar bucles con un esforzo relativamente limitado. Para alén,

conta cunha interface de baixo nivel que se pode utilizar para realizar programas

paralelos baseados en tarefas. Gracias ao emprego deste recurso, puidemos centrar

o noso traballo en obter unha interface axeitada e implementar os mecanismos pre-

sentes nos patróns descritos anteriormente, mentres aproveitabamos a potencia do

planificador de tarefas presente na libraŕıa de Intel.

Metodolox́ıa de traballo

Para realizar esta tese seguiuse unha metodolox́ıa espiral coa que se puidesen

aproveitar os coñecementos adquiridos en cada fase ou ben para as posteriores ou

ben para refinamento das anteriores.

A tese conta con catro grandes bloques (B), con obxectivos (O) e tarefas (T):

B1.- Estudo de algoritmos.

O1.- Atopar patróns comúns a diversos algoritmos.

T1.- Búsqueda de suites de benchmarks con uso real.

T2.- Análise das estructuras de datos.

xiv

T3.- Análise dos fluxos de execución.

O2.- Definición formal dos patróns.

T1.- Estabelecemento das caracteŕısticas necesarias das estruturas de da-

tos.

T2.- Definición das compoñentes dos programas.

T3.- Definición das interfaces necesarias.

O3.- Deseño de alto nivel da libraŕıa.

T1.- Elección do entorno.

T2.- Estabelecemento dos módulos necesarios.

B2.- Estudo do estado da arte.

O1.- Búsqueda de solucións existentes.

T1.- Estudo da bibliograf́ıa.

T2.- Probas das solucións existentes aplicábeis.

T3.- Análise de vantaxes e desvantaxes.

B3.- Deseño e implementación dos módulos da libraŕıa.

O1.- Patrón divide e vencerás.

T1.- Deseño do módulo.

T2.- Implementación do módulo.

T3.- Comprobación de corrección.

O2.- Patrón paralelismo de datos amorfo.

T1.- Deseño do módulo.

T2.- Implementación do módulo.

T3.- Comprobación de corrección.

O3.- Patrón tarefas dependentes.

T1.- Deseño do módulo.

T2.- Implementación do módulo.

T3.- Comprobación de corrección.

B4.- Análise de resultados.

xv

O1.- Análise de programabilidade.

T1.- Medición de indicadores.

T2.- Comparación con alternativas.

O2.- Análise de rendemento.

T1.- Medición de tempos.

T2.- Medición de escalabilidade.

T3.- Comparación con alternativas.

Medios

Para a elaboración da tese empregáronse os medios detallados a continuación:

Material de traballo e financiamento económico proporcionados polo Grupo

de Arquitectura de Computadores da Universidade da Coruña e o Ministerio

de Educación (bolsa predoutoral FPU AP2009-4752).

Redes nas que se enmarca a tese:

• Red Gallega de Computación de Altas Prestaciones.

• Red Gallega de Computación de Altas Prestaciones II.

• Red Mathematica Consulting & Computing de Galicia II.

• High-Performance Embedded Architectures and Compilers Network of

Excellence, HiPEAC2 NoE (ref. ICT-217068).

• High-Performance Embedded Architectures and Compilers Network of

Excellence, HiPEAC3 NoE (ref. ICT-287759).

• Network for Sustainable Ultrascale Computing (NESUS). ICT COST Ac-

tion IC0805.

• Open European Network for High Performance Computing on Complex

Environments (ComplexHPC). ICT COST Action IC0805

Proxectos de investigación que financiaron esta tese:

xvi

• Soporte Hardware y Software para Computación de Altas Prestaciones

(Ministerio de Economı́a y Competitividad, TIN2007-67537-C03-02)

• Mellora da programabilidade e do rendemento nas novas xeracións de

computadores baseados en procesadores multinúcleo (Xunta de Galicia,

INCITE08PXIB105161PR).

• Architectures, Systems and Tools for High Performance Computing (Mi-

nisterio de Economı́a y Competitividad, TIN2010-16735).

• Consolidación y Estructuración de Unidades de Investigación Competiti-

vas ref. 2010/6: Grupo de Arquitectura de Computadores de la Universi-

dad de A Coruña (Xunta de Galicia, UDC/GI-000265).

• Consolidación y Estructuración de Unidades de Investigación Competi-

tivas: Grupo de Arquitectura de Computadores de la Universidad de A

Coruña (Xunta de Galicia, GRC2013-055).

• Nuevos desaf́ıos en la computación de altas prestaciones: Desde arqui-

tecturas hasta aplicaciones. (Ministerio de Economı́a y Competitividad,

TIN2013-42148-P).

Clúster pluton do Grupo de Arquitectura de Computadores da Universidade

da Coruña. Nodos con dous procesadores Intel Xeon E5-2660 Sandy Bridge-EP

(16 núcleos por nodo) e 64 GB de RAM DDR3 a 1600 Mhz.

Clúster Finisterrae do Centro de Supercomputación de Galicia (CESGA). No-

dos HP Integrity rx7640 con 16 núcleos Itanium Montvale e 128 GB de RAM.

Clúster SVG do Centro de Supercomputación de Galicia (CESGA). Nodos HP

ProLiant SL165z G7 con dous procesadores AMD Opteron Processor 6174 e

64 GB de RAM.

Estancia de 3 meses no grupo ISS do Prof. Pingali na University of Texas at

Austin.

xvii

Conclusións

Durante décadas, a comunidade cient́ıfica centrouse principalmente na paraleli-

zación de códigos con fluxos de control, estructuras e patróns de acceso regulares,

xa que é no que se basean as aplicacións cient́ıficas e de enxeñaŕıa para as que o

procesamento paralelo era utilizado case en exclusiva até a aparición de procesadores

multinúcleo, que extendeu o interese na paralelización de calquera tipo de aplicación.

Como resultado, mentres as aplicacións con paralelismo de datos regular son ben

entendidas e soportadas, algoritmos que se describen mellor en termos de patróns

de paralelismo máis complexos en moitas ocasións necesitan que as programadoras

recorran á parelelización manual empregando ou ben ferramentas de baixo nivel, o

cal é suscept́ıbel a erros e custoso, ben solucións transaccionais con requisitos es-

pećıficos de hardware ou que implican grandes sobrecostes de rendemento. Esta tese

é un intento de entender mellor algúns destes problemas de prover ferramentas que

melloren a súa programabilidade e proporcionando un rendemento razoábel.

Nesta disertación consideramos tres tipos de problemas cuxa paralelización non

se axusta ben ás ferramentas máis utilizadas por diferentes motivos: o patrón divide-

e-vencerás, algoritmos con paralelismo de datos amorfo, e as aplicacións baseadas

en tarefas con patróns arbitrarios de dependencias. Como resultado da nosa análise

creamos unha solución baseada en libraŕıas, adaptada para cada un destes proble-

mas en sistemas de memoria compartida. As nosas libraŕıas foron desenvolvidas en

C++, xa que é unha linguaxe moi popular que prove tanto alto rendemento co-

mo excelentes ferramentas para expresar abstraccións de alto nivel. O framework

subxacente empregado polas nosas propostas para crear e xestionar o paralelismo

é a libraŕıa Intel Threading Building Blocks (TBB) [112], xa que está dispoñ́ıbel

amplamente e mostrou un comportamento mellor que o doutras alternativas nos

tests que realizamos antes de desenvolver a versión final das nosas libraŕıas. Gra-

zas a isto e ás múltiples optimizacións aplicadas nas nosas propostas, o rendimento

que obteñen é competitivo co doutros opcións dispoñ́ıbeis, e ofrecendo melloras de

programabilidade na maioŕıa dos experimentos.

Dos tres problemas abordados, o primeiro, que é a paralelización do tradicional

patrón divide-e-vencerás, é o máis coñecido. A pesar deste feito, e da enorme re-

levancia deste patrón, non atopamos un esqueleto flex́ıbel baseado en abstraccións

xviii

de alto nivel para a súa implementación en sistemas de memoria compartida. A

necesidade de tal esqueleto foi motivada nesta tese tras o análise dos problemas da

súa implementación co esqueleto máis similar provisto pola libraŕıa de esqueletos

máis empregada actualmente, as Intel TBB. A nosa proposta, que demos en chamar

parallel recursion, usa un obxecto para proporcionar a información da estrutu-

ra e da descomposición da entrada do problema e outro para prover as operacións

a realizar. O uso do noso esqueleto resultou en códigos entre 2.9 e 4.6 veces máis

curto en termos de liñas de código respecto das implementacións con TBB cando

só se tiña en conta as porcións dos códigos afectadas pola paralelización. Mesmo

considerando a aplicación completa e unha métrica máis precisa como o esforzo de

programación, que ten en conta o número e variedade de śımbolos usados no código,

parallel recursion necesitou un 14.6 % menos de esforzo que as TBB estándar

para a paralelización destes algoritmos. Tamén percibimos que no caso espećıfico

de algortimos que non necesitan de ningunha función para combinar os resultados

dos seus subproblemas para construiren o resultado final e que están baseados en

arrays, que se axustan naturalmente aos rangos nos que as plantillas das TBB están

baseadas, as TBB obtiveron unhas métricas de programabilidade mellores que as da

nosa libraŕıa, necesitando un esforzo un 11.7 % menor. En canto ao rendemento, o

noso esqueleto comportouse de media mellor que as implementacións con TBB ou

OpenMP nas dúas máquinas probadas, cando se empregaba particionamento au-

tomático, áında que a selección manual da granularidade podeŕıa permitir que as

TBB tivesen mellor rendemento que parallel recursion nunha das máquinas.

O paralelismo de datos amorfo é o segundo problema, e posibelmente o máis

complexo, considerado nesta disertación, dada a natureza altamente irregular e as

condicións dinamicamente cambiantes que caracterizan as aplicacións que se axustan

a este paradigma. Esta tese propón a paralelización destes problemas estendendo o

paralelismo de datos con potentes abstraccións [18] e aplicando o ben coñecido con-

cepto de esqueleto [57] a este novo campo. Deste xeito, a nosa proposta é un esqueleto

chamado parallel domain proc que se basea na abstracción dun dominio no que

os elementos a procesar son definidos. O noso esqueleto usa este dominio tanto pa-

ra particionar o traballo, mediante a subdivisión recursiva do dominio de entrada,

como para detectar conflitos potenciais entre computacións paralelas, comprobando

a propiedade dos elementeos a acceder polo subdominio a considerar. O esquele-

to é completamente agnóstico con respecto ao obxecto que representa a estructura

xix

irregular a procesar, e unicamente require que poida soportar actualizacións concu-

rrentes desde tarefas paralelas, e ten uns requerimentos limitados sobre a API e a

semántica dos obxectos do dominio. Adicionalmente, o feito de que as comproba-

cións do esqueleto para detectar conflitos estean baseadas en condicións calculadas

nos elementos a procesar, nomeadamente na súa pertenza ao dominio, máis que nas

estratexias baseadas en bloqueos habituais, evita as esperas activas e problemas de

contención que usualmente se asocian aos bloqueos. Outra vantaxe do noso enfo-

que é que os elementos de traballo se examinan como moito unha vez por nivel de

subdivision do dominio de entrada, o que define un ĺımite claro no máximo número

de intentos para procesalos. Nos nosos experimentos, as versión paralelas desenvol-

vidas usando o noso esqueleto necesitaron como máximo un 3 % de liñas de código

adicionais con respecto ás versións secuenciais, mentres que empregaron de feito

áında menos sentencias condicionais no código cliente, o que se reflicte nun número

ciclomático máis pequeno, grazas á inclusión na nosa libraŕıa de varios dos bucles e

comprobacións necesarias. Respecto ao rendemento, mostramos que nestas aplica-

cións depende en grande medida de diversos factores que o noso esqueleto permite

axustar, tales como a poĺıtica de descomposición de traballo, a granularidade das

tarefas o as estruturas de datos utilizadas. Finalmente, unha comparación cualitati-

va co traballo relacionado indica que as aceleracións obtidas coa nosa libraŕıa estan

á par das obtidas empregando outras alternativas, sendo algunhas delas implemen-

tacións paralelas manuais.

O terceiro problema que consideramos é a habilidade de expresar do xeito máis

conveniente tarefas que deben seguir dependencias de datos arbritarias de modo

que ditas dependencias sexan automáticamente impostas. A nosa solución, chama-

da DepSpawn, necesita que estas tarefas sexan escritas como funcións, que poden ser

funcións de C++ normais, mais tamén as convenientes funcións lambda de C++11

ou obxectos std :: function, de forma que as súas entradas e sáıdas estean provistas

soamente nas súas listas de parámetros. Estas funcións deben ser lanzadas a execu-

ción utilizando a funcion spawn proporcionada, seguida da súa lista de argumentos.

Esta descubre efectivamente cales son as entradas e sáıdas da función e toma os

pasos necesarios para asegurar que a función só se executa cando todas as súas de-

pendencias son satisfeitas. A semántica concreta implementada pola nosa libraŕıa foi

coidadosamente descrita, e un tipo de dato especial que ofrece soporte para o proce-

samento en paralelo de porcións de arrays foi proporcionado, xunto cunha serie de

xx

facilidades para a sincornización expĺıcita. A nosa avaliación revela que as aplicacións

baseadas en DepSpawn t́ıpicamente conseguen un rendemente igual ou mellor que os

códigos desenvolvidos usando OpenMP, xa que pode executar tarefas no momento

mesmo no que as súas dependencias propias son satisfeitas e grazas ás vantaxes das

TBB con respecto a OpenMP. Igual que nos outros problemas considerados, a nosa

solución normalmente resultou nunhas métricas de programabilidade mellores que

as dos códigos paralelizados con OpenMP. Adicionalmente, unha discusión detallada

que examinou alternativas existentes tanto funcionais como imperativas mostrou que

DepSpawn é ou ben máis xeral ou presenta varias vantaxes de programabilidade e

rendemento con respecto ás propostas previas. No caso das alternativas imperativas

máis cercanamente relacionadas a razón é que ou ben están orientadas a campos es-

pećıficos de aplicación ou necesitan máis información das usuarias e presentan máis

restricións na súa aplicabilidade.

Principais contribucións

Análise das ferramentas dispoñ́ıbeis para a programación paralela en sistemas

de memoria compartida.

Deseño e desenvolvemento de solucións para problemas que non se adaptan ás

ferramentas existentes:

• Patrón de paralelismo divide-e-vencerás.

• Algoritmos con paralelismo de datos amorfo.

• Programas con patróns arbitrarios de dependencias entre tarefas super-

escalares.

Implementación destas solucións en forma de libraŕıas de aplicabilidade xenéri-

ca e fácil programabilidade.

Estudo do rendemento e da programabilidade obtidos con estas libraŕıas.

Publications from the thesis

Carlos H. González, Basilio B. Fraguela, Enhancing and Evaluating the Confi-

guration Capability of a Skeleton for Irregular Computations, 23rd Euromicro

International Conference on Parallel, Distributed and Network-based Proces-

sing, accepted for publication, 2015

Carlos H. González, Basilio B. Fraguela, An Algorithm Template for Domain-

Based Parallel Irregular Algorithms, International Journal of Parallel Pro-

gramming, 42 (6), pp. 948–967, 2014

Carlos H. González, Basilio B. Fraguela, A framework for argument-based

task synchronization with automatic detection of dependencies, Parallel Com-

puting, 39 (9), pp. 445–489, 2013

Carlos H. González, Basilio B. Fraguela, An Algorithm Template for Domain-

Based Parallel Irregular Algorithms Proceedings of the International Sympo-

sium on High-level Parallel Programming and Applications (HLPP2013), 2013

Carlos H. González, Basilio B. Fraguela, A framework for argument-based task

synchronization, Proceedings of the 16th Workshop on Compilers for Parallel

Computing (CPC’12), 2012

Carlos H. González, Basilio B. Fraguela, An algorithm template for parallel

irregular algorithms, Proceedings of the ACACES 2011, pp. 163–166., 2011

Carlos H. González, Basilio B. Fraguela, A generic algorithm template for

divide-and-conquer in multicore systems, Proceedings of the 12th IEEE Inter-

national Conference on High Performance Computing and Communications

2010 (HPCC’10), pp. 79–88, 2010

xxi

xxii

Carlos H. González, Basilio B. Fraguela, Una plantilla genérica para el patrón

de paralelismo divide-y-vencerás en sistemas multinúcleo, Actas das XXI Jor-

nadas de Paralelismo (JP’10), pp. 19–26, 2010

Contents

1. Introduction 1

1.1. Parallelism classification . 3

1.1.1. Process interaction . 3

1.1.2. Problem decomposition . 4

1.1.3. Data structures . 5

1.2. The problem . 6

1.3. Thesis approach and contributions 10

1.4. Language and tools . 11

1.4.1. Threading Building Blocks . 12

1.5. Programmability metrics . 15

2. Parallel skeleton for divide-and-conquer algorithms 19

2.1. Divide-and-conquer with the TBB . 20

2.1.1. Fibonacci numbers . 20

2.1.2. Tree reduction . 23

2.1.3. Traveling salesman problem 25

2.2. An algorithm template for divide-and-conquer problems 29

xxiii

xxiv CONTENTS

2.2.1. Examples of usage . 32

2.3. Evaluation . 34

2.3.1. Programmability . 36

2.3.2. Performance . 37

2.4. Related work . 40

2.5. Conclusions . 41

3. Parallel skeleton for domain-based irregular algorithms 43

3.1. Domain-Based Parallel Irregular Algorithms 44

3.2. A parallelization scheme based on domains 46

3.2.1. Recursive subdivision . 47

3.2.2. Conflict detection . 49

3.2.3. Generation of new workitems 50

3.2.4. Domain merging . 50

3.2.5. Discussion . 51

3.3. The library . 52

3.3.1. Graph . 52

3.3.2. Worklist . 53

3.3.3. Domain . 54

3.3.4. Operation . 55

3.3.5. parallel domain proc skeleton 56

3.4. Tested algorithms . 58

3.4.1. Boruvka . 58

3.4.2. Delaunay mesh refinement . 59

CONTENTS xxv

3.4.3. Graph labeling . 61

3.4.4. Spanning tree . 62

3.5. Evaluation . 63

3.6. Exploring the Configuration Capabilities of the Skeleton 70

3.6.1. Skeleton Behavior Configuration 71

3.6.2. Evaluation . 74

3.7. Related work . 80

3.8. Conclusions . 84

4. Library for task parallelism with detection of dependencies 85

4.1. DepSpawn: An argument-based synchronization approach 86

4.1.1. Spawning parallel tasks . 87

4.1.2. Array support . 92

4.1.3. Explicit synchronization facilities 94

4.1.4. Implementation details . 95

4.2. Tested algorithms . 97

4.2.1. N-body simulation using Barnes-Hut 97

4.2.2. LU decomposition . 98

4.2.3. Cholesky decomposition . 99

4.2.4. Sylvester equations resolution 100

4.3. Evaluation . 101

4.4. Related work . 108

4.5. Conclusions . 113

5. Conclusions 115

xxvi CONTENTS

5.1. Future Work . 118

References 121

List of Listings

2.1. Computation of the n-th Fibonacci number using TBB’s parallel reduce 22

2.2. Reduction on a 3-ary tree using TBB’s parallel reduce (a) 24

2.3. Reduction on a 3-ary tree using TBB’s parallel reduce (b) 25

2.4. Range and body for the Olden tsp parallelization using TBB’s parallel reduce

(a) . 27

2.5. Range and body for the Olden tsp parallelization using TBB’s parallel reduce

(b) . 28

2.6. Templates that provide the pseudo-signatures for the info and body

objects used by parallel recursion 30

2.7. Pseudocode of the parallel recursion algorithm template 31

2.8. Computation of the n-th Fibonacci number using parallel recursion 33

2.9. Reduction on a 3-ary tree using parallel recursion 33

2.10. Olden tsp parallelization using parallel recursion 34

3.1. Common pseudocode for an algorithm that uses irregular data struc-

tures . 44

3.2. Required interface for the Worklist class 54

3.3. Required interface for the Domain class 54

3.4. Pseudocode of the Boruvka minimum spanning tree algorithm 59

3.5. Pseudocode of the Delaunay mesh refinement algorithm 60

3.6. Pseudocode of the graph labeling algorithm 61

3.7. Pseudocode of the spanning tree algorithm 62

3.8. Serial version of Boruvka’s algorithm 63

3.9. Parallel version of Boruvka’s algorithm 64

4.1. Enforcing dependencies between tasks (a) Wrong 91

4.2. Enforcing dependencies between tasks (b) Right 92

xxvii

xxviii LIST OF LISTINGS

4.3. Example of definition of an array and a subarray. 93

4.4. Usage of the Array class to enable the parallel processing of indepen-

dent tasks. 94

4.5. Pseudocode of the parallel implemenation using spawn of the Barnes-

Hut algorithm . 97

4.6. Pseudocode of the LU decomposition 100

4.7. Pseudocode of the Cholesky decomposition 101

4.8. Pseudocode of the Sylvester equations solver 102

List of Figures

2.1. Productivity statistics with respect to the OpenMP baseline version

of TBB based (TBB) and parallel recursion based (pr) implemen-

tations. SLOC stands for source lines of code, eff for the programming

effort and cn for the cyclomatic number. 36

2.2. Performance of fib . 38

2.3. Performance of merge . 38

2.4. Performance of quicksort . 38

2.5. Performance of nqueens . 38

2.6. Performance of treeadd . 39

2.7. Performance of bisort . 39

2.8. Performance of health . 39

2.9. Performance of tsp . 39

3.1. Structure of the domain-based parallelization of irregular algorithms . 48

3.2. Example of an edge contraction of the Boruvka algorithm 58

3.3. Retriangulation of cavities around bad triangles 60

3.4. Relative percentages of the SLOCs and the cyclomatic number of the

parallelized version with respect to the sequential one 65

3.5. Running times for the benchmarks 67

xxix

xxx LIST OF FIGURES

3.6. Speedups with respect to optimized serial versions 68

3.7. Relative speedup with respect to no over-decomposition in runs with

8 cores. 100 is the baseline, that is, achieving 100% of the speedup

(i.e. the same speedup) obtained without overdecomposition. 69

3.8. Percentage of out-of-domain elements running with 8 cores and 16

bottom-level subdomains . 69

3.9. Speedups using different domains and containers 76

3.10. Speedups using different domains and containers. In this figure, lists

use our pool allocator . 78

3.11. Speedups in the experiments with lists using the pool allocator with

respect to the lists using the standard allocator in the runs with 16

cores . 79

3.12. Speedups using different levels of decomposition with respect to no

over-decomposition in runs with 16 cores 81

4.1. Preceding tasks PT42 = {T1, T2, T3, T41} for task T42. Assuming that

out of them only T1 generates dependencies with T42 (i.e. DPT42 =

{T1}), Descendants(DPT42) = {T11, T12, T13, T131, T132} is also depicted. 90

4.2. Blocked algorithm for computing the LU decomposition of a square

matrix . 99

4.3. Dependencies of the Sylvester equation solver. Nodes refer to calls in

Listing 4.8 . 103

4.4. N-body simulation with Barnes-Hut algorithm in the i7 system 104

4.5. N-body simulation with Barnes-Hut algorithm in the Xeon system . . 104

4.6. LU decomposition in the i7 system 105

4.7. LU decomposition in the Xeon system 105

4.8. Cholesky decomposition in the i7 system 106

LIST OF FIGURES xxxi

4.9. Cholesky decomposition in the Xeon system 106

4.10. Sylvester equations in the i7 system 107

4.11. Sylvester equations in the Xeon system 107

4.12. Small DepSpawn code and associated dataflow graph. 111

List of Tables

2.1. Benchmarks used . 35

3.1. Baseline times for the algorithms . 75

4.1. Behavior of spawn for each parameter type. A is any arbitrary data

type. Modifiers in brackets do not change spawn’s behavior. 87

4.2. Programmability metrics . 108

xxxiii

Chapter 1

Introduction

In the past decades, the performance of computer processors has been steadily

increasing thanks mainly to the improvement of fabrication processes and the ad-

vances in microarchitecture. Smaller transistors mean that more functional units

can be packed in the same silicon area; higher clock frequencies make for faster pro-

cessing. But the current fabrication technology has an upper limit where no further

developments can be made, because transistors can not be made to switch faster.

Thus, since the 2000s, there has been a rebirth of the research on multiprocessors,

and multicore processors, where several cores coexist in the same chip [68]. But

as opposed to increasing frequencies or microarchitectural improvements, where a

new processor almost automatically allows faster programs without needing changes,

multicore or multiprocessor systems require different programming models and tools

to achieve better results.

The most widely used tools for parallel programming available nowadays fall

into three categories. This way, many tools provide high level abstractions and

notations that are well suited for efficiently expressing and thus exploiting the hard-

ware available for regular and data parallel algorithms. Unfortunately, the higher

the complexity of the data structures used and the patterns of dependencies among

the parallel tasks in which an algorithm can be decomposed, the more unfit these

tools are to parallelize such algorithm. A second category are transactional ap-

proaches [69], heavily studied in the past years, which allow to parallelize irregular

problems with a simple high-level notation, but they either require specific hardware,

1

2 Chapter 1. Introduction

or they can incur in large performance overheads[23]. As a result, when considering

applications with irregularities and complex patterns of parallelism users often have

in practice to resort to the third widespread kind of tools to parallelize codes, which

provide a low level of abstraction. These tools often only consist of communication

and synchronization primitives, leading to steep learning curves and heavily reduced

programmer productivity.

The popularization of multicore systems, even for standard personal computers,

calls for easier and more general parallel programming tools, so that programmers

can easily take advantage of this computer power for every kind of applications.

However, most of the research on parallel computing has focused on scientific prob-

lems based on regular structures and simple patterns of parallelism in which compu-

tations are relatively easy to distribute among different cores and dependencies are

known in advance. As a result, the vast majority of the currently available tools to

facilitate parallel programming using a high level of abstraction are oriented to this

kind of algorithms. This way more work is needed to assist the parallelization of

algorithms that exhibit non trivial patterns of tasks dependencies and communica-

tions, as they are currently ill-supported. For this thesis, we studied a wide sample

of algorithms whose efficient parallelization requires non negligible user effort using

the existing tools, and found several categories with common characteristics. We

described the main defining points of each category, and with this knowledge we de-

veloped corresponding library-based solutions that allow an easier implementation

of the identified algorithm classes.

Following this introduction, this chapter first describes the different types of par-

allelism along different dimensions in order to then define the motivation and the

scope of the work performed in this thesis and its contributions. Then, Section 1.4

briefly justifies the language chosen for the libraries and benchmarks in this disser-

tation, and it describes the underlying parallelization library used by our proposals.

Finally, this chapter defines three metrics based on the source code that will be used

during the thesis to measure the programmability of the different approaches tried.

1.1 Parallelism classification 3

1.1. Parallelism classification

When implementing an algorithm, usually there exist several ways to make a

parallel implementation. A careful analysis of the algorithm, its data structures and

the available hardware helps to find which solution is better suited. The possible

parallel implementations can be classified along several dimensions. For the purposes

of this work it suffices to take into account three of them:

1.1.1. Process interaction

There are different ways a system can use when dealing with multiple processes

running concurrently. Historically, the hardware for which the program was de-

veloped determined the model that should be used [36], and this is still true when

developing middleware. Nowadays, however, there exist software tools and hardware

support for different combinations of process interaction models.

Shared memory All the processes share the same memory space. This means they

can access all the data for a problem withouth the need for explicit commu-

nications and without performance loss, or with a small one, if the underlying

hardware permits it. This model performs better on multiprocessor or multi-

core hardware, where the memory is physically shared. The main drawback of

this model is that it introduces inconsistency risks. Two or more processes may

try to use the same memory address in the wrong order, producing a result that

is not equivalent to the sequential semantics of the program. Shared memory

programming tools offer synchronization primitives that, carefully used, help

solving this issue.

Distributed memory With this model, each process has its own separate memory

space. Before the popularization of multiprocessors, the most common high

performance computing platform consisted of clusters of computing nodes con-

nected through a network. While this is still true, these clusters have now hy-

brid architectures where each node has one or more multicore processors. We

mention for completeness that there is also a recent trend of including hard-

ware accelerators such as GPUs in some or all the nodes, but these devices

4 Chapter 1. Introduction

are out of the scope of this PhD thesis, which is centered on the paralleliza-

tion on the general purpose CPUs. Although some modern developments can

almost transparently hide the distributed nature of these systems and offer

a single memory space [108], the usual way to do process communication in

these systems is through message passing. The distributed memory model can

also be used in a multiprocessor system when the parallel tasks are run by

processes that share no logical memory space. The messages are managed by

the runtime, that sends them through the network or inside a single node as

needed.

1.1.2. Problem decomposition

While in the previous section we classified algorithms according to the way the

implementation manages the communications among the parallel tasks, we can also

classify them based on how the problem is decomposed. Here we distinguish between

data and tasks parallelism [9].

Data parallel This model focuses on data distribution. All the processes run the

same code over a set of data that is partitioned among them. This way, par-

allelism is achieved by dividing the work load in blocks, and each process is

responsible for one block. This emphasizes the parallelism present in the data

itself. For example, when adding two matrices, processor A can add the top

halves and processor B the bottom halves, as these two operations are indepen-

dent from each other. More complex algorithms may require communication

among processes.

Task based This model, instead of working with parallelism at the data level,

emphasizes processing level parallelism. When a program does several compu-

tations or tasks that are independent of each other, each one can be assigned

to a different processing element —e.g. thread or processor— so they run in

parallel. This model can derive to the data parallel model if we define the

tasks as the computation on a block of the input data, and all the tasks run

the same code.

In practice, the term task parallelism is applied to frameworks that provide

1.1 Parallelism classification 5

means to define blocks of code meant to be scheduled to run with the threads

available in the system. Usually, there should be more of these tasks than

threads.

1.1.3. Data structures

The data structures used in an algorithm play a critical role in its possible

parallel implementations, as they give place to different natural data decomposition

strategies and task synchronization requirements [90]. We describe two main classes

of data structures in relation to parallelism, according to the characteristics of their

topology [104].

Regular structures The defining characteristic of regular structures is that the

pattern of relation between its data components is simple, and usually in terms

of their position within the structure, and their topology does not change at

runtime.

Simple relation patterns between data items mean that given an element,

the program can compute where its successors and predecessors are stored

in memory from just its position in the structure. This definition is, thus,

implementation dependent. For example, a binary tree can be considered a

regular structure if it is stored lineally in a vector, or irregular if it is built

with pointers to arbitrarily allocated nodes.

The paradigm of regular structures is a dense vector or matrix, where all the

elements are stored consecutively, and each one can be identified with a vector

of coordinates.

Irregular structures As opposed to regular structures, these ones are not pre-

dictable and their topology can change. Because of this, it is hard or even

impossible to know in advance how the elements are stored. Additionaly,

given that their topology can change —adding new items with arbitrary rela-

tions with the existing ones, or removing some elements, relations, or both—,

the execution flow of the program cannot be defined beforehand. Irregular

structures can be modeled in general as graphs.

6 Chapter 1. Introduction

Regular structures usually lead to regular algorithms that fall into the data

parallel model. Irregular structures, on the other hand, are better processed with

irregular algorithms implememented using a task based framework, as it can better

handle the introduction of arbitrary execution units at run time. Also, this kind of

algorithms benefit of a more specific analysis, better suited for them than the static

dependency analysis used for regular algorithms. Irregular algorithms can be de-

scribed in terms of a data-centric formulation, called the operator formulation [104].

This formulation is independent of the implementation of the data structure. It

defines which are the active elements —those that might need some computation—,

their neighborhoods —elements connected to the active ones that are required in

the computation—, and the ordering of the computations. In some cases, changing

this ordering may produce different but still valid results, which is called do-not-care

nondeterminism.

1.2. The problem

During the past years, extensive research has been carried out on the best ways

to express parallelism. This has led to an evolution from low level tools [20][51][59]

to a variety of new higher level approaches. The large majority of these tools

(e.g. [19][24][30][34][45][46][48][70][121]) are well suited to parallelize regular algo-

rithms, whose computations are relatively easy to distribute among different pro-

cessing elements. The reason is that parallelism has been restricted for a long time

to scientific computing systems where regular structures such as matrices and vec-

tors predominate and where most of the critical algorithms allow relatively simple

parallelization patterns. However, now that basic physical restrictions such as the

power wall have slowed down the increase of performance of individual processors,

giving place to the ubiquitous presence of multicore processors in every kind of sys-

tem, from mobile phones to supercomputers, parallelization is becoming the main

way to improve the performance of every kind of applications.

Unfortunately, in many fields irregularity arises in very different forms, usually

due to the use of irregular, usually pointer-based, data structures [104]. These

applications require a different approach, as it is more complex, and sometimes

even impossible to find an a priori distribution of work in them that avoids conflicts

1.2 The problem 7

among the parallel threads of execution and balances their workload. Tracking these

conflicts is also complicated by the lack of regularity and the potential dynamic

changes in the relations among the data items that participate in a computation,

synchronization mechanisms being usually required before accessing each element

to process.

As a result of this situation the parallelization of irregular algorithms typi-

cally requires much more work from programmers, which calls for new tools to

deal with irregularity in parallel applications [103]. Solutions to reduce the pro-

gramming effort of parallel codes can come in the form of new programming lan-

guages [22][24][28][97][129], compiler directives [99][105][101][5][49], or libraries [11][96]

[114][26][16][112][42][95]. New programming languages have many drawbacks be-

cause they usually have longer learning curves than the other approaches and they

force programmers to rewrite their applications from scratch, an effort that can

be ameliorated by providing interfaces with codes and libraries written in other

languages. In addition, the need for compiler support adds complexity to their im-

plementation and makes more difficult their extension. Compiler directives suffer

from similar problems regarding their implementation [3] and the requirement to

use specifically enabled compilers. Also, the fact that they are usually inserted in

sequential code, i.e., code that must run successfully in a sequential manner when

they are ignored, reduces their ability to provide structure and functionality to ap-

plications in comparison with the other approaches [34].

Given the reasons described above, we think that libraries, with their inexistent

or small compiler requirements, relatively short learning curves, and their promotion

of code reuse, are a promising approach to improve the programmability of parallel

applications if they are carefully designed to avoid performance problems [47]. One

of the best options to hide the complexity of the parallelization of irregular applica-

tions by means of libraries is the use of skeletons [33][57]. Built on parallel design

patterns, skeletons provide a clean specification of the flow of execution, parallelism,

synchronization and data communications of typical strategies for the parallel res-

olution of problems. Unfortunately, most skeleton libraries [19][30][34][45][46][121]

focus on regular problems. Parallel libraries that can support specific kinds of irreg-

ular algorithms exist [17][7], but there are only a few general-purpose developments

based on broad abstractions. This dissertation tries thus to help programmers de-

8 Chapter 1. Introduction

velop parallel applications that exhibit some kind of parallelism using skeletal-like

libraries. The hardware scope chosen has been that of current multi-core and/or

multiprocessor shared-memory machines. The reasons are that these systems are

ubiquitous since the appearance of multi-core processors, and that the flexibility

they provide in terms of data sharing and synchronization favors the implementa-

tion of irregular applications, which has turned them into the primary target for

current research on the parallelization of this kind of algorithms [76][85][117][1][12].

The development of skeletal libraries requires finding recurring patterns whose

management can be automated using higher-order functions. During our study of

collections of algorithms based on pointer-based data structures [115][77] we found

two common patterns that fall into a parallel algorithm design pattern [90] and

are amenable to be implemented as skeletons with suitable abstractions. Later, we

looked at the wider problem of enabling the efficient expression and execution of

parallel computations composed by tasks with arbitrary patterns of dependencies.

These three subjects are now commented in turn.

The analysis of well-known pointer-based codes such as the Olden benchmark

suite [115] reveals that many of them are based on tree or tree-like data structures.

While being irregular data structures, trees can be easily subdivided in subsets that

can be processed in parallel, the result of the processing of each one of those subsets

being a component of the final result. This way one can proceed from the initial

problem, dividing it repeatedly in smaller subproblems until some condition is met.

The intention of this subdivision is to find smaller problems that are easier to tackle

and enable parallelism by solving them in parallel. This is in fact the divide-and-

conquer pattern of parallelism [90]. While this pattern is well established, and there

are several skeleton-based implementations [34][30][6][46], they do not provide the

degree of generality and minimal programming effort that we were seeking, and most

of them target distributed memory systems. For this reason this thesis proposes a

new algorithm template for this pattern [52] that provides high performance, great

programmability and a totally general scope of application.

The second problem considered in this dissertation is the attempt to provide more

abstractions and structure to the exploitation of amorphous data-parallelism [76].

This is an analogue to data parallelism in regular algorithms, but operating on data

in irregular data structures such as graphs instead of regular structures such as

1.2 The problem 9

matrices, which gives place to more dynamic and changing relations between data

and tasks. The main data structure found in algorithms that exhibit this parallelism

is usually a graph or something equivalent, where a series of active nodes can be

identified. The active nodes are the ones that require some processing at a given time

during the execution of the program, and such processing often requires not only

accessing them, but also a part of the graph around them called the neighborhood.

Amorphous data-parallel codes can dynamically create and remove active nodes

as well as elements in their neighborhoods, and the extent of those neighborhoods

can often only be computed when the active node processing begins. As a result,

the complexity of the parallelization of these applications is enormous. For these

reasons, and given the already commented lack of skeleton-based approaches to

support the parallelization of irregular algorithms despite the attractive properties

of skeletons, this thesis sought to make contributions in this area based on the idea

of extending data parallel programming with new abstractions [18]. This way, this

dissertation presents a skeleton with some supporting abstract data types, which

based on the abstraction of domain, enables the efficient parallelization of a large

kind of amorphous data-parallel algorithms [55]. We also illustrate the flexibility of

this skeleton, which allows to change with little effort the work partitioning strategy

and granularity as well as the data structures used, showing the influence of these

decisions on the performance [56].

The last problem tackled in this thesis is that of the development of parallel

applications composed by tasks that can present arbitrary patterns of dependen-

cies, which can be thus regular or irregular. The preceding problems considered,

while operating on irregular data structures, required the user to find an underlying

pattern to identify a suitable skeleton and then fill in its application-specific op-

erations. Here, however, we look at any arbitrary program as a set of potentially

parallel tasks that must be ordered according to their data dependencies. This view

has the potential to allow the parallel execution of any kind of application, no matter

it presents irregularity or not in its data structures and/or patterns of dependencies

among tasks. It only requires, however, a minimal abstraction from the user, who

just needs to identify the inputs and the outputs of each task to run, resulting in a

very simple and powerful approach. While many researchers have already considered

this possibility [26][101][125][84][88][86], the use of functional languages, with their

restrictive characteristics, or the restriction to an specific kind of application and

10 Chapter 1. Introduction

lack of a general programming model, or the need to programmatically specify the

dependencies of each task of the solutions provided did not satisfy us. This way, the

last stage of this PhD Thesis proposes a general library-based solution implement-

ing a programming model that allows expressing and running arbitrary task-parallel

applications with minimal programming cost and maximal flexibility [54].

1.3. Thesis approach and contributions

Implementing irregular algorithms, and particularly parallelizing them, is usually

harder than regular ones. The data can be located in arbitrary positions in memory,

with no clear way to predict where. Also, the relations between elements and/or

parallel tasks may not follow a clearly defined pattern. Because of these reasons, it

is cumbersome, or plainly impossible, to use the same methods available for regular

data parallel algorithms. The most practical approach in these situations is usually

to develop a task based parallel program applying some low level API because most

current parallel programming tools offer no good abstractions for irregular problems.

The purpose of this thesis is to help advance in the parallelization of applica-

tions that present any of the complexities described in the preceding Section. The

approach taken is to define simple high level abstractions that facilitate the paral-

lelization of applications that present one of the difficulties tackled and to implement

libraries that allow to express and exploit such ideas. Concretely, this thesis presents

three libraries, each one of them suited to parallelize a different kind of algorithm:

parallel recursion Provides a skeleton that implements the divide-and-conquer

pattern after analyzing and providing abstractions for each one of its compo-

nents. The user must provide two objects besides the input data. One of them

describes the operations to perform during the solution of the problem, such

as the resolution of the base case and the combination of the partial results.

The other object describes the problem by providing methods to identify base

cases as well as to obtain the number of children and to subdivide non base

cases.

parallel domain proc This module provides an purely skeleton-based approach

1.4 Language and tools 11

to parallelize applications that present amorphous data-parallelism. The in-

put of the skeleton is a graph where the nodes have attributes that can be

described as belonging to some domain. For example, in a graph of triangles,

each node has coordinates on a plane; this plane would be the domain. The

programmer then provides a definition of the domain, that the skeleton can

use to logically partition the graph, generating parallel tasks that operate on

disjoint subdomains, and to detect conflicts. The parallelization of this kind

of applications under our scheme allows for a large number of variations for

the work decomposition, data structures, etc. Our library also provides tools

to explore many of these possibilities, as our experiments show that they have

an enormous impact on performance.

dependent spawn (DepSpawn) This is a system that allows to easily request

the execution of parallel tasks while automatically detecting the dependencies

among such tasks. Our library supports tasks defined as regular C++ callable

objects —e.g. functions, lambdas or functors—. By means of an analysis of the

parameters passed to the callable object, the library can build a dependency

graph for the tasks, and use it to order their execution.

1.4. Language and tools

A crucial decision in any software project is choosing the implementation lan-

guage. While there are more widespread languages such as C, C++ was chosen

for this thesis. The most important reason for this are the capabilities of object-

oriented languages such as C++ for the development of libraries. These languages

offer mechanisms that make it easier to attain critical objectives of libraries such

as providing an adequate representation of the semantics of the problems the pro-

grammer wants to implement and hiding the particularities of the runtime. Among

these languages C++ is particularly well suited for parallel and high performance

applications, which are the target of this thesis, as its performance is similar to that

of C.

Another advantage is that C++ is easily interoperable with C, so the vast set

of libraries available for that language can be used with little effort. This way,

12 Chapter 1. Introduction

applications written with widely used libraries, such as BLAS, which are common

for scientific applications, can benefit of the easy parallelization that the solutions

developed in this thesis provide, without needing to change the core of the code.

Once we opted for C++, we exploited its advantages to the fullest, including core

language functionality improvements provided by the new C++11 standard. For

example, it provides advanced capabilities such as metaprogramming, through the

template system, which allows to move part of the computations to compile time,

as well as to enable type analysis and reflection, which is fundamental especially

for the task dependency library presented in Chapter 4. The C++11 standard

introduces variadic templates, which allow to use an arbitrary number of parameters

for templates. The skeletons developed in this thesis also provide support for lambda

functions, so that the operations can be expressed with a clear syntax that greatly

resembles that of the standard language constructs, for example for loops.

1.4.1. Threading Building Blocks

Intel Threading Building Blocks (TBB) [112] is a C++ library developed by Intel

for the programming of multithreaded applications. This library is available on the

FreeBSD, Linux, Solaris, Mac OS X, and Microsoft Windows operating systems

and run on top of the x86/x64 (both from Intel and AMD), IA64 (Itanium family)

and MIC (new Intel Xeon Phi) processors. There are also ports for the Xbox 360

and PowerPC-based systems. This way, TBBs support the vast majority of current

computers. It provides from atomic operations and mutexes to containers specially

designed for parallel operation. Still, its main mechanism to express parallelism are

algorithm templates that provide generic parallel algorithms. The most important

TBB algorithm templates are parallel for and parallel reduce, which express

element-by-element independent computations and a parallel reduction, respectively.

These algorithm templates have two compulsory parameters. The first one is a range

that defines a problem that can be recursively subdivided into smaller subproblems

that can be solved in parallel. The second one, called body, provides the computation

to perform on the range. The requirements of the classes of these two objects are

now discussed briefly.

The ranges used in the algorithm templates provided by the TBB must model

1.4 Language and tools 13

the Range concept, which represents a recursively divisible set of values. The class

must provide:

a copy constructor

an empty method to indicate when a range is empty,

an is divisible method to inform whether the range can be partitioned into

two subranges whose processing in parallel is more efficient than the sequential

processing of the whole range,

a splitting constructor that splits a range r in two. By convention this con-

structor builds the second part of the range, and updates r (which is an input

by reference) to be the first half. Both halves should be as similar as possible

in size in order to attain the best performance.

TBB algorithm templates use these methods to partition recursively the initial

range into smaller subranges that are processed in parallel. This process, which is

transparent to the user, seeks to generate enough tasks of an adequate size to par-

allelize optimally the computation on the initial range. Thus, TBB makes extensive

usage of a divide-and-conquer approach to achieve parallelism with its templates.

This recursive decomposition is complemented by a task-stealing scheduling that bal-

ances the load among the existing threads, generating and moving subtasks among

them as needed.

The body class has different requirements depending on the algorithm template.

This way, parallel for only requires that it has a copy constructor and over-

loads the operator() method on the range class used. The parallel computation is

performed in this method. parallel reduce requires additionally a splitting con-

structor and a join method. The splitting constructor is used to build copies of the

body object for the different threads that participate in the reduction. The join

method has as input a rhs body that contains the reduction of a subrange just to

the right of (i.e following) the subrange reduced in the current body. The method

must update the object on which it is invoked to represent the accumulated result

for its reduction and the one in rhs, that is, left.join(right) should update left to be

the result of left reduced with right. The reduction operation should be associative,

14 Chapter 1. Introduction

but it need not be commutative. It is important that a new body is created only

if a range is split, but the converse is not true. This means that a range can be

subdivided in several smaller subranges which are all reduced by the same body.

When this happens, the body always evaluates the subranges in left to right order,

so that non commutative operations are not endangered.

TBB algorithm templates have a third optional parameter, called the parti-

tioner, which indicates the policy followed to generate new parallel tasks. When

not provided, it defaults to the simple partitioner, which recursively splits the

ranges giving place to new subtasks until their is divisible method returns false.

Thus, with it the programmer fully controls the generation of parallel tasks. The

auto partitioner lets the TBB library decide whether the ranges must be split

to balance load. The library can decide not to split a range even if it is divisible

because its division is not needed to balance load. Finally, affinity partitioner

applies to algorithms that are performed several times on the same data and these

data fit in the caches. It tries to assign the same iterations of loops to the same

threads that run them in a past execution.

Our libraries use the low level API of the TBBs, which is based in the task

parallel model described before. One of the main benefits of this approach is that

our libraries enjoy the smart load balancing and task affinity strategies provided

by TBBs. For example, instead of a global task queue that could be a source of

contention, each thread has its local pool of tasks. This besides promotes locality

because the tasks spawned by a given thread are more likely to be run by this

thread, which increases the potential to reuse data accessed by the ancestor tasks

in the caches of the same core. TBBs also provide a clever task stealing mechanism

that allows to perform load balancing between threads in a completely transparent

way. Idle threads steal the least recently generated tasks of busy threads, which

are the tasks with less locality and potentially more work. Finally, TBBs also

help deal with the memory model of the underlying hardware under the control of

its API, which provides accesses with the release and acquire semantics as well as

sequentially consistent accesses that act as memory fences. Our libraries use this

API to guarantee the correct execution both of its internal code as well as the user

functions under any memory model.

1.5 Programmability metrics 15

1.5. Programmability metrics

Since the final purpose of this thesis is to facilitate the work of programmers

when developing parallel applications, measuring the impact of the usage of our

libraries on programmability is critical to evaluate our success. Unfortunately, pro-

grammability is hard to measure, and while it would be ideal to base our analysis

on the measurement of the devolpment times, quality of the code written, opinions,

etc. of teams of programmers [122] such teams are seldom available. For this reason,

many studies on programmability rely on objective metrics extracted from the code,

and this will be the approach followed in this document. Three different metrics

will be considered that we now explain in turn.

The most widely known code-based productivity metric is the number of Source

Lines of Code (SLOCs), which counts all the lines in the program excluding the

comments and the empty lines.

The second metric is the programming effort [63], which goes beyond SLOCs

by taking into account the number and variety of tokens (identifiers, keywords,

punctuation characters, etc.) used in the program. This way, when computing

the programming effort, a program is considered a string of tokens, which can be

divided into two groups: operators and operands. The operators are defined as

variables or constants that the implementation employs. The operators are symbols

or combinations of symbols that affect the value or ordering of operands. We denote

η1, the different number of operators; η2, the different number of operands; N1, the

total number of occurrences of operators; and N2, the total number of occurrences

of operands. The program volume V is defined as

V = (N1 +N2)log2(η1 + η2) (1.1)

The potential volume V ∗ describes the shortest possible or most succinct form of an

algorithm.

V ∗ = (N∗1 +N∗2)log2(η∗1 + η∗2) (1.2)

Now in the minimal form, neither operators nor operands could require repetition,

thus

V ∗ = (η∗1 + η∗2)log2(η∗1 + η∗2) (1.3)

16 Chapter 1. Introduction

Furthermore, the minimum possible number of operators η∗ for any algorithm is

known. It must consist of one distinct operator for the name of the function and

another to serve as an assignment or grouping symbol. Therefore,

η∗1 = 2

Equation 1.3 then becomes

V ∗ = (2 + η∗2)log2(2 + η∗2) (1.4)

where η∗2 should represent the number of different input/output parameters. Pro-

gram level Lvl is defined as

Lvl =
V ∗

V
(1.5)

It follows that only the most succinct expression possible for an algorithm can have

a level of unity. Programming effort E required to generate a given program should

be

E =
V

Lvl
(1.6)

A further implication of the effort equation can be shown by recalling equation 1.5

and substituting in equation 1.6

E =
V 2

V ∗
(1.7)

Equation 1.7 indicates that the mental effort required to implement any algo-

rithm with a given potential volume should vary with the square of its volume in

any language, rather linearly.

The third metric, the cyclomatic number [91], is a function of the number of

predicates in the program. In particular, if a control flow graph (CFG) represents a

program containing P decision points or predicates, then the cyclomatic number C

is given by

C = P + 1 (1.8)

Again, the smaller the C, the less complex the program is. In C++, P amounts

to the number of constructions that include a predicate on which the control flow

depends. These are the if, for, while, and case keywords, the ?: operator, and

the conditional preprocessor macros.

1.5 Programmability metrics 17

While there are several tools that allow to measure the SLOCs [128], this is not

the case for the programming effort and the cyclomatic number. For this reason,

during the development of this thesis we had to develop a tool to systematically

extract these metrics from C and C++ codes, giving place to C3MS (C++ Code

Complexity Measurement System) tool, which is freely available under request and

which has already been used in several publications [42][39][123][95] in addition to

the papers associated to this thesis.

Chapter 2

Parallel skeleton for

divide-and-conquer algorithms

The divide-and-conquer strategy appears in many problems [2]. It is applicable

whenever the solution to a problem can be found by dividing it into smaller sub-

problems, which can be solved separately, and merging somehow the partial results

to such subproblems into a global solution for the initial problem. This strategy

can be often applied recursively to the subproblems until a base or indivisible one

is reached, which is then solved directly. The recursivity of an algorithm sometimes

is given by the data structure on which it works, as is the case of algorithms on

trees, and very often it is the most natural description of the algorithm. Just to

cite a few examples, cache oblivious algorithms [50], many signal-processing algo-

rithms such as discrete Fourier transforms, or the linear algebra algorithms produced

by FLAME [15] are usually recursive algorithms that follow a divide-and-conquer

strategy. As for parallelism, the independence in the resolution of the subproblems

in which a problem has been partitioned leads to concurrency, giving place to the

divide-and-conquer pattern of parallelism [90]. Its usefulness is recognized also by

its identification as a basic parallel programming skeleton [33].

An analysis of suites of programs that operate on pointer-based data struc-

tures such as [115] reveals that an important part of such structures represent trees,

whose processing can very often be parallelized using the divide- and-conquer pat-

tern. While this pattern is well known, many of its implementations in the form

19

20 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

of parallel skeletons [34][30][6][46] are focused on distributed memory environments,

lack generality and/or require more effort from the programmer to apply them than

what should be needed in our opinion. We have chosen the Intel Threading Build-

ing Blocks (TBB) library [112], presented in Section 1.4, in order to illustrate the

kind of problems that we find in the application of the parallel divide-and-conquer

pattern given its position as the most popular and widely adopted library for the

parallelization of applications in shared memory environments using skeletons. This

way, this chapter motivates our proposal with a discussion of the the weaknesses of

TBB algorithm templates to parallelize applications that are naturally fit for the

divide-and-conquer pattern of parallelism. This is followed by our reasoned proposal

of a new template to express these problems, and its evaluation both in terms of

programmability and performance.

2.1. Divide-and-conquer with the TBB

This Section analyzes the programmability of the divide-and-conquer pattern

of parallelism using the TBB algorithm templates through a series of examples

of increasing complexity. This analysis motivates and leads to the design of the

alternative that will be presented in the next Section.

2.1.1. Fibonacci numbers

The simplest program we consider is the recursive computation of the nth Fi-

bonacci number. While this is an inefficient method to compute this value, our

interest at this point is on the expressiveness of the library, and this problem is ideal

because of its simplicity. The sequential version is

1 int fib(int n) {

2 if (n < 2) return n;

3 else return fib(n - 1) + fib(n - 2);

4 }

which clearly shows all the basic elements of a divide and conquer algorithm:

2.1 Divide-and-conquer with the TBB 21

the identification of a base case (when n < 2)

the resolution of the base case (simply return n)

the partition in several subproblems otherwise (fib(n - 1) and fib(n - 2))

the combination of the results of the subproblems (here simply adding their

outcomes)

The simplest TBB parallel implementation of this algorithm, shown in List-

ing 2.1, is based on parallel reduce and it indeed follows a recursive divide-and-

conquer approach. The range object required by this template is provided by the

FibRange class, and it encapsulates which is the Fibonacci number to compute in

n . The body object belongs to the Fib class and performs the actual computa-

tion. These classes implement the methods required by the template, which were

explained in Section 1.4. For example the splitting constructors are the constructors

that have a second dummy argument of type split. The splitting constructor for

FibRange in Lines 7-9 shows how the computation of the n-th Fibonacci number is

split in the computation of the n− 1 and n− 2th numbers. Concretely, Line 8 fills

in the new range built to represent the n − 2th number, while the input FibRange

which is being split, called other in the code, represents now the n − 1th number

(Line 9). Notice also that the operator() of the body (Line 25) must support any

value of the input range, and not just a not divisible one (0 or 1). The reason is

that the auto partitioner is being used (Line 36) to avoid generating too many

tasks. The default simple partitioner would have generated a new task for every

step of the recursion, which would have been very inefficient.

The Fib class must have a state for three reasons. First, the same body can

be applied to several ranges, so it must accumulate the results of their reductions.

Second, bodies must also accumulate the results of the reductions of other bodies

through the calls to their join method. Third, TBB algorithm templates have no

return type, thus body objects must store the results of the reductions. This gives

place to the invocation we see in Lines 35-37 of the listing. The topmost Fib object

must be created before the usage of parallel reduce so that when it finishes the

result can be retrieved from it.

Altogether, even when the problem suits well the TBB algorithm templates, we

22 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

1 struct FibRange {

2 int n_;

3

4 FibRange(int n)

5 : n_(n) { }

6

7 FibRange(FibRange& other, split)

8 : n_(r.n_ - 2)

9 { other.n_ = other.n_ - 1; }

10

11 bool is_divisible() const { return (n_ > 1); }

12

13 bool empty() const { return n_ < 0; };

14 };

15

16 struct Fib {

17 int fsum_;

18

19 Fib()

20 : fsum_(0) { }

21

22 Fib(Fib& other, split)

23 : fsum_(0) { }

24

25 void operator() (FibRange& range) { fsum_ += fib(range.n_); }

26

27 int fib(int n) {

28 if (n < 2) return n;

29 else return fib(n - 1) + fib(n - 2);

30 }

31

32 void join(Fib& rhs) { fsum_ += rhs.fsum_; };

33 };

34 ...

35 Fib f();

36 parallel_reduce(FibRange(n), f, auto_partitioner());

37 int result = f.fsum_;

Listing 2.1: Computation of the n-th Fibonacci number using TBB’s
parallel reduce

2.1 Divide-and-conquer with the TBB 23

have gone from 4 source lines of code (SLOC) in the sequential version to 26 (empty

Lines and comments are are not counted) in the parallel one.

2.1.2. Tree reduction

TBB ranges can only be split in two subranges in each subdivision, while some-

times it would be desirable to divide them in more subranges. For example, the

natural representation of a subproblem in an operation on a tree is a range that

stores a node. When this range is processed by the body of the algorithm template,

the node and its children are processed. In a parallel operation on a 3-ary tree,

each one of these ranges would naturally be subdivided in 3 subtasks/ranges, one

per direct child. The TBB restriction to two subranges in each partition forces the

programmer to build a more complex representation of the problem so that there

are range objects that represent a single child node, while others keep two children

nodes. As a result, the construction and splitting conditions for both kinds of ranges

will be different, implying a more complicated implementation of the methods of the

range. Moreover, the operator() method of the body will have to be written to deal

correctly with both kinds of ranges.

Listings 2.2 and 2.3 exemplify this with the TBB implementation of a reduction

on a 3-ary tree. The initial range stores the root of the tree in r1 , while r2 is set

to 0 (Lines 5-6). The splitting constructor operates in a different way depending

on whether the range other to split has a single node or two (Line 9). If it has a

single node, the new range takes its two last children and stores that its parent is

other.r1 . The input range other is then updated to store its first child. When

other has two nodes, the new range takes the second one and zeroes it from other.

The operator() of the body has to take into account whether the input range has

one or two nodes, and also whether a parent node is carried.

This example also points out another two problems of this approach. Although

a task that can be subdivided in N > 2 subtasks can always be subdivided only in

two, those two subproblems may have necessarily a very different granularity. In

this example, one of the two children ranges of a 3-ary node is twice larger than the

other one. This can lead to a poor load balancing, since the TBB recommends the

subdivisions to be as even as possible. This problem can be alleviated by further

24 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

1 struct TreeAddRange {

2 tree_t * r1_, *r2_;

3 tree_t * parent_;

4

5 TreeAddRange(tree_t *root)

6 : r1_(root), r2_(0), parent_(0) { }

7

8 TreeAddRange(TreeAddRange& other, split) {

9 if(other.r2_ == 0) { //other only has a node

10 r1_ = other.r1_->child[1];

11 r2_ = other.r1_->child[2];

12 parent_ = other.r1_;

13 other.r1_ = other.r1_->child[0];

14 } else { //other has two nodes

15 parent_ = 0;

16 r1_ = other.r2_;

17 r2_ = 0;

18 other.r2_ = 0;

19 }

20 }

21

22 bool empty() const { return r1_ == 0; }

23

24 bool is_divisible() const { return !empty(); }

25 };

Listing 2.2: Reduction on a 3-ary tree using TBB’s parallel reduce (a)

subdividing the ranges and relying on the work-stealing scheduler of the TBB, which

can move tasks from loaded processors to idle ones. Still, the TBB does not provide

a mechanism to specify which ranges should be subdivided with greater priority,

but just a boolean flag that indicates whether a range can be subdivided or not.

Moreover, when automatic partitioning is used, the library may not split a range

even if it is divisible. For these reasons, allowing to subdivide in N subranges at

once improves both the programmability and the potential performance of divide-

and-conquer problems.

The last problem is the difficulty to handle pieces of a problem which are not a

natural part of the representation of its children subproblems, but which are required

2.1 Divide-and-conquer with the TBB 25

1 struct TreeAddReduce {

2 int sum_;

3

4 TreeAddReduce()

5 : sum_(0) { }

6

7 TreeAddReduce(TreeAddReduce& other, split)

8 : sum_(0) { }

9

10 void operator()(TreeAddRange &range) {

11 sum_ += TreeAdd(range.r1_);

12 if(range.r2_ != 0)

13 sum_ += TreeAdd(range.r2_);

14 if (range.parent_ != 0)

15 sum_ += range.parent_->val;

16 }

17

18 void join(TreeAddReduce& rhs) {

19 sum_ += rhs.sum_;

20 }

21 };

22 ...

23 TreeAddReduce tar;

24 parallel_reduce(TreeAddRange(root), tar, auto_partitioner());

25 int r = tar.sum_;

Listing 2.3: Reduction on a 3-ary tree using TBB’s parallel reduce (b)

in the reduction stage. In this code this is reflected by the clumsy treatment of the

inner nodes of the tree, which must be stored in the parent field of the ranges

taking care that none is either lost or stored in several ranges. Additionally, the fact

that some ranges carry an inner node in this field while others do not complicates

the operator() of the body.

2.1.3. Traveling salesman problem

The TBB algorithm templates require the reduction operations to be associative.

This complicates the implementation of the algorithms in which the solution to a

26 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

given problem at any level of decomposition requires merging exactly the solutions

to its children subproblems. An algorithm of this kind is the recursive partitioning

algorithm for the traveling salesman in [72], an implementation of which is the tsp

Olden benchmark [115]. The program first builds a binary space partitioning tree

with a city in each node. Then the solution is built traversing the tree with the

function

1 Tree tsp(Tree t, int sz) {

2 if (t->sz <= sz) return conquer(t);

3 Tree leftval = tsp(t->left, sz);

4 Tree rightval = tsp(t->right, sz);

5 return merge(leftval, rightval, t);

6 }

which follows a divide-and-conquer strategy. The base case, found when the prob-

lem is smaller than a size sz, is solved with the function conquer. Otherwise the

two children can be processed in parallel applying tsp recursively. The solution is

obtained joining their solutions with the merge function, which requires inserting

their parent node t.

This structure fits well the parallel reduce template in many aspects. List-

ings 2.4 and 2.5 show the range and body classes used for the parallelization with

this algorithm template. The range contains a node, and splitting it returns the two

children subtrees. The is divisible method checks whether the subtree is smaller

than sz, when the recursion stops. The operator() of the body applies the original

tsp function on the node taken from the range.

The problems arise when the application of the merge function is considered.

First, a stack must be added to the range for two reasons. One is to identify when

two ranges are children of the same parent and can thus be merged. This is expressed

by function mergeable (Lines 22-25). The other reason is that this parent is actually

required by merge.

Reductions take place in two places. First, a body operator() can be applied to

several consecutive ranges in left to right order, and must reduce their results. This

way, when tsp is applied to the node in the input range (Line 36), the result is stored

again in this range and an attempt to merge it with the results of ranges previously

2.1 Divide-and-conquer with the TBB 27

1 struct TSPRange {

2 static int sz_;

3 stack<Tree> ancestry_;

4 Tree t_;

5

6 TSPRange(Tree t, int sz)

7 : t_(t)

8 { sz_ = sz; }

9

10 TSPRange(TSPRange& other, split)

11 : t_(other.t_->right), ancestry_(other.ancestry_)

12 {

13 ancestry_.push(other.t_);

14 other.ancestry_.push(other.t_);

15 other.t_ = other.t_->left;

16 }

17

18 bool empty() const { return t_ == 0; }

19

20 bool is_divisible() const { return (t_->sz > sz_); }

21

22 bool mergeable(const TSPRange& rhs) const {

23 return !ancestry_.empty() && !rhs.ancestry_.empty() &&

24 (ancestry_.top() == rhs.ancestry_.top());

25 }

26 };

Listing 2.4: Range and body for the Olden tsp parallelization using TBB’s
parallel reduce (a)

processed is done in method mergeTSPRange (Lines 40-47). The body keeps a list

lresults of ranges already processed with their solution. The method repetitively

checks whether the rightmost range in the list can be merged with the input range.

In this case, merge reduces them into the input range, and the range just merged is

removed from the list. In the end, the input range is added at the right end of the

list. Reductions also take place when different bodies are accumulated in a single

one through their join method. Namely, left.join(right) accumulates in the left

body its results with those of the right body received as argument. This can be

achieved applying mergeTSPRange to the ranges in the list of results of the rhs body

28 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

1 struct TSPBody {

2 list<TSPRange> lresults_;

3

4 TSPBody() { }

5

6 TSPBody(TSPBody& other, split) { }

7

8 void operator() (TSPRange& range) {

9 range.t_ = tsp(range.t_, range.sz_);

10 mergeTSPRange(range);

11 }

12

13 void mergeTSPRange(TSPRange& range) {

14 while (!lresults_.empty() && lresults_.back().mergeable(range)) {

15 range.t_ = merge(lresults_.back().t_, range.t_, range.ancestry_.top());

16 range.ancestry_.pop();

17 lresults_.pop_back();

18 }

19 lresults_.push_back(range);

20 }

21

22 void join(TSPBody& rhs) {

23 list<TSPRange>::iterator itend = rhs.lresults_.end();

24 for(list<TSPRange>::iterator it = rhs.lresults_.begin(); it != itend; ++it){

25 mergeTSPRange(*it);

26 }

27 }

28 };

29 ...

30 parallel_reduce(TSPRange(root, sz), TSPBody(), auto_patitioner());

Listing 2.5: Range and body for the Olden tsp parallelization using TBB’s
parallel reduce (b)

from left to right (Lines 49-54).

2.2 An algorithm template for divide-and-conquer problems 29

2.2. An algorithm template for divide-and-conquer

problems

The preceding Section has illustrated the limitations of TBBs to express divide-

and-conquer problems. Not surprisingly, the restriction to binary subdivisions or

the lack of associativity impact negatively on programmability. But even problems

that seem to fit well the TBB paradigm such as the recursive computation of the

Fibonacci numbers have a large parallelization overhead, as several kinds of con-

structors are required, reductions can take place in several places, bodies must keep

a state to perform those reductions, etc.

The components of a divide-and-conquer algorithm are the identification of the

base case, its resolution, the partition in subproblems of a non-base problem, and

the combination of the results of the subproblems. Thus we should try to enable to

express these problems using just one method for each one of these components. In

order to increase the flexibility, the partition of a non-base problem could be split

in two subtasks: calculating the number of children, so that it need not be fixed,

and building these children. These tasks could be performed in a method with two

outputs, but we feel it is cleaner to use two separate methods for them.

The subtasks identified in the implementation of a divide-and-conquer algorithm

can be grouped in two sets, giving place to two classes. The decision on whether

a problem is the base case, the calculation of the number of subproblems of non-

base problems, and the splitting of a problem depend only on the input problem.

They conform thus an object with a role similar to the range in the TBB algorithm

templates. We will call this object the info object because it provides information on

the problem. Contrary to the TBB ranges, we choose not to encapsulate the problem

data inside the info object. This reduces the programmer burden by avoiding the

need to write a constructor for this object for most problems.

The processing of the base case and the combination of the solutions of the

subproblems of a given problem are responsibility of a second object analogous to

the body of the TBB algorithm templates, thus we will call it also body. Many

divide-and-conquer algorithms process an input problem of type T to get a solution

of type S, so the body must support the data types for both concepts, although of

30 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

1 template<typename T, int N>

2 struct Info : Arity<N> {

3 bool is_base(const T& t) const; //is t the base case of the recursion?

4 int num_children(const T& t) const; //number of subproblems of t

5 T child(int i, const T& t) const; //get i-th subproblem of t

6 };

7

8 template<typename T, typename S>

9 struct Body : EmptyBody<T, S> {

10 void pre(T& t); //preprocessing of t before partition

11 S base(T& t); //solve base case

12 S post(T& t, S *r); //combine children solutions

13 };

Listing 2.6: Templates that provide the pseudo-signatures for the info and body
objects used by parallel recursion

course S and T could be the same. We have found that in some cases it is useful

to perform some processing on the input before checking its divisibility and the

corresponding base case computation or recursion. Thus the body of our algorithm

template requires a method pre, which can be empty, which is applied to the input

problem before any check on it is performed. As for the method that combines the

solutions of the subproblems, which we will call post, its inputs will be an object

of type T, defining the problem at a point of the recursion, and a pointer to a

vector with the solutions to its subproblems, so that a variable number of children

subproblems is easily supported. The reason for requiring the input problem is that,

as we have seen in Sections 2.1.2 and 2.1.3, in many cases it has data which are not

found in any of its children and which are required to compute the solution.

Listing 2.6 shows templates that describe the info and body objects required

by the algorithm template we propose. The info class must be derived from class

Arity < N >, where N is either the number of children of each non base subproblem,

when this value is a constant, or the identifier UNKNOWN if there is not a fixed num-

ber of subproblems in the partitions. This class provides a method num children

if N is a constant. As for the body, it can be optionally derived from the class

EmptyBody < T, S >, which provides shell (empty) methods for all the methods a

body requires. Thus inheriting from it can avoid writing unneeded methods.

2.2 An algorithm template for divide-and-conquer problems 31

1 template<typename T, typename S, typename I, typename B, typename P>

2 S parallel_recursion(T& t, I& i, B& b, P& p) {

3 b.pre(t);

4 if(i.is_base(t)) return b.base(t);

5 else {

6 const int n = i.num_children(t);

7 S result[n];

8 if(p.do_parallel(i, t))

9 parallel_for(int j = 0; j < n ; j++)

10 result[j] = parallel_recursion(i.child(j, t), i, b, p)

11 else

12 for(int j = 0; j < n ; j++)

13 result[j] = parallel_recursion(i.child(j, t), i, b, p);

14 }

15 return b.post(t, result);

16 }

17 }

Listing 2.7: Pseudocode of the parallel recursion algorithm template

Listing 2.7 shows the pseudocode for the operation of the algorithm template

we propose, which is called parallel recursion for similarity with the names of

the standard TBB algorithm templates. Its arguments are the representation of the

input problem, the info object, the body object, and optionally a partitioner that

defines the policy to spawn parallel subtasks. The figure illustrates the usage of

all the methods in the info and body classes, I and B in the figure, respectively.

Contrary to the TBB algorithm templates, ours returns a value which has type S,

the type of the solution. A specialization of the template allows a return type void.

From the pseudocode we see that Info :: is base is not the exact opposite of

the is divisible method of the TBB ranges. TBB uses is divisible to express

divisibility of the range, but also whether it is more efficient to split the range and

process the subranges in parallel than to process the range sequentially. Even if the

user writes is divisible to return true for all non base cases, the library can ignore

it and stop partitioning even if it indicates divisibility if the auto partitioner is

used. For these reasons, the operator() of a standard body should be able to

process both base and non base instances of the range. This makes it different from

the Body :: base method in Listing 2.6, which processes the problem if and only if

32 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

Info :: is base is true, as line 4 in Listing 2.7 shows.

The decision on whether the processing of the children subproblems is made se-

quentially or in parallel is up to the partitioner in parallel recursion (lines 8-14 in

Listing 2.7). The behavior of the partitioners is as follows. The simple partitioner

generates a parallel subtask for each child generated in every level of the recursion,

very much as it does in the standard TBB templates. This is the default partitioner.

The auto partitioner works slightly different from the standard templates. In

them this partitioner can stop splitting the range, even if is divisible is true, in

order to balance optimally the load. In parallel recursion this partitioner also

seeks to balance load automatically. Nevertheless, it does not stop the recursion in

the subdivision of the problem, but just the parallelization in the processing of the

subtasks. This way the problem is split always that Info :: is base is false. Finally,

we provide a new partitioner called custom partitioner which takes its decision

on parallelization based on an optional Info :: do parallel(const T& t) method

supplied by the user. If this method returns true, the children of t are processed

in parallel, otherwise they are processed sequentially.

Let us now review the implementation of the examples discussed in Section 2.1

using this proposal.

2.2.1. Examples of usage

Listing 2.8 shows the code to compute the n-th Fibonacci number using our

parallel recursion skeleton. Compared to the 26 SLOC of the implementation

based on parallel reduce in Listing 2.1, this implementation only has 9. This code

has the virtue that it not only parallelizes the computation, it even makes unneces-

sary the original sequential fib function thanks to the power of parallel recursion

to fully express problems that are solved recursively.

The addition of the values in the nodes of a 3-ary tree, which required 41 SLOC

in Listings 2.2 and 2.3, is expressed using 9 SLOC with parallel recursion in

Listing 2.9. In fact, the version in Listing 2.2 is a bit longer because it uses the

sequential function TreeAdd, not shown, to perform the reduction of a subtree in

the operator() of the body. This function is not needed by the implementation

2.2 An algorithm template for divide-and-conquer problems 33

1 struct FibInfo : public Arity<2> {

2 bool is_base(const int i) const { return i <= 1; }

3

4 int child(const int i, const int c) const { return c - i - 1; }

5 };

6

7 struct Fib: public EmptyBody<int, int> {

8 int base(int i) { return i; }

9

10 int post(int i, int * r) { return r[0] + r[1]; }

11 };

12 ...

13 int result = parallel_recursion<int> (n, FibInfo(), Fib(), auto_partitioner());

Listing 2.8: Computation of the n-th Fibonacci number using parallel recursion

1 struct TreeAddInfo : public Arity<3> {

2 bool is_base(const tree_t *t) const { return t == 0; }

3

4 tree_t *child(int i, const tree_t *t) const { return t->child[i]; }

5 };

6

7 struct TreeAddBody : public EmptyBody<tree_t *, int> {

8 int base(tree_t * t) { return 0; }

9

10 int post(tree_t * t, int *r) { return r[0] + r[1] + r[2] + t->val; }

11 };

12 ...

13 int r = parallel_recursion<int>(root, TreeAddInfo(), TreeAddBody(),

14 auto_partitioner());

Listing 2.9: Reduction on a 3-ary tree using parallel recursion

based on parallel recursion, which can perform the reduction just using the

template.

Our last example, the traveling salesman problem implemented in the tsp Olden

benchmark, is parallelized with parallel recursion in Listing 2.10. The facts that

the post method that combines the solutions obtained in each level of the recursion

34 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

1 struct TSPInfo: public Arity<2> {

2 static int sz_;

3

4 TSPInfo(int sz)

5 { sz_ = sz; }

6

7 bool is_base(const Tree t) const { return (t->sz <= sz_); }

8

9 Tree child(int i, const Tree t) const { return (i == 0) ? t->left : t->right;}

10 };

11

12 struct TSPBody : public EmptyBody<Tree, Tree> {

13 Tree base(Tree t) { return conquer(t); }

14

15 Tree post(Tree t, Tree * results) { return merge(results[0], results[1], t); }

16 };

17 ...

18 parallel_recursion<Tree>(root, TSPInfo(sz), TSPBody(), auto_patitioner());

Listing 2.10: Olden tsp parallelization using parallel recursion

is guaranteed to be applied to the solutions of the children subproblems generated by

a given problem and that this parent problem is also an input to the method simplify

extraordinarily the implementation. Concretely, the code goes from 45 SLOC using

parallel reduce in Listing 2.4 to 12 using parallel recursion.

2.3. Evaluation

We now compare the implementation of several divide-and-conquer algorithms

using parallel recursion, the TBB algorithm templates and OpenMP both in

terms of programmability and performance. OpenMP is not directly comparable

to the skeleton libraries, as it relies on compiler support. It has been included in

this study as a baseline that approaches the minimum overhead in the paralleliza-

tion of applications for multicores, since the insertion of compiler directives in a

program usually requires less restructuring than the definition of the classes that

object-oriented skeletons use. This way the comparison of standard TBB and the

2.3 Evaluation 35

Table 2.1: Benchmarks used

Name Description Arity Assoc SLOC Effort V

fib recursive computation of 43rd Fibonacci number 2 Yes 37 31707 5
merge merge two sorted sequences of 100 million integers each 2 - 62 143004 6
qsort quicksort of 10 million integers 2 - 71 119908 11
nqueens N Queens solution count in 14× 14 board var Yes 82 192727 17
treeadd add values in binary tree with 24 levels 2 Yes 92 179387 9
bisort sort balanced binary tree with 22 levels 2 No 227 822032 20
health 2000 simulation steps in 4-ary tree with 6 levels 4 No 346 1945582 34
tsp traveling salesman problem on binary tree with 23 levels 2 No 370 2065129 40

parallel recursion skeletons with respect to the OpenMP version helps measure

the relative effort of parallelization that both kinds of skeletons imply.

The algorithms used in this evaluation are the computation of the n-th Fibonacci

number from Section 2.1.1 (fib), the merge of two sorted sequences of integers into

a single sorted sequence (merge), the sorting of a vector of integers by quicksort

(qsort), the computation of the number of solutions to the N Queens problem

(nqueens) and four tree-based Olden benchmarks [115]. The first one is treeadd,

which adds values in the nodes of a binary tree. It is similar to the example in Sec-

tion 2.1.2, but since the tree is binary, it is much easier to implement using TBB’s

parallel reduce. The sorting of a balanced binary tree (bisort), a simulation of a

hierarchical health system (health), and the traveling salesman problem (tsp) from

Section 2.1.3 complete the list.

Table 2.1 provides the problem sizes, the number of subproblems in which each

problem can be divided (arity) and whether the combination of the results of the

subproblems is associative or not, or even not needed. It also shows the value of

the metrics that will be used in Section 2.3.1 to evaluate the programmability for

a baseline version parallelized with OpenMP. All the algorithms but nqueens and

health are naturally expressed splitting each problem in two, which fits the TBB

algorithm templates. Nqueens tries all the locations of queens in the i-th row of

the board that do not conflict with the queens already placed in the top i− 1 rows.

Each possible location gives place to a child problem which proceeds to examine

the placements in the next row. This way the number of children problems at

each step varies from 0 to the board size. Health operates on a 4 -ary tree, thus

four is its natural number of subproblems. The subnodes of each node are stored

36 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

in a vector. This benefits the TBB algorithm templates, as this enables using as

range a blocked range, which is a built-in TBB class that defines a one-dimensional

iteration space, ideal to parallelize operations on vectors.

2.3.1. Programmability

The impact of the use of an approach on the ease of programming is not easy to

measure. In this section three quantitative metrics are used for this purpose: the

SLOC (source lines of code excluding comments and empty lines), the programming

effort [63], and the cyclomatic number [91], which have been defined in Section 2.3.1.

Figure 2.1 shows the SLOC, programming effort and cyclomatic number in-

crease over an OpenMP baseline version for each code when using a suitable TBB

algorithm template (TBB) or parallel recursion (pr). The statistics were col-

lected automatically on each whole application globally. Had we tried to isolate

manually the portions specifically related to the parallelization, the advantage of

parallel recursion over TBB would have often grown to the levels seen in the

examples discussed in the preceding sections. We did not do this because some-

times it may not be clear whether some portions of code must be counted as part

of the parallelization effort or not, so we measured the whole program as a neutral

approach.

fib merge qsort nqueens treeadd bisort health tsp

−20

0

20

40

60

80

100

120

140

%
 i
n

c
re

a
s
e

 o
v
e

r
O

p
e

n
M

P

SLOC TBB
SLOC pr
eff TBB
eff pr
cn TBB
cn pr

Figure 2.1: Productivity statistics with respect to the OpenMP baseline version of
TBB based (TBB) and parallel recursion based (pr) implementations. SLOC
stands for source lines of code, eff for the programming effort and cn for the cyclo-
matic number.

2.3 Evaluation 37

The mostly positive values indicate that, as expected, OpenMP has the smallest

programming overhead, at least when counted with SLOCs or programming effort.

Nevertheless, parallel recursion is the global winner for the cyclomatic number.

The reason is that many of the conditionals and loops (they involve conditions to

detect their termination) found in divide-and-conquer algorithms are subsumed in

the parallel recursion skeleton, while the other approaches leave them exposed in

the programmer code more often. parallel recursion requires fewer SLOC, effort

and conditionals than the TBB algorithm templates in all the codes but merge and

qsort. According to the programming effort indicator, programs parallelized with

the TBB templates require 64.6% more effort than OpenMP, while those based on

parallel recursion require on average 33.3% more effort than OpenMP. This is a

reduction of nearly 50% in relative terms. Interestingly, the situation is the opposite

for merge and qsort, in which the average effort overhead over the OpenMP version is

13.4% for the codes that use parallel for and 30.1% for the parallel recursion

codes. These are the only benchmarks in which there is no need to combine the

result of the solution of the problems: they only require the division in subproblems

that can be solved in parallel. They are also the two benchmarks purely based on

arrays, where the concept of Range around which the TBB algorithm templates are

designed fits better. Thus when these conditions hold, we may prefer to try the

standard TBB skeletons.

2.3.2. Performance

The performance of these approaches is compared now using the Intel icpc com-

piler V 11.0 with optimization level O3 in two platforms. One is a server with 4

Intel Xeon hexa-core 2.40GHz E7450 CPUs, whose results are labeled with X. The

other is an HP Integrity rx7640 server with 8 dual-core 1.6 GHz Itanium Montvale

processors, whose results are labeled with I. Figures 2.2 to 2.9 show the performance

of the three implementations of the benchmarks on both systems. Automatic par-

titioning is used in the standard TBB and parallel recursion based codes. Fib

and nqueens use little memory and thus scale well in both systems. The scaling of

the other benchmarks is affected by the lack of memory bandwidth as the number of

cores increases, particularly in our Xeon-based system, whose memory bandwidth

is up to 5 times smaller than that of the rx7640 server when 16 cores are used. This

38 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

0 1 2 3 4
0

1

2

3

4

5

6

7

8

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.2: Performance of fib

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Number of processors (log2)
R

u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.3: Performance of merge

0 1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.4: Performance of quicksort

0 1 2 3 4
0

2

4

6

8

10

12

14

Number of processors (log2)

R
u

n
n

in
g

 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.5: Performance of nqueens

results in small to null performance improvements when we go from 8 to 16 cores in

this system. Benchmark health is also affected by very frequent memory allocations

with malloc that become a source of contention due to the associated lock.

Since parallel recursion is built on top of the TBB one could expect its codes

to be slower than those based on parallel for or parallel reduce. This is not the

case because our template is built directly on the low level task API provided by the

TBB. Also, it follows different policies to decide to spawn tasks and has different

synchronization and data structure support requirements as we have seen. This

makes it possible for parallel recursion to be competitive with the native TBB

version, and even win systematically in benchmarks like fib. In other benchmarks

like merge in the Xeon or quicksort in the Itanium parallel recursion is non

2.3 Evaluation 39

0 1 2 3 4
0

20

40

60

80

100

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.6: Performance of treeadd

0 1 2 3 4
0

1

2

3

4

5

6

7

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.7: Performance of bisort

0 1 2 3 4
0

20

40

60

80

100

120

140

160

Number of processors (log2)

R
u
n
n
in

g
 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.8: Performance of health

0 1 2 3 4
0

5

10

15

20

25

30

35

Number of processors (log2)

R
u

n
n

in
g

 t
im

e
 (

s
)

X OpenMP
X TBB
X parallel_recursion
I OpenMP
I TBB
I parallel_recursion

Figure 2.9: Performance of tsp

negligibly slower than the standard TBB when few cores are used, but the difference

vanishes as the number of cores increases. The slowdowns of parallel recursion

in these two codes are due to operations repeated in each invocation to child to

generate a subproblem. Generating at once a vector with all the children tasks could

avoid this. Evaluating this option is part of our future work. The behavior of tsp

in the Itanium is due to the compiler, as with g++ 4.1.2 with the same flags the

performance of all the implementations is very similar. Over all the benchmarks and

numbers of cores, on average parallel recursion is 0.3% and 19.7% faster than

the TBB algorithm templates in the Xeon and in the Itanium, respectively. If tsp is

ignored in the Itanium due to its strange behavior, parallel recursion advantage

is still 9% in this platform. Its speedups over OpenMP are 2.5% and 30.5% in the

Xeon and the Itanium, respectively; 21.4% in the latter without tsp.

40 Chapter 2. Parallel skeleton for divide-and-conquer algorithms

We also experimented with the partitioners that allow to control manually the

subdivision of tasks in the runs with 16 cores. With the best parameters we found,

standard TBB based codes were on average 6.5% faster than the parallel recursion

based ones in the Xeon, while parallel recursion continued to lead the perfor-

mance in the Itanium platform by 8%, or 2.4% if tsp is not counted.

2.4. Related work

While TBB is probably the most widespread library of skeletal operations nowa-

days, it is not the only one. The eSkel library [34] offers parallel skeletal operations

for C on top of MPI. Its API is somewhat low-level, with many MPI-specific imple-

mentation details. Since C is not object oriented, it cannot exploit the advantages

of objects for encapsulation, polymorphism, and generic programming where avail-

able, as is the case of C++. A step in this direction was Muesli [30], which is also

oriented to distributed memory, being centered around distributed containers and

skeleton classes that define process topologies. Muesli relies on runtime polymor-

phic calls, which generate potentially large overheads. This way [75] reports 20%

to 100% overheads for simple applications. Lithium [6] is a Java library oriented to

distributed memory that exploits a macro data flow implementation schema instead

of the more usual implementation templates, but it also relies extensively on run-

time polymorphism. Quaff [46] avoids this following the same approach as the TBB

and our proposal, namely relying on C++ template metaprogramming to resolve

polymorphism at compile time. Quaff’s most distinctive feature is that it leads the

programmer to encode the task graph of the application by means of type definitions

which are processed at compile time to produce optimized message-passing code. As

a result, while it allows skeleton nesting, this nesting must be statically defined, just

as type definitions must be. Thus tasks cannot be generated dynamically at ar-

bitrary levels of recursion and problem subdivision as the TBBs do. This is quite

sensible, since Quaff works on top of MPI, being mostly oriented to distributed mem-

ory systems. For this reason its scm (split-compute-merge) skeleton, which is the

most appropriate one to express divide-and-conquer algorithms, differs substantially

from the TBB standard algorithm templates and parallel recursion.

2.5 Conclusions 41

2.5. Conclusions

We have reviewed the limitations of the skeletal operations of the TBB library

to express the divide-and-conquer pattern of parallelism. This analysis has led us

to design a new algorithm template that overcomes these problems. We have also

implemented it on top of the task API of the TBB so that it is compatible with all

the TBB library and it benefits from the load balancing of the TBB scheduler. Our

implementation uses template metaprogramming very much as the standard TBB

in order to provide efficient polymorphism resolved at compile time.

The examples we examined and an evaluation using several productivity mea-

sures indicate that our algorithm template can often improve substantially the pro-

grammer productivity when expressing divide-and-conquer parallel problems. As

for performance, our proposal is on average somewhat faster than the TBB tem-

plates when automatic partitioning is used. There is not a clear winner when the

granularity of the parallel tasks is adjusted manually.

Chapter 3

Parallel skeleton for domain-based

irregular algorithms

In this chapter we turn our attention to algorithms that genuinely fit the amor-

phous data-parallel paradigm [76]. Our proposal to simplify their parallelization,

whose complexity has been discussed in Section 1.2, consists in a parallel skeleton

based on the abstraction of a domain defined in terms of some property of the prob-

lem elements. This domain is used both to partition the computation, by assigning

the elements of different subdomains to different parallel tasks, and to avoid con-

flicts between these tasks, by checking whether the accessed elements are owned by

the subdomain assigned to the task. Our proposal applies a recursive scheduling

strategy that avoids locking the partitions generated, instead delaying work that

might span partitions until later in the computation. Among other benefits, this

approach promotes the locality in the parallel tasks, avoids the usage of locks, and

thus the contention and busy waiting situations often related to them, and provides

guarantees on the maximal number of abortions due to conflicts between parallel

tasks during the execution of an irregular algorithm. Following the description of this

strategy and its requirements, an implementation as a C++ library is also described

and evaluated. The flexibility of our proposal will also allow to show how easy it

is to modify relevant implementation decisions such as the the domain partitioning

algorithm or the data structures used and measure their impact on performance.

43

44 Chapter 3. Parallel skeleton for domain-based irregular algorithms

3.1. Domain-Based Parallel Irregular Algorithms

Many algorithms that operate on irregular data structures have a workflow based

on the processing of a series of elements belonging to the irregular structure, called

workitems. The elements that need some processing done on them are stored in a

generic worklist, which is updated as the algorithm runs when new workitems are

found. The pseudocode in Listing 3.1 shows the general workflow of these algorithms.

Line 1 fills the initial worklist with elements of the irregular structure. Any irregular

structure could fit our generic description of the pseudocode and our subsequent

discussion. In what follows we will use the term graph, as it is a very generic

irregular data structure and many others can be represented as graphs too. Some

algorithms start with just one root element, while others have an initial subset of the

elements or even the full graph. The loop in Lines 2 to 6 processes each element of

this worklist. Line 3 represents the main body of the algorithm being implemented.

If this processing results in new work being needed, as checked in Line 4, it is added

to the worklist in Line 5. This is repeated until the worklist is empty.

Some characteristics can be identified in these kinds of algorithms. An important

one is whether the workitems must be processed in some specific order. A study

in [66] on the characteristics and behavior of the ordered and non-ordered versions of

a series of algorithms shows that the unordered versions present more parallelism and

behave better in terms of scalability due to the complexity inherent to the efficient

implementation of the ordering. Following its recommendation to use unordered

algorithms when possible, these algorithms are the scope of our work.

The workflow of unordered algorithms can be parallelized by means of having

different threads operating on different elements of the worklist, provided that no

1 Worklist wl = get_initial_elements_from(graph);

2 foreach(element e in wl) {

3 new_work = do_something(e);

4 if(new_work != null)

5 wl.push(new_work);

6 }

Listing 3.1: Common pseudocode for an algorithm that uses irregular data structures

3.1 Domain-Based Parallel Irregular Algorithms 45

conflicts appear during the simultaneous processing of any two workitems. If the

algorithm requires the workitems to be processed in some specific order, for example

the one in which they are stored in the worklist, special measures should be taken,

which are not covered in this work.

The workitems found in irregular algorithms usually have properties (in the

following, property refers to a data item, such as for example a data member in a

class) defined on domains, such as names, coordinates or colors. Therefore a sensible

way to partition the work in an irregular algorithm is to choose a property of this

kind defined on the workitems, and classify them according to it. Specifically, the

domain of the property would be divided in subdomains and a parallel task would

be launched to process the workitems of each subdomain. In principle any property

would do, but in practice a few characteristics are required in order to attain good

performance. If no intrinsic property of the problem meets them, an additional

property satisfying them should be defined in the workitems for the sake of a good

parallelization following this scheme.

The first characteristic is that the domain of the property should be divisible in

at least as many subdomains as hardware threads are available in the system, the

subdomains being as balanced as possible in terms of workitems associated. In fact,

it would be desirable to generate more subdomains than threads in order to provide

load balancing by assigning new subdomain tasks to threads as they finish their

previous task. Second, if the processing of a workitem generates new workitems, it

is desirable that the generated workitems belong to the same subdomain as their

parent. We call this characteristic, which depends also on the nature of the operation

to apply on the workitems, affinity of children to parents. If this were not the case,

either the rule of ownership of the workitems by tasks depending of the subdomain

they belong to would be broken, or intertask communication would be required

to reassign these workitems to the task that owns their subdomain. Third and

last, there is the proximity characteristic, that is, that the larger the similarity in

the values of the chosen property, the shorter the distance between the associated

workitems in the graph.

Very often the processing of a workitem requires accessing part of its neighbor-

hood in the graph. If some element(s) in this neighborhood belong to other tasks

the processing is endangered by potential parallel modifications by other threads.

46 Chapter 3. Parallel skeleton for domain-based irregular algorithms

Nevertheless, if all the elements required belong to the subdomain of the workitem

that started the processing, everything is owned by the task for that subdomain and

the processing can proceed successfully. This way, if the rule of ownership is fulfilled,

i.e, all the elements of the graph that belong to a certain subdomain are owned by

the same task, subdomains can be used not only to partition work, but also to iden-

tify potential conflicts. The process will be besides efficient if the property chosen

to define the work domains implies proximity for the elements that belong to the

same subdomain. For this reason, in algorithms where the processing of a workitem

requires accessing its neighborhood, the characteristics of the affinity of children to

parents and proximity are very desirable.

3.2. A parallelization scheme based on domains

The data partitioning coupled with data-centric work assignment we have just

presented to improve the parallel execution of irregular algorithms is a basic idea

that can be put into practice in very different ways. We propose here a scheme based

on the recursive subdivision of a domain defined on the elements of the irregular

data structure, so that the workitems of each subdomain are processed in parallel,

and the potential conflicts among them are exclusively detected and handled using

the concept of membership of the subdomain. Locality of reference in the parallel

tasks is naturally provided by the fact that most updates in irregular applications

are usually restricted to small regions of the shared heap [76][85]. Our scheme fur-

ther reinforces locality if the domain used in the partitioning fulfills the proximity

characteristic, so that the elements associated to a subdomain, and therefore a task,

are nearby. The processing of the workitems begins in the lowest level of subdi-

vision, where there is the maximum number of subdomains, and therefore parallel

tasks. The workitems that cannot be processed within a given subdomain, typi-

cally because they require manipulations of items associated to other subdomains,

are later reconsidered for processing at higher levels of decomposition using larger

subdomains. We now explain in detail our parallelization method, illustrated in

Figure 3.1. This figure shows a mesh of triangles, which can be stored in a graph

where each node is a triangle and the edges connect triangles which are next to each

other in the mesh. The big dots represent the possible limits of the subdomains. In

3.2 A parallelization scheme based on domains 47

this case, the domain chosen is defined on the coordinates of the triangles.

3.2.1. Recursive subdivision

An algorithm starts with an initial worklist, containing nodes from the whole

graph domain, as shown in the initial step in Figure 3.1. Before doing any processing,

the domain can be recursively subdivided until it reaches an adequate level, that

is, until there are enough subdomains to get a good balance between potential

parallelism and hardware resources in the system, namely processing cores. The

domain decomposition algorithm chosen can have a large impact on the performance

achieved. The reason is that the size of the different parallel tasks generated, which

is critical for the load balancing, and the shape of the subdomains they operate on,

which influences the number of potential conflicts during the parallel processing,

largely depend on it. Over-decomposition, i.e., generating more subdomains than

cores, can be applied with the aim of implementing load balancing between the cores

by means of work-stealing by idle cores. The subdivision of the domain implicitly

partitions both the graph and the worklist. This logical partitioning can optionally

give place to a physical partitioning. That is, the graph and/or the worklist can be

partitioned in (mostly) separate data structures so that each one corresponds to the

items belonging to a given subdomain and can be manipulated by the associated task

with less contention and improved locality. We talk about mostly separate structures

because for structures such as the graph, tasks should be able to access portions

assigned to other tasks. It is up to the implementation strategy to decide which kind

of partitioning to apply to each data structure. In our abstract representation, for

simplicity, we show 2 subdivisions to get 4 different subdomains, in Steps 1 and 2.

Then, in Step 3, a parallel task per subdomain is launched, whose local worklist

contains the elements of the global worklist that fall in its subdomain. During the

processing of each workitem two special events can happen: an access to an element

outside the local subdomain, and the generation of new workitems to process. We

describe the approach proposed for these two situations in turn.

48 Chapter 3. Parallel skeleton for domain-based irregular algorithms

Start parallel processing

Split

Split

Join

Initial

Step 1

Step 2

Step 3

Step 4

Step 5

Join

Figure 3.1: Structure of the domain-based parallelization of irregular algorithms

3.2 A parallelization scheme based on domains 49

3.2.2. Conflict detection

In some algorithms the processing of a workitem only requires access to the data

specifically associated to the workitem. Nevertheless, in many other algorithms, for

example in all those that modify the graph, the processing associated to a workitem

requires accessing —either reading or even modifying— a given set of edges and

nodes around it, which is called the neighborhood. The neighborhood is often found

dynamically during the processing and its extent and shape can vary for different

workitems. This way we have to deal with the possibility that the neighborhood

required for the processing of a workitem reaches outside the subdomain of the

associated task. Accessing an element outside the local the subdomain owned by

the current task is a risk, since it could be in an inconsistent state or about to

be modified by another task. Therefore we propose that whenever a new element

in the neighborhood of a workitem is accessed for the first time, its ownership by

the local domain is checked. If the element belongs to the domain, the processing

proceeds. Otherwise there is a potential conflict and the way to proceed depends on

the state of our processing. Following the terminology in [92], an operation is said

to be cautious if it reads all the elements of its neighborhood before it modifies any

of them. Therefore, if the processing fulfills this property, all it needs to do when it

finds an element owned by another task is to leave, as no state of the problem will

have been modified before. If the operation is not cautious, rollback mechanisms

would have to be implemented to undo the modifications performed.

When a task fails to complete the processing of a workitem because part of its

neighborhood falls outside its domain, it puts the workitem in a pending list to

be processed later, which is different from the local worklist of workitems to be

processed. The processing of this pending list will be discussed in Section 3.2.4.

Notice that the more neighbors a node has, the higher the chances all its neigh-

borhood does not fit in a single subdomain. For this reason nodes with a large num-

ber of neighbors will tend to generate more conflicts, and thus lower performance,

depending on the domain and decomposition chosen. The programmer could avoid

this problem by choosing a domain with a subdivision algorithm that fits this kind

of graphs for the specific problem she is dealing with. For example the domain and

splitting algorithm could be designed such that nodes with many neighbors always,

50 Chapter 3. Parallel skeleton for domain-based irregular algorithms

or at least often, fit in the same subdomain with their neighbors.

3.2.3. Generation of new workitems

When the processing of a workitem generates new workitems, they are simply

added to the local worklist, assuming the property used for the definition of the

domains fulfills the characteristic of affinity of children to parent discussed above. If

the property does not guarantee this affinity, the newly generated workitems can be

still added to the local worklist, but then the ownership by the current subdomain

of each workitem must be checked as it is retrieved from the local worklist. This

can be made automatically by the algorithm template, or it can be left as a respon-

sibility for the operation provided by the user to process the workitems. In either

case, generated workitems not belonging to the local domain will be detected and

their processing delayed to later stages, exactly like workitems whose neighborhood

extends outside the subdomain owned by the task.

There is another option for the processing of non local workitems that can be

very interesting: pushing them in the worklists associated to their domains, so their

processing starts as soon as possible. This alternative is particularly suitable and

easy to apply if it is the algorithm template who is left in charge of checking the

ownership of the newly generated workitems and acting accordingly. This behav-

ior would allow to parallelize following our proposal algorithms that start with a

few workitems —even a single one— and expand their working set from there. A

representative example of this kind of algorithms are graph searches.

3.2.4. Domain merging

When there are no more elements left in the local worklist of a subdomain task,

the task finishes and the processing can proceed to the immediately higher level of

domain subdivision, as shown in Step 4 in Figure 3.1. The internal implementation

of the change of level of processing can be synchronous or not. In the first case, the

implementation will wait for all the tasks for the subdomains of a given level to finish

before building and launching the tasks for all the domains in the immediately upper

level. In an asynchronous implementation, whenever the two children subdomains

3.2 A parallelization scheme based on domains 51

of a parent domain finish their processing, a task is built and sent for execution

for the parent domain. In either case, each two children domains of a given parent

subdomain are rejoined, forming that parent domain, and the pending lists generated

in the children subdomains are also joined forming the worklist of the task for the

parent domain. An efficient implementation of this scheme should perform the

aforementioned merging, and also schedule for execution the task associated to the

parent domain, in one of the cores involved in the execution of the children tasks,

the purpose being maximizing the exploitation of locality. When it runs, the task

associated to the parent domain tries to process the workitems whose processing

failed in the children domains for the reasons explained above. The task will succeed

in the processing of those workitems whose neighborhood did not fit in any of the

children subdomains, but which fits in the parent domain. Typically the processing

of some workitems will fail again because the neighborhood for their processing falls

also outside this domain. These workitems will populate the pending list of the

task. This process takes place one level at a time as the processing returns from the

recursive subdivision of the initial domain. This way, the tasks for all the joined

regions —except the topmost one— are processed in parallel. This is repeated until

the original whole domain is reached, and the remaining elements are processed,

which is depicted as the final Step 5 in Figure 3.1.

3.2.5. Discussion

As we have seen, the proposed scheme avoids the need of locks not just on the

elements of the graph, but even on the subdomains and implied partitions generated,

therefore avoiding the busy waiting and contention problems usually associated to

this synchronization mechanism. Also, its strategy to deal with conflicts provides an

upper bound for the number of attempts to process workitems whose neighborhood

extends outside the partition assigned to their tasks. Those workitems are considered

at most once per level of subdivision of the original domain, rather than being

repetitively reexamined until their processing succeeds. Both characteristics are

very desirable, particularly as the number of cores, and therefore parallel tasks and

potential conflicts, increases. This strategy has though the drawback of eventually

serializing the processing of the last elements. But because of the rejoining process

aforementioned, which tries to parallelize as much as possible the processing of

52 Chapter 3. Parallel skeleton for domain-based irregular algorithms

the workitems whose processing failed in the bottom level of subdivision of the

domain, the vast majority of the work is performed in parallel. In fact, as we will

see in Section 3.5, in our tests we observed that only a very small percentage of

the workitems present conflicts that prevent their parallel processing. This also

confirms that optimistic parallelization approaches like ours are very suitable for

irregular applications [79][78].

3.3. The library

We have developed a library that supports our domain-based strategy to par-

allelize irregular applications in shared- memory systems. It provides a series of

templates that cover the basic requirements to implement a wide range of irregular

algorithms. First there is a graph template class, which can be used to store the

data for the algorithm. Next, a container for supporting the worklists is included,

which is defined closely integrated with the graph class. Common 1-dimensional and

2-dimensional domain classes are provided for convenience. Finally, the central tem-

plate function of the library is parallel domain proc. It gets a graph, a worklist, a

domain, and an operation provided by the user to process a workitem —as a functor,

function pointer or lambda function. The programmers can use the types provided

by the library, derive from them or implement their own from scratch, as long as

they meet certain interface requirements. The following subsections introduce the

elements of the library and these requirements.

3.3.1. Graph

The graph is the structure that typically contains the workitems and the rela-

tions among them. The Graph class provided by our library acts as a container for

Node and Edge objects, which in turn contain the actual data as defined by the

programmers. The library does not enforce the graph to be connected, it can be

made of disjoint clusters. Also, directed and undirected versions of the graph are

provided.

In our current implementation of the library, the Graph is only manipulated by

3.3 The library 53

the function provided by the user to perform the operation on each workitem, so the

interface can be up to the user. As a result, the only requirement for an alternative

user provided graph class is to support the simultaneous addition and deletion of

nodes and edges if the algorithm to implement modifies the structure of the graph.

The Graph class provided fulfills this condition. The reason for this requirement is

that, as we will see, our algorithm template does not partition physically the graph;

therefore all the parallel tasks access the same graph object. Locks to access each

element are not required, though.

3.3.2. Worklist

The straightforward approach would be to use worklists composed of the workitems

to process or pointers to them. Unfortunately, many irregular algorithms destroy

workitems during the processing of other workitems. Searching the worklist for a

potential workitem to remove each time one is destroyed is costly unless the work-

list has some ordering, but then inserting new workitems would be more expensive.

If the destruction were implemented as a logical mark in the workitem indicating

that it no longer must be processed, worklists based on pointers to workitems would

still work. Still, for some algorithms the memory overhead of not deallocating no

longer needed data items is overwhelming for medium to large data problem sizes.

Therefore, an alternative approach is required.

Our graph classes keep two internal containers of pointers to edges and nodes,

respectively, to manage the graph components. When a graph component is deal-

located, the pointer in the respective container is zeroed. The Edge and Node base

classes of our graphs contain a pointer back to the pointer pointing them in the

corresponding container, so that no search is needed to manipulate it when needed.

Pointers to locations in the containers of elements of these graph classes are thus ideal

components for the worklists, as they can be safely dereferenced to learn whether

the element still exists. This way, the Worklist type provided for convenience by

our library, and expected by our algorithm template, is composed of these pointers.

This allows our algorithm template to detect and automatically skip deallocated

workitems and proceed to process the other ones. Let us notice that this design

of the worklist is also useful for the sequential implementations of the irregular

54 Chapter 3. Parallel skeleton for domain-based irregular algorithms

algorithms, which face the same problem.

Additionally, our graph classes provide a helper method add to worklist that

takes as input a worklist and a graph element pointer (either node or edge). This

method adds to the worklist the pointer to the location in the graph container

associated to the element. This way the process is transparent to the user, who

simply knows that workitems must be added using this method, not needing thus

any information on the internals of the classes.

Again, programmers can use any worklist type as long as it fulfills two conditions.

The first one is that a single derefence of its items must provide the pointer to the

actual workitem to process, or a nil pointer if the workitem no longer exists. The

second requirement is to implement the basic interface shown in Listing 3.2 to insert,

read and remove elements in the back of the list, respectively.

3.3.3. Domain

The domain is used to classify each element of the graph and the worklist in

a different group, depending on its data. This allows the parallel domain proc

algorithm template to create several units of work to be run in parallel and avoid

conflicts among tasks.

A class that defines this domain must be provided to our skeleton, with methods

to check whether an element falls inside a domain, to check whether a domain is

1 void push_back(const value_type& v)

2 value_type back()

3 void pop_back()

Listing 3.2: Required interface for the Worklist class

1 bool contains(Element* e)

2 bool is_divisible()

3 void split(Domain& s1, Domain& s2)

Listing 3.3: Required interface for the Domain class

3.3 The library 55

splittable, and to perform this splitting. The interface for this class is shown in

Listing 3.3. We can see that, though the strategy described in this chapter involves

merging children subdomains, no method is required for this. The reason is that

our algorithm template stores the input and intermediate domain objects generated

during the recursive subdivision in order to use them when the processing returns

from the bottom level. Our library includes domain template classes for linear and

bidimensional domains. The template arguments are in both cases the types of the

coordinate to use and the workitem to check. The user will redefine contains in

a derived class in order to specify how to extract the property to check from the

workitem if it does not have the default name assumed by the class template.

3.3.4. Operation

The last element required by our algorithm template is the operation to be done

on each element of the worklist, which is not part of the library, as it must be always

provided by the user. It takes the form

void op(Element ∗ e, Worklist& wl, Domain& s).

These parameters are the current workitem/element of the graph to process, the

local worklist and the current subdomain, which will be provided by our algorithm

template in each invokation. When the domain is subdivided, the initial worklist

is divided in different worklists too, thus each thread has it own local worklist.

The operation can be implemented as a functor object, a function pointer or a

C++11 lambda function. When accessing the neighbors of a node, the operation

is responsible for checking whether these neighbors fall outside the current domain,

usually using the methods of the Domain object. The processing of an element may

create new elements that should be processed. If so, the operation must add them to

the subdomain task local worklist wl. When processing an element requires access to

a neighbor that falls in other subdomain, the operation must throw an exception of

a class provided by our library. This exception, which is captured by our algorithm

template, tells the library to store the current workitem in the pending list, so it

can be processed when the subdomains are joined.

The programmability of operations can be improved by extending the domain

56 Chapter 3. Parallel skeleton for domain-based irregular algorithms

class used with a method that checks whether the input element belongs to the

domain, and throws this exception if this is not case. The domain template classes

provided by our library offer a method called check with this functionality.

3.3.5. parallel domain proc skeleton

The kernel of our library is the algorithm template that implements the paral-

lelization approach described in this chapter, which is

1 void parallel_domain_proc<bool redirect=false>

2 (Graph, Worklist, Domain, Operation)

where the parameters are objects of the classes explained in the previous sections,

or any classes that fulfill the corresponding requirements explained. This function is

in charge of the domain splitting process, task creation and management, splitting

and merging the worklists, getting elements from them to run the operation, and

adding new elements to the pending worklists when out-of-domain exceptions are

thrown. It deserves to be mentioned that this skeleton partitions physically the

worklists, so that each parallel task has its own separate worklist object. Thanks

to the physical partitioning, the worklists need not support simultaneous accesses

from parallel tasks. However, the fact that these containers are extensively read and

modified during the parallel execution makes their design important for performance.

Nonetheless, the partition of the graph is only logical, that is, it is virtually provided

by the existence of multiple subdomains, there being a single unified graph object

accessed by all the tasks. This implies, as we explained in Section 3.3.1, that our

library graphs can be safely read and updated in parallel, as long as no two accesses

affect the same element simultaneously —unless they are all reads.

First, the domain is subdivided recursively, creating several leaf domains. The

subdivision process for a domain stops when either it is not divisible —domains

must provide a method to inform whether they are divisible, as we will soon see—

or parallel domain proc decides there are enough parallel tasks for the hardware

resources avaiable. This is the same approach followed by popular libraries like

Intel Threading Building Blocks [112]. Our initial implementation, evaluated in

Section 3.5, always partitions the input domain until there are at least two subdo-

3.3 The library 57

mains per hardware thread available. The existence of more tasks than threads is

used internally by our implementation to balance the load among the threads, as

they take charge of new tasks as they finish the previous one. The initial workload

is distributed among these subdomains, assigning each workitem to a subdomain

depending on the value of its data. Then a task is scheduled for each subdomain,

which will process the worklist elements belonging to that subdomain and which

will have the control on the portion of the graph that belongs to that domain.

The boolean template parameter redirect controls the behavior of the algorithm

template with respect to the workitems extracted from the local worklist whose

processing fails (due to out-of-domain exceptions). When redirect is false —

which is its default—, they are simply pushed in the tasks’s pending list. When it

is true, the behavior depends on the state of the task associated to the workitem

subdomain at the bottom level of subdivision. If this task or a parent of it is already

running, the workitem is stored in the pending list of the task that generated it, so

there is not redirection. Otherwise, it is stored in the local worklist of the task that

owns its subdomain, and if this task were not scheduled for execution, it is enqueued

in the list of tasks waiting to be run. To facilitate the redirection of workitems, this

configuration of the algorithm template does not schedule for execution tasks whose

worklists are empty. Also, non-bottom tasks are run when either their two children

finished — as usual— or when there are no lower level tasks running or waiting to

run, as the tasks for some subdomains could never run. Notice that this boolean flag

is a performance hint, as all the workitems will be correctly processed no matter

which is its value. Redirection will mostly benefit algorithms in which the items

in the initial worklist belong to a limited number of bottom level subdomains, and

where the processing will gradually evolve to affect more graph subdomains.

The skeleton populates the worklist of the tasks associated to non-bottom sub-

domains with the workitems found in the pending lists of their respective children.

This way, when the skeleton launches them for execution, they try to process the

elements that could not be processed in their children. This process happens repet-

itively until the root of the tree of domains —i.e., the initial domain provided by

the user—, is reached.

58 Chapter 3. Parallel skeleton for domain-based irregular algorithms

3.4. Tested algorithms

We tested our library with several benchmarks, both in terms of programmability

and performance. As of now our library does not provide mechanisms to rollback

computations. Therefore all the algorithms tested are cautious —i.e., they do not

need to restore data when an operation fails due to the discovery of a potential

conflict. Now a brief explanation of each benchmark follows.

3.4.1. Boruvka

Boruvka’s algorithm computes the minimal spanning tree through successive

applications of edge-contraction on the input graph. In edge-contraction, an edge is

chosen from the graph and a new node is formed with the union of the connectivity

of the incident nodes of the chosen edge, as shown in Figure 3.2. In the case that

there are duplicate edges, only the one with least weight is carried through in the

union. Figure 3.2 demonstrates this process. Boruvka’s algorithm proceeds in an

unordered fashion. Each node performs edge contraction with its lightest neighbor.

This is in contrast with Kruskal’s algorithm where, conceptually, edge-contractions

are performed in increasing weight order. The pseudocode for the algorithm is shown

in Listing 3.4.

before

f

after

Figure 3.2: Example of an edge contraction of the Boruvka algorithm

3.4 Tested algorithms 59

1 Graph g = read_graph();

2 Forest mst = g.nodes();

3 Worklist wl = g.nodes();

4 foreach(Node n in wl) {

5 Node m = min_weight(n, g.get_out_edges(n));

6 Node l = edge_contract(n, m);

7 mst.add_edge(n, m);

8 wl.add(l);

9 }

Listing 3.4: Pseudocode of the Boruvka minimum spanning tree algorithm

First, it reads the graph in Line 1, and fills the worklist with all the nodes of the

graph. The nodes of the initial MST are the same as those of the graph, and they

are connected in the loop in Lines 4 to 9. For each node, the minimum weighted

node from it to its neighbors is selected in Line 5. Then, in Line 6, this edge is

contracted: it is removed from the graph, added to the MST in Line 7, and one

node represents now the current node and its neighbor. This new node is added to

the worklist in Line 8.

The parallelism available in this algorithm decreases over time. At first, all the

nodes whose neighborhoods does not overlap can be processed in parallel, but as it

proceeds the graph gets smaller, so there are less nodes to be processed.

3.4.2. Delaunay mesh refinement

This benchmark is an implementation of the algorithm described in [29]. A 2D

Delaunay mesh is a triangulation of a set of points that fulfills the condition that

for any triangle, its circumcicle does not contain any other point from the mesh.

A mesh refinement has the additional constraint of not having any angle less than

30 degrees. This algorithm takes as input an Delanuay mesh, which may contain

triangles not meeting the constraint, which are called bad triangles. As output, it

produces a refined mesh by iteratively re- triangulating the affected positions of the

mesh. Figure 3.3 shows an example of a refined mesh.

The pseudocode for the algorithm is shown in Listing 3.5, and works as follows.

60 Chapter 3. Parallel skeleton for domain-based irregular algorithms

1 Mesh m = read_mesh();

2 Worklist wl = m.bad_triangles();

3 foreach(Triangle t in wl) {

4 Cavity c = new Cavity(t);

5 c.expand();

6 c.retriangulate();

7 m.update_mesh(c);

8 wl.add(c.bad_triangles());

9 }

Listing 3.5: Pseudocode of the Delaunay mesh refinement algorithm

Line 1 reads a mesh definition and stores it as a Mesh object. From this object, we

can get the bad triangles as shown in Line 2, and save them as an initial worklist

in wl. The loop between Lines 3 and 9 is the core of the algorithm. Line 4 builds

a Cavity, which represents the set of triangles around the bad one that are going

to be retriangulated. In Line 5 this cavity is expanded so it covers all the affected

neighbors. Then the cavity is retriangulated in Line 6, and the old cavity is substi-

tuted with the new triangulation in Line 7. This new triangulation can in turn have

created new bad triangules, which are collected in Line 8 and added to the worklist

for further processing.

The triangles whose neighborhood does not overlap can be processed in parallel,

because there will be no conflicts when modifying them. When the algorithm starts,

chances are that many of this bad triangles can be processed in parallel.

Figure 3.3: Retriangulation of cavities around bad triangles

3.4 Tested algorithms 61

3.4.3. Graph labeling

Graph component labeling involves identifying which nodes in a graph belong to

the same connected cluster. The algorithm and serveral GPU implementations are

explained in [67]. We have used the CPU version, whose pseudocode is shown in

Listing 3.6. The algorithm initializes the colors of all vertices to distinct values in

Lines 6 to 9. It then iterates over the vertex set V and starts the labeling procedure

1 map<vertex, int> color; // Color for each vertex

2 map<vertex, bool> process; // Stores whether each vertex requires more processing

3 Graph g = readGraph();

4 Worklist wl = g.nodes();

5

6 foreach(Node n in g.nodes) {

7 color[n] = i;

8 process[n] = true;

9 }

10

11 foreach(Node n in wl) {

12 if(process[n]) {

13 do_process(n);

14 }

15 }

16

17 do_process(Node n) {

18 process[n] = false;

19 foreach(edge e in n.edges()) {

20 if(color[e.source] < color[e.destination]) {

21 color[e.destination] = color[e.source];

22 do_process(e.destination);

23 }

24 else if(color[e.source] > color[e.destination]) {

25 color[e.source] = color[e.destination];

26 restart loop from start of the list;

27 }

28 }

29 }

Listing 3.6: Pseudocode of the graph labeling algorithm

62 Chapter 3. Parallel skeleton for domain-based irregular algorithms

for all vertices that have not been labelled yet, in Lines 11 to 15. The labeling

procedure iterates over the edge set of each vertex, comparing in Line 20 its color

value with that of its neighbors. If it finds that the color value of a neighbor is

greater, it sets it to the color of the current vertex and recursively calls the labeling

procedure on that neighbor in Lines 21 and 22. If the neigbor has a lower color value,

Lines 25 sets the color of the current vertex to that of the neighbor and Line 26

starts iterating over the list of edges of the node from the beginning again.

3.4.4. Spanning tree

This algorithm computes the spanning tree of an unweighted graph. It starts

with a random root node, and it checks its neighbors and adds to the tree those not

already added. The processing continues from each one of these nodes, until the full

set of nodes has been checked and added to the graph. This algorithm is somewhat

different from the ones previously explained, because it starts with just one node in

the worklist, while the others have an initial worklist with a set of nodes distributed

over all the domain of the graph. The pseudocode is shown in Listing 3.7.

The steps aformentioned are located as follows: Line 1 reads the graph, and

Lines 2 and 3 create an empty tree and a worklist with a random node respectively.

The loop in Lines 5 to 10 adds to the MST the neighbors of the current node that

are not already in it, and then inserts such neighbor in the worklist for further

1 Graph g = read_graph();

2 Tree mst;

3 Worklist wl = g.random_node();

4 foreach(Node n in wl) {

5 foreach(Neighbor nb of n) {

6 if(!nb.in_mst) {

7 mst.add_edge(n, m);

8 wl.add(nb);

9 }

10 }

11 }

Listing 3.7: Pseudocode of the spanning tree algorithm

3.5 Evaluation 63

processing.

The paralellism in this algorithm works inverse to Boruvka. As it starts with

a single node, the initial stages of the algorithm are done sequentially. As more

nodes are processed, eventually nodes outside the initial domain will be checked,

thus allowing new parallel tasks to start participating in the processing.

3.5. Evaluation

All the algorithms required little work to be parallelized using our library. The

main loops have been substituted with an invocation to the parallel domain proc

algorithm template, and the only extra Lines are for initializing the Domain and

1 int sum = 0;

2 Graph::worklist wl;

3 Graph* g = readGraph();

4

5 for_each(g->begin_nodes(), g->end_nodes(), [&](Node* n) {

6 g->add_to_worklist(wl, n);

7 });

8

9 while(!wl.empty()) {

10 Node* current = *wl.front();

11 wl.pop_front();

12 if(!current) continue;

13

14 Node* lightest = findLightest(g, current);

15

16 if(lightest) {

17 sum += g->findEdge(current, lightest)->data();

18 g->add_to_worklist(wl, edgeContract(g, current, lightest));

19 }

20 }

21

22 return sum;

Listing 3.8: Serial version of Boruvka’s algorithm

64 Chapter 3. Parallel skeleton for domain-based irregular algorithms

1 int sum = 0;

2 BGraph::worklist wl;

3 Graph* g = readGraph();

4

5 for_each(graph->begin_nodes(), graph->end_nodes(), [&](Node* n) {

6 graph->add_to_worklist(wl, n);

7 });

8

9 Domain2D<int, Node> plane(minx-1, miny-1, maxx+1, maxy+1);

10 parallel_domain_proc(graph, wl, plane,

11 [&](Graph* g,Node* current,Graph::worklist& wll,const Domain2D<int, Node>& d) {

12 Node* lightest = findLightest(g, current);

13

14 if(lightest) {

15 check_node_and_neighbors(g, d, lightest);

16 atomic_add(sum, g->findEdge(current, lightest)->data());

17 g->add_to_worklist(wll, edgeContract(g, current, lightest));

18 }

19 });

20

21 return sum;

Listing 3.9: Parallel version of Boruvka’s algorithm

checking whether a node belongs to a subdomain. This is shown in Listing 3.9. This

code computes the weight of the minimum spanning tree using Boruvka, and stores

it in sum. This is an atomic integer, because all the tasks are accumulating in it the

weight of the tree as they compute it. We used the C++11 lambda function notation

to represent functions used as argument for algorithm templates, in Lines 5 and 11.

The lambda functions used begin with the notation [&] to indicate that all the

variables not in the list of arguments have been captured by reference, i.e., they can

be modified inside the function. Line 5 is a for loop that initializes the worklist and

stores it in wl. Then, Line 9 creates the domain, in this case with a two-dimensional

plane that encompasses the full graph. Finally, the skeleton is run in Line 10. In

Line 15, the helper method of the Domain2D class check node and neighbors checks

whether node lightest and all its neighbors fall within domain d. If not, it throws

an out-of-domain exception.

3.5 Evaluation 65

In order to measure the complexity of the parallelization of the irregular al-

gorithms using our library we resorted to the SLOC and cyclomatic number [91]

metrics described in Section 1.5. Our measurements were performed considering

the whole source code for each algorithm and version. The relative changes of these

metrics are shown in Figure 3.4 as the percentual difference between the parallel and

the sequential version. It can be seen that despite the irregularity of the algorithm,

small changes are required in order to go from a sequential to a parallel version, and

the growth of any complexity measure is at most 3% in the parallel version. In fact,

in the case of the cyclomatic number, it is often lower for the parallel version than

for the sequential one. This is because there are conditionals that are hidden by the

library, such us the check for nonexistent workitems. This way, the simplicity of the

parallelization of irregular algorithms using our library is outstanding.

The speed-ups achieved, calculated with respect to the serial version, are shown

in Figure 3.6. The system used has 12 AMD Opteron cores at 2.2 GHz and 64

GB. The Intel icpc v12 with −fast optimization level was used. The inputs of the

algorithms were:

Boruvka A graph defining an street map with 6 · 106 nodes and 15 · 106 edges,

taken from the DIMACS shortest path competition [126]. In this graph, the

nodes are labeled with the latitude and logitude of the cities, so we can use a

two-dimensional domain.

������� �	
�����
��	

�� �������
��
��
��
��
�
�
�
�
�

�
��
���
������

Figure 3.4: Relative percentages of the SLOCs and the cyclomatic number of the
parallelized version with respect to the sequential one

66 Chapter 3. Parallel skeleton for domain-based irregular algorithms

Delaunay Mesh Refinement A mesh triangulated with Delaunay’s triangulation

algorithm with 105 triangles, taken from the Galois project input massive.2 [79].

With this mesh, a graph is built where each node correspond to one triangle.

We use the coordinates of the first vertex of the triangle as the label of the

node, to use it with a two-dimensional domain.

Graph labeling Disjoint graph with 3 · 106 nodes and 8 · 106 edges distributed on

at least 104 disconnected clusters, similar to those in [67]. In this graph, each

node has a unique and consecutive ID in a one-dimensional domain.

Spanning tree A regular grid with 3000 height and 3000 width, where each node

except the boundary nodes had 4 neighbors. The grid structure allows us

to assign x and y coordinates to each node, therefore suiting it for a two-

dimensional domain.

The parallel times were measured using the default behavior of generating two

bottom-level subdomains per core used. Since the number of subdomains generated

by our skeleton is a power of two, 32 subdomains were generated for the runs on 12

cores.

Figure 3.5 shows the running times of the experiments and the time of the

sequential version used as baseline. The time with one thread is comparable to that

of the sequential version, which shows the low overhead that our library introduces.

This can be seen also in the speedups shown in Figure 3.6. This was expected

because the irregular access patterns characteristic of these algorithms, coupled

with the small number of computations in most of these benchmarks, turn memory

bandwidth and latency into the main factor limiting their performance.

The speedups achieved are very dependent on the processing performed by each

algorithm. Namely, labeling and spanning, which do not modify the graph struc-

ture, are the benchmarks that scale better. Let us remember that labeling only

modifies data (the color of each node), while spanning inspects the graph from some

starting point just adding a single edge to the output graph whenever a new node is

found. Delaunay refinement operates on a neighborhood of the graph removing and

adding several nodes and edges, but it also performs several computations. Finally

Boruvka is intensive on graph modifications, as it involves minimal computations,

3.5 Evaluation 67

1 2 4 8 12
0

5

10

boruvka

Threads

T
im

e(
s)

parallel
serial

1 2 4 8 12
0

10

20

30

40

labeling

Threads

T
im

e(
s)

parallel
serial

1 2 4 8 12
0

0.5

1

1.5

2

2.5

3

refinement

Threads

T
im

e(
s)

parallel
serial

1 2 4 8 12
0

1

2

3

4

5

6

spanning

Threads

T
im

e(
s)

parallel
serial

Figure 3.5: Running times for the benchmarks

and it removes and adds an enormous number of nodes and, particularly, edges.

This way the latter two algorithms suffer from more contention due to synchroniza-

tions required for the simultaneous deletions and additions of their parallel tasks on

the shared graph. An additional problem is that parallelization worsens the perfor-

mance limitations of these algorithms due to the memory bandwidth because of the

increasing number of cores simultaneously accessing the memory. For these reasons

these are typical speedups for these applications [117][78].

The degree of domain over-decomposition can also affect the performance. Fig-

ure 3.7 shows the relative speedup achieved using 8 cores with several levels of

over-decomposition with respect to the execution without over-decomposition, that

is, the one that generates a single bottom-level subdomain per core. In the figure,

n levels of over-decomposition imply 2n subdomains per core. This way the results

shown in Figure 3.6 correspond to the first bar, with one level of over-decomposition.

68 Chapter 3. Parallel skeleton for domain-based irregular algorithms

1 2 4 8 12
0

1

2

3

4

5

6

Threads

S
p
e
e
d
u
p

labeling

refinement

spanning

boruvka

Figure 3.6: Speedups with respect to optimized serial versions

We can see that just by not over-decomposing the input domain, Delaunay refine-

ment gets a very important performance boost, while spanning successfully exploits

large levels of over-decomposition.

Figure 3.8 shows the percentage of elements that fall outside the domain, and

therefore have to be deferred to upper levels of domain subdivision, also for runs

with 8 cores. It is interesting to see that even when we are not using a small number

of cores, and thus of subdivisions of the domain, the number of workitems aborted

never exceeds 3% in the worst case. These values help us explain the results in

Figure 3.7. Labeling has no conflicts because in its case the role of the domain is only

to partition the tasks; when two tasks operate simultaneously on an area, the one

with the smallest color will naturally prevail. So over-decomposition does not play

any role with respect to conflicts in this algorithm; it only helps its load balancing.

As for Delau- nay refinement, even when only 3% of its workitems result in conflicts,

this ratio is proportionally much higher than for the other algorithms, and their

individual cost is also larger. This way, although decreasing over-decomposition

3.5 Evaluation 69

labeling refinement spanning boruvka
0

20

40

60

80

100

120

140

Algorithm

%

1 level

2 levels

3 levels

Figure 3.7: Relative speedup with respect to no over-decomposition in runs with 8
cores. 100 is the baseline, that is, achieving 100% of the speedup (i.e. the same
speedup) obtained without overdecomposition.

labeling refinement spanning boruvka
0

0.5

1

1.5

2

2.5

3

Figure 3.8: Percentage of out-of-domain elements running with 8 cores and 16
bottom-level subdomains

70 Chapter 3. Parallel skeleton for domain-based irregular algorithms

might reduce load balancing opportunities, this is completely offset by the important

reduction in the number of conflicts. Spanning is the second algorithm in terms of

conflicts, but two facts decrease their importance for this code. First, this algorithm

begins with a single workitem from which the processing of neighboring domains

are later spawned. This way if there is no over-decomposition some threads begin

to work when the processing reaches their domains, and stops when their domain

is completely processed. This leads to a very poor usage of the threads. Over-

decomposing allows threads that finish with a given subdomain to begin working on

new domains reached by the processing. The second fact is that delayed workitems

because of conflicts often find that they require no additional processing when they

are reconsidered in an upper level of subdivision because they were already connected

to the spanning tree by their owner task at the bottom level. Finally, Boruvka has

relatively few conflicts and their processing cost is neither negligible nor as large

as in Delaunay refinement. Thus, a small degree of over- decomposition is the best

in terms of balancing the amount of work among the threads, potentially more so

for an increasing number of subdomains, and the number of conflicts, which also

increase with the number of subdomains.

3.6. Exploring the Configuration Capabilities of

the Skeleton

Skeletons often provide either no tools or very restrictive possibilities to con-

trol essential aspects of their execution. This can result in suboptimal performance

because parallel applications are highly sensitive to implementation decisions such

as the work partitioning algorithm, the degree of work decomposition, or the data

structures used. For example, [37] describes some disadvantages of the highly au-

tomated template implementation of skeletons, such as taking wrong decisions that

the users cannot fix.

The reduced parametrization capability of a skeleton is a small problem and can

be in fact very justified in regular algorithms, as it is easier or even straightfor-

ward to derive heuristics to choose good parallelization strategies for them. This

is the case of skeletons for purely data parallel operations, which can offer only

3.6 Exploring the Configuration Capabilities of the Skeleton 71

block distributions [30][120][38] or even totally hide the work decomposition from

the user [89][45]. Nevertheless, this is not a good approach for irregular applica-

tions, and in particular for the amorphous data-parallel ones, where the patterns of

computation can widely vary between algorithms, and the best work decomposition

for a given algorithm can follow different strategies for different inputs, there being

besides a large variety of partitioning strategies [106]. Therefore in these applica-

tions it is critical that users can experiment with several possibilities, and using a

high-level approach such as a skeleton should not preclude but facilitate this. In this

regard, although there are skeletons [112][83][52] that allow total control of the task

decomposition, they require users to programmatically specify all the details of this

decomposition except for basic trivial cases like ranges, and they do not support

amorphous data-parallelism. Since we are convinced that convenient and flexible

parameterization is key to the success of skeletons in this new area, several practical

mechanisms to control the execution of parallel domain proc were designed and

implemented during the development of this thesis. Thanks to them, our strategy

to parallelize irregular applications allows users to explore a large space of possible

concrete implementations without renouncing to the high level structured approach

and good programmability enabled by the skeleton. This section describes and eval-

uates these mechanisms, showing their large impact on performance, and thus the

relevance of enabling the user to (easily) control them.

3.6.1. Skeleton Behavior Configuration

A first configurable element is the boolean template parameter redirect men-

tioned in Section 3.3.5, which controls the behavior of tasks that work at the bottom

level of decomposition when they find an element outside their subdomain in their

work list. Since the initial work lists in bottom level tasks only contain elements

within their assigned subdomain, this only happens in algorithms whose processing

can generate new workitems. When redirect is false, which is its default, the

usual policy of delaying the processing of the workitem to later tasks that will be

run with larger subdomains is applied. When it is true, if the task associated to the

workitem subdomain at the bottom level of subdivision or a parent of it is already

running, the usual policy is also followed. Otherwise, the workitem is placed in the

work list of the owner bottom level task, and the task is submitted to execution. In

72 Chapter 3. Parallel skeleton for domain-based irregular algorithms

order to enable this redirection process, the skeleton does not run tasks whose work

lists are empty. While this flag controls a very specific situation, it is critical to en-

able the parallelization of the large class of algorithms that begin with a single node

in the graph from which the processing propagates throughout the whole structure.

While redirect is required to parallelize certain algorithms, there are other

implementation variations that are design decisions that can lead to different per-

formance for different algorithms and inputs. In this thesis we will consider three

implementation variations of this kind. The first one is the usage of different domain

decomposition algorithms, which can lead to different load balance and number of

conflicts among the tasks. The parallel domain proc skeleton allows to explore

this possibility by writing domains with user-defined splitting strategies or simply

by using or deriving from domain classes provided by the library that implement

predefined partitioning schemes. The ones we have developed are:

Clustered Domain (cd) tries to assign nodes that are close in terms of

edges between them to the same subdomain. This is achieved by means of

a clustering process in which each cluster starts from a random node and

expands from it following a breadth first search. The clustering process is

performed only once, generating all the bottom level domains required, and it

stops when all the nodes have been assigned to subdomains. The intermediate

levels of domain decomposition are generated by aggregating neighbor clusters

following a bottom-up process. The fact that the decomposition does not

follow the top-down approach explained in Section 3.2 is hidden inside the

domain and it is totally oblivious to the user and the skeleton, which uses

the same interface and logical process as for any other domain decomposition

scheme.

Clustered Tree Domain (ctd) Instead of building all the subdomains si-

multaneously, this alternative starts with one source node. It does a breath-

first search and adds nodes to a subdomain, until half of the nodes are in it.

This splits the whole graph in two subdomains with almost the same number

of elements. Then, it choses one source node from each subdomain, and it

repeats the subdivision process. This continues recursively until the number

of desired subdomains is reached. This generally creates subdomains with a

similar number of nodes, providing better work balance.

3.6 Exploring the Configuration Capabilities of the Skeleton 73

DomainND (d2d) Very often the domains areN -dimensional spaces in which

each dimension is associated to one of the data items of the graph elements

and its extent is given by the range defined by the minimum and the maximum

value found in the graph elements for that item. This domain is easily divisible

by cyclically splitting each one of its dimensions (i.e., the i-th subdivision

splits the domain(s) across dimension i mod N) until the required number of

subdomains are generated. This was the only scheme tested in Section 3.5.

Another possibility is changing the number of levels of decomposition of the

domains. Generating a bottom level domain, and thus a bottom level parallel task,

per core available is a reasonable option. However, since the runtime of our skeleton

is built on top of Intel TBB [112] and efficiently exploits task-stealing, it can provide

improved load balancing if the domain is over-decomposed, so that the task-stealing

scheduler can profit from the excess parallelism created. We have simplified the

exploration of this possibility by adding a new optional parameter to the constructor

of the domains, overdecomposition. This parameter requests their decomposition

in 2i subdomains per core, the default being overdecomposition = 0, that is, a

bottom level subdomain per core.

Finally, we can experiment with different data structures. For example, work

lists, which are dynamic structures from which elements are being continuously

removed, but which in some algorithms also dynamically receive new workitems, can

play a crucial role in performance. Given these characteristics, it looks like regular

(STL) lists are a good alternative for them, as they perfectly model the behavior

required, and they where in fact the work lists used in 3.5. Other implementations

can be however considered. This way we have also built a (STL) vector-based work

list that pushes new workitems at the end of the vector and which never removes the

already processed workitems. Rather, it simply increases an internal pointer that

indicates the first unprocessed workitem in the vector. This way this implementation

trades space inefficiency for better locality and reduced allocation and deallocation

cost, as vectors grow by chunks.

The programming effort required to explore these configuration variations is

minimal. The redirect flag simply requires providing a boolean, while the level of

domain decomposition is specified with a single method invocation to the domain

object. Finally, the domains, work list containers, context objects, etc. are template

74 Chapter 3. Parallel skeleton for domain-based irregular algorithms

classes, so they can accommodate any classes either provided by the library of built

by the user for any of the objects involved. Of course this includes the skeleton,

which is a function template that automatically adapts to the types of its arguments.

This way exploring the possibilities available only requires changing the type of the

associated object.

3.6.2. Evaluation

In addition to the algorithms we described in Section 3.5, we implemented two

additional benchmarks to test the programmability of the library. These algorithms

help to visualize the difference between the different configurations of the skeleton.

Independent Set (IS) computes a maximal independent set of a graph, which

is a set of nodes such that (1) no two nodes share the same edge and (2) it

cannot be extended with another node. This greedy algorithm labels each

node with a flag that may be in one of three states: Unmatched, Matched and

NeighborMatched. All the flags begin in the Unmatched state. An unmatched

node is selected from the graph. If none of its neighbors are matched, then

the flag for the node is set to matched and all of its neighbors flags are set to

NeighborMatched. This process continues until there are no more unmatched

nodes, in which case, the nodes with matched flags are a maximal independent

set.

Single-Source Shortest Path (SSSP) solves the single-source shortest path

problem with non-negative edge weights using a demand-driven modification of

the Bellman-Ford algorithm. Each node maintains an estimate of its shortest

distance from the source. Initially, this value is infinity for all nodes except

for the source, whose distance is 0. The algorithm proceeds by iteratively

updating distance estimates starting from the source and maintaining a work

list of nodes whose distances have changed and thus may cause other distances

to be updated.

The experiments were performed in a system with 2 Intel Xeon E5-2660 Sandy

Bridge-EP CPUs (8 cores/CPU) at 2.2 GHz and 64 GB of RAM, using g++ 4.7.2

3.6 Exploring the Configuration Capabilities of the Skeleton 75

with optimization flag −O3. The graph, node and edge classes in these experiments

used were taken from the Galois system [79], as they were found to be more efficient

than the locally developed ones used in 3.5 and the skeleton transparently supports

any classes. The inputs were a road map of the USA with 24 million nodes and

58 million edges for Boruvka, IS and ST, a road map of New York City with 264

thousand nodes and 733 thousand edges for SSSP –both maps taken from [126]– and

a mesh with 1 million triangles taken from the Galois project for DMR. Since Span-

ning Tree and Single-Source Shortest Path begin their operation with a single node

from which the computation spreads to the whole graph, their parallelization has

been performed activating the redicted optional feature of parallel domain proc,

which is not used in the other benchmarks.

Table 3.1 shows the baseline times for the experiments, obtained from pure

sequential implementations. They are neither based on our skeleton nor on any

other parallelization mechanism that could add any overhead, and they use the best

data structures for graphs and work lists, which are vectors, as we will soon see.

Figure 3.9 shows the speedups obtained with respect to a sequential execution for

each benchmark using different number of cores. We tried six combinations based on

the usage of the three domain decomposition strategies described in Section 3.6.1 (cd

for Clustered Domain, ctd for Clustered Tree Domain and d2d for the DomainND

in two dimensions) and two work list containers, namely standard (std::)lists (l) and

vectors (v), both using the default C++ allocators. The executions followed the

default policy of generating one bottom level task per core. The slowdown for a

single core gives an idea of the overhead of the skeleton, which can be up to three

slower than the sequential version in these runs.

Vector-based work lists clearly perform better than list-based ones despite being

more memory greedy, as they do not remove already processed elements (see de-

Table 3.1: Baseline times for the algorithms
Benchmark Serial time (s)
Boruvka 17.95
IS 0.34
DMR 13.66
ST 1.61
SSSP 0.63

76 Chapter 3. Parallel skeleton for domain-based irregular algorithms

1 2 4 8 16
of threads

0

1

2

3

4

5

6
Boruvka speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0
IS speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0

1

2

3

4

5

6

7

8
DMR speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0.0

0.5

1.0

1.5

2.0

2.5
ST speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0

1

2

3

4

5

6

7

8

9
SSSP speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

Figure 3.9: Speedups using different domains and containers

scription in Section 3.6.1). Thanks to the reduced memory management cost and

better locality, the traversal of the worklist is much more efficient when using vectors

than when using lists. While in some algorithms the extra cost of lists is relatively

small (DMR, or ST for some domain partitionings), and lists are in fact negligibly

3.6 Exploring the Configuration Capabilities of the Skeleton 77

faster in ST with domain ctd for 8 and 16 cores, in others the disadvantage of lists

is enormous. The best example is IS, where the versions that use lists obtain much

worse speedup than those with vectors.

We suspected that the most important reason for the bad performance of lists is

their requirement to continuously allocate and deallocate items. This operation is

even more expensive in a multithreaded program, where the memory management

provided by the C++ runtime is thread-safe, with the associated synchronization

costs. In order to prove this, we wrote a customized allocator class that acts as a

pool, thus minimizing the number of invocations to the underlying thread-safe mem-

ory manager. Our allocator has a thread-safe and a faster non-threadsafe version.

We could use the last one thanks to the fact that each worklist is always accessed by

a single thread of the skeleton. The results are shown in Figure 3.10, where lists use

our allocator; a change that was straightforward thanks to the easy configurability

of our skeleton, just requiring modifications in a couple of lines. Using our pool

allocator greatly reduces the gap in performance between vectors and lists, up to

the point of almost achieving the same speedups with both containers and in some

cases, like ST and SSSP, improving them. The most significant case is IS, which did

not show any speedup when using lists with the standard allocator (in Figure 3.9)

but now presents a reasonable scalability with the list container. Figure 3.11 shows

the speedup that the list-based codes obtain when using our allocator with respect

to the original experiments using the standard one in the executions using 16 cores.

While IS achieves very large speedups of 32.4, 35.1 and 59.8 when using the domains

cd, ctd and d2d, respectively, the other benchmarks become between 1.07 and 2.51

faster with our allocator, the mean speedup for them being a still noticeable 1.53.

If IS is also taken into account, the average speedup is 9.7.

The type of domain decomposition also plays a critical role in performance, there

being not a clear winner. The DomainND strategy is usually the best one for IS, ST

and SSSP, while the Clustered Tree Domain offers the best performance for Boruvka

and DMR. The need to allow programmers to easily test different configurations of

the skeleton execution is further supported by the fact that while in some applica-

tions a decomposition algorithm is always the best across the board, this is not the

case in others. For example, while for 8 and 16 cores SSSP achieves the best perfor-

mance with DomainND, the best speedups for 2 and 4 cores are achieved with the

78 Chapter 3. Parallel skeleton for domain-based irregular algorithms

1 2 4 8 16
of threads

0

1

2

3

4

5

6
Boruvka speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0
IS speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

1

2

3

4

5

6

7

8
DMR speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0.0

0.5

1.0

1.5

2.0

2.5
ST speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

1 2 4 8 16
of threads

0

2

4

6

8

10
SSSP speedup

cd_l
cd_v
ctd_l
ctd_v
d2d_l
d2d_v

Figure 3.10: Speedups using different domains and containers. In this figure, lists
use our pool allocator

Clustered Domain and the Clustered Tree Domain strategies, respectively. Similary,

while DomainND is also the best strategy for IS for runs with 8 and 16 cores, it is

the worst partitioning when we only have 2 cores. Also, in some specific situations

3.6 Exploring the Configuration Capabilities of the Skeleton 79

Boruvka IS DMR ST SSSP mean
10

0

10
1

10
2

s
p

e
e

d
u
p

 (
lo

g
 s

c
a

le
)

cd_l
ctd_l
d2d_l

Figure 3.11: Speedups in the experiments with lists using the pool allocator with
respect to the lists using the standard allocator in the runs with 16 cores

all the partitioning algorithms can provide a very similar speedup. This is the case

of DMR with two threads. This algorithm performs a lot of work per workitem,

so it tends to scale linearly if the domains are balanced in terms of work, and the

number of conflicts due to neighborhoods that extend outside the local domain are

minimized. When only two domains are used, the number of conflicts is minimal

due to the small number of subdomains. If in addition, the domains are built using

reasonable heuristics like the ones considered in this section, they will probably be

reasonably balanced. Both circumstances favor the behavior observed. Another rea-

son for the complex behavior of these applications in terms of performance is that in

many of them the amount of work per workitem is highly variable, and sometimes

impossible to predict in advance. This is the case of the DMR bad triangle cavities,

whose extent can only be known when they are explored, and where the number of

new bad triangles generated can only be known after the re- triangulation. Another

example is Boruvka, whose amount of work per node is proportional to the number

of edges to be contracted. This number not only depends on the initial number of

edges of each node, but also on the sequence of nodes contracted before the one

considered.

80 Chapter 3. Parallel skeleton for domain-based irregular algorithms

All in all, the best decomposition strategy depends on the application, the num-

ber of cores, and the kind of input graph, as it can favor a specific partitioning

strategy [106]. Given the complexity of the subject, it is difficult to make a priori

selections of the domain decomposition algorithm, and although the generic algo-

rithms we propose can obtain good results, a better understanding of the application

can allow users to create domains that can obtain better results.

The impact of over-decomposition on performance is analyzed in Figure 3.12

with experiments using 16 cores. It shows the relative speedup of each one of the

six possibilities tested in Figure 3.9 with respect to their own execution with no

over-decomposition, that is, one in which one bottom level task is created per core.

As we explained in Section 3.6.1, a level of decomposition i means generating 2i

tasks per core, thus for i = 0 the speedup in the figure is always 1. The -1 level,

which generates 8 tasks, was tried to test if the lower number of task merges could

improve the performance, which happened very seldom. Over-decomposition, which

is very easy to apply with our skeleton, can largely improve performance, even when

we consider the choices that achieved the best performance in Figure 3.9. This

way, d2d v, which was the best strategy for 16 cores for IS, ST and SSSP, further

increases its performance by 10%, 30% and 50%, respectively, when 2 tasks per core

are generated.

Overall the skeleton achieves performance similar to that found in the bibliogra-

phy for manually-tuned parallel implementations of these applications. This is the

case for example for DMR in [117], although this is only a qualitative observation

given the different hardware and inputs tested. Regarding the absolute speedups

achieved, we must note that the performance of this kind of applications is more

limited by memory latency and bandwidth than that of applications with regular

access patterns and more CPU operations per input data item.

3.7. Related work

Since our strategy relies on partitioning the initial work to perform in chunks

that can be mostly processed in parallel, our approach is related to the divide-and-

conquer skeleton implemented in several libraries [34][112][30][52]. Nevertheless, all

3.7 Related work 81

-1 0 1 2
level of overdecomposition

0.7

0.8

0.9

1.0

1.1
Boruvka speedup

cd_l
cd_v
ctd_l

ctd_v
d2d_l
d2d_v

-1 0 1 2
level of overdecomposition

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
IS speedup

cd_l
cd_v
ctd_l

ctd_v
d2d_l
d2d_v

-1 0 1 2
level of overdecomposition

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
DMR speedup

cd_l
cd_v
ctd_l

ctd_v
d2d_l
d2d_v

-1 0 1 2
level of overdecomposition

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
ST speedup

cd_l
cd_v
ctd_l

ctd_v
d2d_l
d2d_v

-1 0 1 2
level of overdecomposition

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
SSSP speedup

cd_l
cd_v
ctd_l

ctd_v
d2d_l
d2d_v

Figure 3.12: Speedups using different levels of decomposition with respect to no
over-decomposition in runs with 16 cores

the previous works of this kind we are aware of are oriented to regular problems.

As a result those skeletons assume that the tasks generated are perfectly parallel,

providing no mechanisms to detect conflicts or to deal with them once found. Neither

82 Chapter 3. Parallel skeleton for domain-based irregular algorithms

do they support the dynamic generation of new items to be processed by the user

provided tasks. This way, they are not well suited to deal with the irregular problems

we are considering.

One of the approaches to deal with amorphous data parallel algorithms is Hard-

ware or Software Transactional Memory (HTM/STM) [69]. HTM limits, sometimes

heavily, the maximum transaction size because of the hardware resources it relies

on. The Blue Gene/Q was the first system to incorporate it, and although it is

present in some Top500 supercomputers, its adoption is not widely spread. Several

implementations exist for STM [65][116], but their performance is often not satisfac-

tory [23]. With STM, the operations on an irregular data structure are done inside

transactions, so when a conflict is detected, as overlapping neighborhoods for two

nodes, it can be rolled back.

Another option is Thread Level Speculation (TLS), which from a sequential code

creates several parallel threads, and enforces the fulfillment of the semantics of the

source code using hardware support [64][32] or software methods [111][31][61][4].

But, just as the solutions based on transactional memory, TLS cannot take advan-

tage of the knowledge about the data structure and the algorithm nature as ours

does.

The Galois system [79] is a framework for this kind of algorithm that relies on

user annotations that describe the properties of the operations. Its interface can be

simplified though, if only cautious and unordered algorithms are considered. Galois

has been enhanced with abstract domains [78], defined as a set of abstract processors

optionally related to some topology, in contrast to our concept of set of values for

a property of the items to process. Also, these domains are only an abstraction to

distribute work, as opposed to our approach, where domains are the fundamental ab-

straction to distribute work, schedule tasks and detect conflicts, thus eliminating the

need of locks and busy waits found in [78]. Neither do we need over-decomposition

to provide enough parallelism, which allows for higher performance in algorithms

with costly conflicts, as Delaunay refinement shows in Figure 3.7. Finally, lock-based

management leads conflicting operations in [78] to be repeatedly killed and retried

until they get the locks of all the abstract processors they need. Nevertheless, the

computations that extend outside the current domain in our system are just delayed

to be retried with a larger subdomain. This way the number of attempts of a con-

3.7 Related work 83

flicting task is at most the number of levels of subdivision of the original domain.

With the cautions that the input and implementation languages are not the same

and that they stop at 4 cores, our library and Galois yield similar speedups for

Delaunay in a comparable system [78].

Chorus [85] defines an approach for the parallelization of irregular applications

based on object assemblies, which are dynamically defined local regions of shared

data structures equipped with a short-lived, speculative thread of control. Cho-

rus follows a bottom-up strategy that starts with individual elements, merging and

splitting assemblies as needed. These assemblies have no relation to property do-

mains and their evolution, i.e., when and with whom to merge or split, must be

programmatically specified by the user. We use a top-down process based on an

abstract property, and only a way to subdivide its domain and to check the own-

ership are needed. Also, the evolution of the domains is automated by our library

and it is oblivious to the algorithm code. Moreover, Chorus is implemented as a

language, while we propose a regular library in a widely used language, which eases

the learning curve and enhances code reusability. Also, opposite to Chorus’ strategy,

ours does not require locks, which favors scalability, and there are no idle processes,

so the need for over-decomposition is reduced. Finally, and in part due to these

differences, our approach performs noticeably better on the two applications tested

in [85].

Partitioning has also been applied to an irregular application in [117]. Their

partitioned code is manually written and it is specifically developed and tuned for

the single application they study, Delaunay mesh generation. Additionally, their

implementation uses transactional memory for synchronizations.

Finally, the concept of hierarchical partitioning has also been estudied, for exam-

ple in [93], as a means to improve data locality through several processing elements,

and in the memory hierarchy of each processing element. But their solution is only

applicable to regular algorithms and data structures, and as in the case of the Galois

system, their domain is just an abstraction of the number of processing elements;

unlike ours, it is not defined from the properties of such data and it is not config-

urable.

84 Chapter 3. Parallel skeleton for domain-based irregular algorithms

3.8. Conclusions

Amorphous data parallelism, found in algorithms that work on irregular data

structures is much harder to exploit than the parallelism in regular codes. There

are also few studies that try to bring structure and common concepts that ease

the parallelization of these algorithms. In this chapter we explore the concept of

domain on the data to process as a way to partition work and avoid synchronization

problems. In particular, our proposal relies on (1) domain subdivision as a way to

partition work among tasks, on (2) domain membership, as a mechanism to avoid

synchronization problems between tasks, and on (3) domain merging to join worksets

of items whose processing failed within a given subdomain, in order to attempt their

processing in the context of a larger domain.

An implementation of our approach based on a skeleton operation and a few

classes with minimal interface requirements is also presented. An evaluation using

several benchmarks indicates that our algorithm template allows to parallelize ir-

regular problems with little programmer effort, providing speed-ups similar to those

typically seen for these applications in the bibliography.

Also, we have extended and evaluated the configurability of our skeleton for

amorphous data-parallel applications. These applications offer a large number of

implementation possibilities based on the use of different data structures, levels of

work decomposition and work partitioning algorithms, which are richer than those

of regular algorithms. The ability to easily experiment with these possibilities is

very important for irregular applications because deriving heuristics to decide the

best configuration for each given algorithm, input and computer to use is much more

difficult than in the case of regular applications, or even impossible.

Our experience has shown that many alternative configurations can be explored

with this skeleton with very little effort. We have also seen that the impact on per-

formance of each implementation decision, even taken isolatedly, can be enormous

and that the best alternative depends on the algorithm and the number of cores

available. Also, although the generic options provided in the library provide reason-

able performance, users can define and use their own decomposition algorithms, data

structures, etc. specifically targeted to their particular problem to achieve better

performance.

Chapter 4

Library for task parallelism with

detection of dependencies

One of the outstanding difficulties of the development of parallel applications is

the synchronization of the different units of execution. Different parallel program-

ming models and tools provide different synchronization techniques, which can be

implicitly or explicitly invoked by the user. The data-parallel paradigm [70, 24, 48],

for example, provides implicit synchronization points after each pair of parallel com-

putation and assignment, being this one of the reasons why this paradigm is one

of the most effective in terms of intuitiveness for the programmer. Unfortunately,

the patterns of parallelism supported by this paradigm are too restrictive for many

parallel applications. It is also the case that applications that greatly benefit from

data-parallelism can further increase their performance when they are enriched with

the possibility of exploiting more ambitious out-of-order scheduling [25, 27, 26] for

the tasks in which their computations can be decomposed. Applications that ben-

efit from complex patterns of parallelization and scheduling have usually to resort

to paradigms and tools where explicit synchronization mechanisms are available in

order to ensure that tasks satisfy their dependencies [22, 112, 99]. The implied

required study of the dependencies among the tasks, and the subsequent specifi-

cation of the corresponding synchronizations, result in an increased programming

complexity, which is the cost to pay for the flexibility in the patterns of parallelism

and dependencies among such tasks.

85

86 Chapter 4. Library for task parallelism with detection of dependencies

In this chapter we introduce a practical library-based approach to enable the

expression of arbitrary patterns of parallel computation while avoiding explicit syn-

chronizations. Our proposal is almost as flexible as explicit synchronization but

without the complexity it brings to parallel programming. It also frees program-

mers from having to explicitly indicate which are the dependencies for their tasks.

Our proposal, which has been implemented in the widely used C++ language, relies

on the usage of functions to express the parallel tasks, the dependencies among the

functions being solely provided by their arguments. This way, an analysis of the

type of the arguments of a function whose execution has been requested, coupled

with a comparison of these arguments with those of the functions that have already

been submitted to execution, suffices to enforce the dependencies among them.

4.1. DepSpawn: An argument-based synchroniza-

tion approach

As we have anticipated, our proposal is based on expressing the parallel tasks as

functions that only communicate through their arguments. The types and memory

positions of the arguments of the functions that define each parallel task are analyzed

by our framework, called DepSpawn, to detect and enforce the dependencies among

those tasks. Our library has three main components:

The kernel is the function spawn, which requests a function to be run as a

parallel task once all the dependencies on its arguments are fulfilled.

The template class Array, which allows to conveniently express a dependency

on a whole array or a portion of it.

A few explicit synchronization functions to wait for the completion of all the

pending tasks, to wait only for those that access some specific arguments, and

to allow a task to early release dependencies.

We now describe these components in turn, followed by a small discussion on

the implementation of the library.

4.1 DepSpawn: An argument-based synchronization approach 87

4.1.1. Spawning parallel tasks

Function spawn accepts as first argument the name of the function whose exe-

cution as a parallel task is requested, followed by the comma-separated list of the

arguments to the function. Since all the communications between parallel tasks must

take place through their arguments, the function should have return type void, that

is, act as a procedure. Functions returning a value are also accepted by spawn, but

the returned value will be lost, as spawn does not return any value. It is worth men-

tioning that our library does not make any assumption regarding global variables.

Thus if the user wants to track dependencies on these variables, she should pass

them as parameters to the corresponding functions. The type of the corresponding

function parameter will indicate whether the variable will only be read or can be

also modified.

Table 4.1 summarizes the interpretation that spawn makes of each parameter or

formal argument of a function depending on its type. Arguments passed by value

are necessarily only inputs to the function, since any change made on them in the

function is actually performed on a local copy. As for arguments passed by reference,

which are marked in C++ by preceding the parameter name by a ’&’ symbol, the

situation depends on whether the reference is constant or not. Constant references,

which are labeled with the const modifier, do not allow to modify the argument, so

they can only be inputs. Non-constant references however can modify the argument,

therefore they are regarded as inputs and outputs. Table 4.1 reflects that pointers are

regarded as inputs or inputs and outputs following the same rules as any other data

type, and that the dependency is defined on them, not on the memory region they

point to. This behavior has been chosen for two reasons. First, it is consistent with

Table 4.1: Behavior of spawn for each parameter type. A is any arbitrary data type.
Modifiers in brackets do not change spawn’s behavior.

Type Short description Interpretation of arg

[const] A arg Argument by value input

A& arg Argument by reference input and output

const A& arg Argument by constant reference input

[const] A* arg Pointer by value input (not *arg)

[const] A*& arg Pointer by reference input and output (not *arg)

[const] A* const & arg Pointer by constant reference input (not *arg)

88 Chapter 4. Library for task parallelism with detection of dependencies

the treatment of the other data types. Second, the library cannot make reasonings

on the dependencies generated through the usage of a pointer, as it is impossible to

know the extent of the memory region that will be accessed through a pointer from

its declaration.

Given the aforementioned interpretation associated to each function argument,

and using the information on its address and length, spawn learns the data de-

pendencies between the tasks submitted to parallel execution. It then guarantees

that each task is run only once all its dependencies with respect to the previously

spawned tasks are satisfied. In this regard, it must be outlined that our library

releases the dependencies of a task only when the task itself and all its descendants

(i.e. the tasks directly or indirectly spawned from it) finish. This way the release

of a dependency by a task implies that all what would have been part of the serial

execution of the task has been executed.

In order to formally detail the semantics of the programming model provided by

our library, we make the following definitions:

We say that a task T is requested when, during the execution of the program,

the corresponding spawn invocation is made. A requested task can be waiting

for its dependencies to be fulfilled, executing, or finished.

A task T is an ancestor of task U if T requests U or, recursively extending

this definition, it requests an ancestor of U .

A task T is a descendant of a task U if U is an ancestor of T .

We call sequential execution of the program the one that takes place if the

spawn requests are replaced with standard function calls.

A task T logically precedes task U if during the sequential execution of the

program T is executed before U .

A task T dynamically precedes task U if during the execution of the program

T is requested before U (by the same or another thread of execution).

A task T is said to have a dependency with a preceding task U if there is at

least one memory position in common in their arguments that at least one of

them could modify.

4.1 DepSpawn: An argument-based synchronization approach 89

In our framework a requested task T waits for the completion of a task U if

1. U dynamically precedes T , U is not an ancestor of T , and T has a dependency

with U ; or

2. U is a descendant of a task that fulfills condition (1.).

Condition (2) is derived from the fact that in our framework a task does not

release its dependencies until all its children finish their execution. Let us now

analyze the implications of these conditions. Condition (1) indicates that a new

task respects all the dependencies with the tasks that were requested before during

the dynamic execution of the program, excluding of course its ancestors. In order

to provide a formal definition of the guarantee provided by this condition, we will

name tasks according to their order of execution in the sequential execution of the

program. This way, we will call Ti the i-th task initiated during the sequential

execution of the program that is not nested inside another task, Tij will be the

j-th task initiated by task Ti that is only nested in task Ti, and so on. Using

this nomenclature, condition (1.) only guarantees that task T = Tx0x1...xn complies

with the dependencies with the preceding tasks PT = {Tx0x1...xi−1j , ∀ 0 ≤ i ≤
n, 1 ≤ j < xi}. The reason is that these are the only tasks that we know for sure

that are requested before T in any execution. Among them, the focus in on the

subset of those that actually generate dependencies with T , defined as DPT = {U ∈
PT / T has a dependency with U}.

Additionally, condition (2.) guarantees that T is executed after the tasks that

have an ancestor in DPT , that is, Descendants(DPT), where Descendants(S) =

{Tx0x1...xmxm+1...xn / Tx0x1...xm ∈ S, n > m}. Notice that both the tasks in DPT and

Descendants(DPT) necessarilyl ogically precede T .

Figure 4.1, in which time runs from left to right and the spawn of new tasks is

represented as a vertical line that leads to a new horizontal line of execution, helps

illustrate these ideas. The tasks are labeled using the naming just defined, and it

shows a concrete temporization in a parallel execution of an application. Following

our definition, PT42 = {T1, T2, T3, T41} for task T42, as these are the tasks that are

not ancestors of T42 that will be requested before it no matter which is the exact

length or temporization of execution of the different tasks. In this figure we assume

90 Chapter 4. Library for task parallelism with detection of dependencies

Main thread

T1

T11 T12

T2 T3

T13

T21

T131 T132

T4

T41 T42

PT
42

Descendants(DPT
42

)

T411

TimeDPT
42

Figure 4.1: Preceding tasks PT42 = {T1, T2, T3, T41} for task T42. Assuming
that out of them only T1 generates dependencies with T42 (i.e. DPT42 = {T1}),
Descendants(DPT42) = {T11, T12, T13, T131, T132} is also depicted.

that out of these four tasks, T42 only has dependencies with respect to T1, thus

DPT42 = {T1}. Finally, the figure also depicts Descendants(DPT42), which are all

the descendants of T1. According to the rules just described, T42 will not start

running until T1 and all its descendants finish. Nevertheless, since T2, T3 and T41

are guaranteed to be analyzed before T42 is requested, and the example assumes that

T42 has no dependencies with them, they can run in order, including in parallel, with

respect to T42.

This programming model does not give guarantees of relative order of execution

with respect to the tasks that logically precede T that do not belong to the sets

we have defined. Such tasks are all the descendants of the tasks in PT that do

not generate dependencies with T , that is, Descendants(PT − DPT). The relation

guaranteed with respect to these tasks is of mutual exclusion if there is at least a

common element of conflict, i.e., one piece of data modifiable by either T or the

considered task according to their respective lists of arguments. Going back to our

example in Figure 4.1, the tasks in this situation with respect to T42 are T21 and

T411. In the execution shown in the figure they are requested before T42, but in

other runs any of these two tasks, of both, could be requested after T42. This way,

the relative order in which these three tasks will run cannot be predicted, but we

are guaranteed that no pair of them with a conflict in their arguments will run in

parallel.

The result of the described semantics is a simple rule of thumb for the program-

mer. Namely, a task T is guaranteed to fulfill dependencies with respect to the tasks

requested before it, inside the same task, or before any of its ancestors, in the respec-

4.1 DepSpawn: An argument-based synchronization approach 91

tive tasks where they were requested (condition(1.)), which is an informal definition

for PT . Task T also respects its dependencies with the tasks that are descended

from those tasks in PT that presented dependencies with T , DPT (condition(2.)).

For any other task U , it is guaranteed that U will be not be run in parallel with T if

there is any memory position common to the arguments of T and U in which one of

them writes. This behavior suffices in many situations. If it is not the case, the user

has two possibilities to enforce the ordering between U and T . The most natural

one is to express the dependency in an ancestor of U that belongs to PT so that it

becomes part of DPT . The other one is to use one of the explicit synchronization

mechanisms provided by our library, which are detailed in Section 4.1.3.

Listings 4.1 and 4.2 exemplifies how to enforce a proper ordering between tasks.

In Listing 4.1 the master thread creates two tasks, g and h that carry no dependencies

between them according to their arguments, so they can be run in parallel. During

the execution of g, a new task f is requested that writes in a global object a used

by task h. The system guarantees that f and h will not run in parallel, but it does

not enforce any specific order of execution. Since f logically precedes h we probably

want to make sure it runs before. This is achieved in a natural way by expressing

1 A a;

2

3 void f(A& a) { }

4

5 void g() {

6 ...

7 spawn(f, a);

8 ...

9 }

10

11 void h(const A& a) { }

12

13 int main() {

14 spawn(g);

15 spawn(h, a);

16 }

Listing 4.1: Enforcing dependencies between tasks (a) Wrong

92 Chapter 4. Library for task parallelism with detection of dependencies

1 A a;

2

3 void f(A& a) { }

4

5 void g(A& a) {

6 ...

7 spawn(f, a);

8 ...

9 }

10

11 void h(const A& a) { }

12

13 int main() {

14 spawn(g, a);

15 spawn(h, a);

16 }

Listing 4.2: Enforcing dependencies between tasks (b) Right

the dependencies generated by f in the arguments of any ancestor spawned before

h. Here such ancestor is g, giving place to the code in Listing 4.2.

4.1.2. Array support

The library behavior has been explained using generic data types, which can

be standard types, user defined classes or arrays. The analysis performed by our

library each time a parallel task is spawned treats all data types equally, checking

the starting memory position and the size of each argument for overlaps with other

variables. This permits expressing any kind of parallel computation, serializing

tasks that access the same object when at least one of them writes to it. This

raises an important question. Some objects are actually aggregates or containers

of other objects, and the fact that multiple parallel tasks operate on them does

not imply there are actually data dependencies among those tasks. For example,

many parallel algorithms make use of arrays whose processing is distributed among

different tasks that read and write to disjoint regions of these arrays. Therefore,

just checking the full object or array is not a flexible strategy, as this would serialize

4.1 DepSpawn: An argument-based synchronization approach 93

these actually independent tasks. One solution would be to distribute the data in

the original array in smaller independent arrays so that each one of them is used

by a different task, but this introduces non-negligible programming (and sometimes

performance) overheads, and depending on the algorithm it is not always possible.

Another solution, which is the one we have implemented, is to provide a data type

that allows to express these arrays, to efficiently define subsections of them without

copying data, and which is known to our dependencies analysis framework so it can

retrieve the range of elements an array of this class refers to in order to check for

overlaps.

In order to provide this support, we have developed a modified version of the

Array class of the Blitz++ library [127]. Blitz++ implements efficient array classes

and operations for numeric computations. Its Array, illustrated in Listing 4.3,

provides multiple indexing schemes that allow to define sub- arrays that reference a

bigger matrix (i.e. they point to the same data). Our Array class, derived from the

one provided by Blitz++, enables our task spawn framework to check for overlapping

subarrays that reference the same block of memory.

An example of a typical usage of the Array class is shown in Listing 4.4. This code

subdivides the multiplication of two square matrices of N×N elements in BLK×BLK
parallel tasks, each one being in charge of computing one portion of the output ar-

ray result. The multiplication itself is performed in function mxm, which retrieves

the dimensions of the arrays using their interface and accesses their scalar elements

using operator (). The aim of this example is to illustrate the simple and powerful

interface offered by Arrays. A high-performance implementation should obtain the

pointers from the arrays involved in the multiplication and invoke a specialized func-

tion such as gemm from BLAS. This is in fact the way we developed the applications

used in the evaluation in Section 4.3.

1 // Two dimensional matrix of 64x64 floats

2 Array<float, 2> array(64, 64);

3

4 // Subarray from position (10,0) to position (20, 30)

5 Array<float, 2> subarray = array(Range(10, 20), Range(0, 30));

Listing 4.3: Example of definition of an array and a subarray.

94 Chapter 4. Library for task parallelism with detection of dependencies

1 void mxm(Array<float, 2>& result,

2 const Array<float, 2>& a,

3 const Array<float, 2>& b)

4 {

5 const int nrows = result.rows();

6 const int ncols = result.cols();

7 const int kdim = a.cols();

8

9 for(int i = 0; i < nrows; i++) {

10 for(int j = 0; j < ncols; j++) {

11 float f = 0.f;

12 for(int k = 0; k < kdim; k++)

13 f += a(i, k) * b(k, j);

14 result(i, j) = f;

15 }

16 }

17 }

18

19 ...

20 for(int i = 0; i < N; i += N / BLK) {

21 int limi = (i + N / BLK) >= N ? N : (i + N / BLK);

22 Range rows(i, limi - 1);

23 for(int j = 0; j < N; j += N / BLK) {

24 int limj = (j + N / BLK) >= N ? N : (j + N / BLK);

25 Range cols(j, limj - 1);

26 spawn(mxm, result(rows, cols), a(rows, Range::all()), b(Range::all(), cols));

27 }

28 }

29 ...

Listing 4.4: Usage of the Array class to enable the parallel processing of independent
tasks.

4.1.3. Explicit synchronization facilities

DepSpawn also provides three functions to control the synchronization process

at a lower level so that the programmer can make some optimizations:

void wait for all() makes the current thread wait until all the spawned

tasks finish. Its intended use is to serve as a barrier where the main program

4.1 DepSpawn: An argument-based synchronization approach 95

can wait while the spawned processes do their operations.

void wait for(Type vars...) provides a more fine grained synchronization,

where the current thread only waits for the tasks that generate dependencies

on the variables specified as arguments to finish. There can be an arbitrary

number of these variables and they can be of different types.

release(Type vars...) can be used by a spawned task to indicate that the

processing on some variables has ended, so that the dependent tasks can begin

to run before this task actually finishes its execution.

4.1.4. Implementation details

Section 1.4 explained why we have chosen C++ and TBB for the implemen-

tation of our libraries. For DepSpawn, there are additional characteristics of this

environment that were needed for the implementation:

The nuclear idea of our library is to represent the parallel tasks by means

of functions that express all their dependencies through their arguments. As

a result, the function outputs should be provided through their arguments.

This requires either resorting to pointers, which is the only option in C, or the

ability to pass arguments by reference. Since it in unfeasible to automatically

analyze dependencies among pointers using a library for the reasons explained

in Section 4.1.1, we had to choose a language that provides pass by reference,

which is the case of C++.

We wanted our library to be as automated and to require as minimal user

intervention as possible. This way, we preferred to use a language such as

C++, with metaprogramming capabilities that allow a library to automatically

analyze the types of the arguments of a function. In a language without this

ability, the user would have to explicitly indicate to the library the number of

arguments, as well as their intention and size, for each function to spawn.

C++ templates allow to move many computations from runtime to compile

time, particularly those related to types, which play an important role in this

library, resulting in improved performance.

96 Chapter 4. Library for task parallelism with detection of dependencies

An object oriented language that allows operator overloading is required to

implement a class such as Array providing a nice notation. If the language

further enables template classes, as C++ does, a single implementation of the

class allows to provide support for generic arrays of any underlying type and

different numbers of dimensions.

Another important feature of our library is that it does not give place to busy-

wait situations. Rather, tasks with pending dependencies are stored so that they

will be automatically launched to execution once all their dependencies are fulfilled.

After storing such tasks, the corresponding threads of execution that encountered

those requests proceed to the next instruction following the spawn invocation with-

out further delays.

The data associated to the tasks and their dependencies are stored in structures

that are internal to the library and which are updated each time a spawn is made

or a tasks finishes. These structures are shared by all the threads so that all of

them can keep track of the current set of dependencies to abide by and to remove

the ones generated by each task when its execution finishes. This way, there is not

a control thread in charge of these structures and deciding the tasks to spawn in

each moment. Rather, all the threads operate on these structures, of course with

proper synchronization, and launch new tasks to execution when their dependencies

are satisfied.

Regarding the threading and load-balancing mechanism, our library is built on

top of the low level API of the Intel Threading Building Blocks (TBBs) [112] library.

This library has already been discussed in Section 1.4.

Another important component that this library is built upon is the Boost li-

braries [17]. These libraries provide a wide spectrum of advanced C++ utilities,

ranging from different types of smart pointers to full fledged parallel graph struc-

tures. The main component we used to implement our library is the metaprogram-

ming module MPL, which provides useful templates for the compile and runtime

analysis of types in C++ programs, allowing a level of reflection that the lan-

guage by itself does not provide. Other componentes used were function types

and tttype traits, which facilitate the analysis of the types of functions and their

arguments.

4.2 Tested algorithms 97

4.2. Tested algorithms

We first tested the correctness of our implementation with synthetic toy pro-

grams that covered all the possible combinations of task dependencies based on

their input and output arguments. Then we have implemented several algorithms

to test its performance and programmability. The next subsections briefly explain

these algorithms.

4.2.1. N-body simulation using Barnes-Hut

This force-calculation algorithm employs a hierarchical data structure, called an

quadtree, to approximately compute the force that the n bodies in a system induce

upon each other. The algorithm hierarchically partitions the plane around the bodies

into successively smaller cells. Each cell forms an internal node of the quadtree and

summarizes information about the bodies it contains. The leaves of the quadtree

are the individual bodies. This hierarchy reduces the time to calculate the force on

the bodies because, for cells that are sufficiently far away, it suffices to perform only

one force calculation with the cell instead of performing one calculation with each

body inside the cell.

The algorithm has three main phases that run in sequence for each time step,

until the desired ending time is reached. These phases are: (1) creating the quadtree,

1 barnes-hut {

2 Bodies[N];

3 while final time not reached {

4 spawn(create_quad-tree, Bodies);

5 for each block from Bodies:

6 spawn(compute_forces, block)

7 spawn(update, Bodies)

8 }

9 wait_for_all();

10 }

Listing 4.5: Pseudocode of the parallel implemenation using spawn of the Barnes-
Hut algorithm

98 Chapter 4. Library for task parallelism with detection of dependencies

(2) computing the forces acting on each body, (3) updating the state of the system.

The main computation load is in phase 2, whose computations can be done in

parallel. Although phase 3 can be parallelized too, this is usually not considered

because it is very lightweight.

The parallelization of this algorithm with spawn is quite simple: it is only needed

to distribute the bodies in a block fashion and spawn the computation methods,

as shown in the pseudocode in Listing 4.5. It must be noted however that load

balancing, such as the one provided by our library, may play an important role on

the performance of the parallel implementations of this algorithm. The reason is

that the traversal of the quadtree performed in stage (2) of the algorithm does not

have the same cost for each body. Namely, the traversal is deeper and requires

more computations for the bodies located in more densely populated regions. For

this reason our implementations overcompose the parallel loop in more tasks than

available cores and let the underlying framework perform load balacing between

the available cores. Notice also how the other stages are automatically synchronized

thanks to our library, i.e., they only run when they are free of conflicts with preceding

tasks.

4.2.2. LU decomposition

LU decomposition factorizes a matrix as the product of a lower triangular matrix

and an upper triangular matrix. It is a key part of several numerical algorithms as

the resolution of linear equations or computing the determinant of a matrix. The

LAPACK [8] library contains a blocked implementation of this algorithm, repre-

sented in Figure 4.2 with its pseudocode in Listing 4.6, in which A(i,j) refers to

the block in row i and column j in which the input matrix A has been divided. The

algorithm progresses through the main diagonal of the matrix, and in each step it

performs four operations: 1.- the LU decomposition of the diagonal block is com-

puted using the unblocked version of the algorithm (dgetf2) (Line 2), 2.- it swaps

the rows of the matrix from the diagonal to the end, according to the pivots retuned

by the previous step (Line 4), 3.- it computes the solution of A × X = B, being

A the block on the diagonal and B the rest of the row to the end of the matrix

(Line 9), and 4.- it multiplies the row and column blocks to obtain the next square

4.2 Tested algorithms 99

N

N

1) dgetf2

3) dtrsm

2) dlaswp

4) dgemm

Figure 4.2: Blocked algorithm for computing the LU decomposition of a square
matrix

submatrix (Line 13).

The parallelization strategy for this algorithm consist in subdividing the most

expensive operations in blocks, in this case dtrsm but mainly dgemm. These blocks

are represented by the dashed lines in Figure 4.2. Each block is assigned to a

different task to perform the required operation. The for range construction in

Lines 9 and 13 represents a template function provided by our library whose purpose

is to automatically divide an input range of blocks in smaller subblocks with the

optimal size, so neither too many nor too few spawns are called.

4.2.3. Cholesky decomposition

Cholesky decomposition takes a matrix and computes its factorization as a lower

triangular matrix and its conjugate transpose. The blocked version of the algorithm

follows a structure similar to LU. First, the diagonal block is computed with the

non-blocked version of the algorithm. Then, the remaining matrix is computed

100 Chapter 4. Library for task parallelism with detection of dependencies

1 for (j = 1; j < num_blocks; j ++) {

2 dgetf2(A(j:num_blocks, j), P);

3

4 update_pivots(P);

5 dlaswp(A(1:num_blocks, 1:j-1), P);

6 dlaswp(A(1:num_blocks,

7 j+1:num_blocks), P);

8

9 for_range(i in j+1:num_blocks) {

10 spawn(dtrsm, A(j, j), A(j, i));

11 }

12

13 for_range(i1 in j+1:num_blocks,

14 i2 in j+1:num_blocks) {

15 spawn(dgemm, A(i1, j),

16 A(j, i2),

17 A(i1, i2));

18 }

19 wait_for_all();

20 }

Listing 4.6: Pseudocode of the LU decomposition

multiplying the resulting blocks. Thus, the parallelization pattern is similar to the

one used for LU, spawning tasks for the different sub-blocks of these operations.

The pseudocode of this algorithm is shown in Listing 4.7, in which again A(i,j)

refers to a block. The algorithm has two basic steps: in Lines 2 and 3, the block of

the diagonal is processed with an unblocked version of Cholesky, and from Line 5

to the end the remaining matrix is computed and prepared for the next iteration.

4.2.4. Sylvester equations resolution

The Sylvester equation [14], commonly found in control theory, is the equation of

the form AX+XB = C where A,B,C,X are n×n matrices, being X the unknown.

We use X = Ω(A,B,C) to represent the solution to the equation. In particular,

we focus on the triangular case, where both A and B are upper triangular matrices.

The solution of the triangular case arises as an intermediate subproblem in the

4.3 Evaluation 101

1 for (j = 1; j < num_blocks; j ++) {

2 dsyrk(A(1:num_blocks,j), A(j, j));

3 dpotf2(A(j, j));

4

5 for_range(i in j:num_blocks) {

6 spawn(dgemm, transpose(A(1:j-1, j)), A(1:j-1, i), A(j, i));

7 }

8

9 for_range(i in j+1:num_blocks) {

10 spawn(dtrsm, A(j, j), A(j, i));

11 }

12 wait_for_all();

13 }

Listing 4.7: Pseudocode of the Cholesky decomposition

Sylvester equation solver described in citeSYLVESTER. FLAME derives a family

of blocked algorithms [60]. The result of X is stored in C. The algorithm is a hybrid

of iterative and recursive algorithms. In this case, each of the blocks can be assigned

to a different task, and the dependency detection system will take care of the order

of execution to provide the correct result.

The computation of the solution for the Sylvester equation is done multiplying

and recursively solving the blocks of the matrix. Listing 4.8 shows this process:

the algorithm divides the matrices in 9 blocks, which change sizes as the algorithm

progresses; then, for each block, the required operation is invoked, syl for recursively

solving or mul to multiply two blocks. This algorithm has a complex dependency

graph, shown in Figure 4.3, and it is the least scalable of the examples we tested.

4.3. Evaluation

In order to evaluate our approach we parallelized the algorithms described in

the preceding Section using both our library and OpenMP [99], a standard high-

level tool for the development of parallel applications in multicore systems. The

performance tests were performed in a PC with an Intel i7 950 processor (with 4

cores and Hyperthreading) and 6GB of RAM, as well as in a server with 2 Intel

102 Chapter 4. Library for task parallelism with detection of dependencies

1 while(size(A22) > 0) {

2 divide matrix;

3

4 spawn(syl, A11, B00, C10); // 1

5 spawn(syl, A22, B11, C21); // 2

6 spawn(mul, C11, A12, C21); // 3

7 spawn(mul, C11, C10, B01); // 4

8 spawn(syl, A11, B11, C11); // 5

9 spawn(mul, C00, A01, C10); // 6

10 spawn(mul, C01, A01, C11); // 7

11 spawn(mul, C01, A02, C21); // 8

12 spawn(mul, C22, C21, B12); // 9

13 spawn(mul, C12, C10, B02); // 10

14 spawn(mul, C12, C11, B12); // 11

15 }

Listing 4.8: Pseudocode of the Sylvester equations solver

Xeon E5620 quad-core processors and 16 GB of RAM. The compiler used was g++

v. 4.6.3 using -O3 optimization level.

For the N-body simulation we used a system of 100 000 bodies and simulated

1000 iterations. The speedups obtained in these experiments are shown in Figs. 4.4

and 4.5. Figures 4.6 to 4.11 show the performance of the considered linear algebra

algorithms, using different combinations of hardware, libraries, and parallelization

methods. Our library is compared with OpenMP and a purely sequential optimized

version of the algorithms, using both the standard BLAS implementation [94] and

the GotoBLAS2 library [58]. The rank of the double-precision matrices used in these

tests is 8192. The i7 results for 8 cores actually correspond to the usage 4 cores with

2 threads per core thanks to the hyper-threading. It is well-known that the second

thread per core provided by hyper-threading typically only provides between 5%

and 20% of the performance of a real core. In fact this additional thread decreases

performance for many applications due to the conflicts between the threads working

sets in the core caches when large data sets are manipulated. This is the reason

for the reduced performance for LU and Cholesky using 8 cores in the i7. As a

matter of fact, the lack of optimizations in the usage of the memory hierarchy is a

critical reason behind the poor performance, as well as the lack of scalability in the

4.3 Evaluation 103

1 2

34

5

6

7

8 910

11

Figure 4.3: Dependencies of the Sylvester equation solver. Nodes refer to calls in
Listing 4.8

i7, of the implementations based on the standard BLAS distribution. In the case of

Sylvester, given the large number of stages of the algorithm that have no parallelism

and the limited maximum number of parallel tasks available (see Figure 4.3), the

small scalability was to be expected for any implementation.

The spawn-based version usually matches or outperforms the OpenMP version.

We find two reasons for this. First, our library allows a task to run exactly as

soon as its dependences have been satisfied. In OpenMP it is impossible to specify

with such a fine grain the dependencies between tasks in different loops. Rather,

synchronizations such as global barriers are required, which results in threads being

idle more often. The other reason is that the task creation, scheduling and load bal-

ancing mechanisms provided by the OpenMP implementation can be less optimized

and sophisticated than the ones that TBBs provide to our library [98][43].

We have also performed a comparison in terms of programmability of the codes

parallelized with our library and OpenMP using the SLOCs, programming effort

and cyclomatic number metrics described in Section 2.3.1. The results are shown

in Table 4.2. Usually, our library achieves better results than OpenMP for any pro-

104 Chapter 4. Library for task parallelism with detection of dependencies

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

number of cores

sp
ee

du
p

spawn
openmp

Figure 4.4: N-body simulation with Barnes-Hut algorithm in the i7 system

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

number of threads

sp
ee

du
p

spawn
openmp

Figure 4.5: N-body simulation with Barnes-Hut algorithm in the Xeon system

4.3 Evaluation 105

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

number of cores

G
FL

O
PS spawn / BLAS

omp / BLAS
seq / BLAS
spawn / Goto2
omp / Goto2
seq / Goto2

Figure 4.6: LU decomposition in the i7 system

1 2 3 4 5 6 7 8
0

10

20

30

40

number of threads

G
FL

O
PS

Figure 4.7: LU decomposition in the Xeon system

106 Chapter 4. Library for task parallelism with detection of dependencies

1 2 3 4 5 6 7 8
0

10

20

30

40

number of threads

G
FL

O
PS

Figure 4.8: Cholesky decomposition in the i7 system

1 2 3 4 5 6 7 8
0

10

20

30

40

number of threads

G
FL

O
PS

Figure 4.9: Cholesky decomposition in the Xeon system

4.3 Evaluation 107

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of threads

G
FL

O
PS

Figure 4.10: Sylvester equations in the i7 system

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

number of threads

G
FL

O
PS

spawn / BLAS
omp / BLAS
seq / BLAS
spawn / Goto2
omp / Goto2
seq / Goto2

Figure 4.11: Sylvester equations in the Xeon system

108 Chapter 4. Library for task parallelism with detection of dependencies

Table 4.2: Programmability metrics
Application version SLOCs Programming Effort Cyclomatic #
Barnes-hut spawn 214 919 352 36

OpenMP 210 817 543 36
LU spawn 94 349 770 12

OpenMP 95 685 945 17
Cholesky spawn 115 620 087 12

OpenMP 116 796 005 16
Sylvester spawn 98 789 667 3

OpenMP 101 849 096 6

grammability metric. An important reason is that our Array class greatly simplifies

the programming of array- based algorithms compared with the manual manage-

ment of pointers and dimensions required by the standard approach. And this is the

case even when we have counted the functions that unpack the pointers and matri-

ces dimensions from the Arrays to make the proper calls to the underlying BLAS

implementations as part of the programming effort in Table 4.2. Since these are very

typical matrix operations, they could well be included as part of our library, there-

fore further strongly improving all these metrics. The programmability also benefits

from the notation required by our library, which is way terser than OpenMP. With

spawn, one simply adds this word in the line of a procedure invocation that should

be run as a parallel task, while OpenMP often requires separate multiword directives

for the creation of parallel regions and individual tasks. In Barnes-Hut, however, our

approach yields somewhat worse programmability statistics. The reason is that in

this application the computational functions subject to parallel invocations were not

generic functions, but class methods, and our current implementation of spawn does

not support them in a straightforward way. This is simply solved adding functions

that receive the object and the method arguments and which perform the method

invocation, so that spawn is applied to these auxiliary functions.

4.4. Related work

The need for explicit synchronizations is proportional to the flexibility in the

patterns of computation and parallelism supported by a programming paradigm or

4.4 Related work 109

tool. Functional programming, by avoiding state and mutable data, can provide

referential transparency, so that the result of a function evaluation only depends

on its arguments. This property allows in principle to evaluate in parallel any

subexpression, as any order of evaluation yields the same result. Nevertheless, the

exhaustive exploitation of all this implicit parallelism would involve much overhead.

For this reason, in practice functional languages provide mechanisms to explictly

label those computations whose parallel evaluation can be advantageous [124]. While

some approaches [10][62][87] lead to explicit communications and synchronizations,

in others the user just identifies the parallel tasks, letting the compiler or runtime

take care of the low level details.

Data-parallelism, which applies a single stream of instructions in parallel to

the elements of one or several data structures, is the basis of some of the im-

plicitly synchronized functional proposals [102][107]. Unfortunately, this strategy

is too restrictive for many applications either semantically or in terms of per-

formance. A greater degree of flexibility is provided by parallel skeletal opera-

tions [33][109][125][84][53][118], which specify the dependencies, synchronizations

and communications between parallel tasks that follow a pattern observed in many

algorithms. Their applicability is restricted thus to computations that fit the pre-

defined patterns they represent.

Interestingly, there are also proposals [125][88][86][84] that, like DepSpawn, allow

to express tasks with arbitrary patterns of dependencies while avoiding explicit

synchronizations. The fact that they are implemented in purely functional languages

with lazy evaluation makes their programming strategy and the difficulties faced by

the programmer very different from those of DepSpawn, which is integrated in an

imperative language with the usual semantics. This way, their users have to deal

with laziness, which hinders effective parallelization, and they have often to enforce

sequential ordering, which are problems inexistent in our environment. Also, their

functions cannot modify their inputs; rather they just return a result, whose usage

expresses the dependency on the function, and which cannot be overwritten by

other functions due to the immutability of data. This implies that once a function

finishes, all the subsequent tasks that use its result can run in parallel, as they

can only read it, there being no need to track potential ulterior modifications of

its value. On the contrary, DepSpawn functions express their dependencies only

110 Chapter 4. Library for task parallelism with detection of dependencies

through their arguments, which can be inputs, outputs or both, while the return

value is either inexistent or disregarded. Also, since the function arguments can

be both read and/or written by arbitrary functions, the result(s) of a task can be

overwritten by other tasks, leading to more complex patterns of dependencies on

each data item than in a purely functional language. Finally, those approaches do

not provide explicit synchronization facilities or classes similar to Array within their

implicitly synchronized frameworks.

Dataflow programming [40][41] is another paradigm with links to our proposal.

The reason is that it models programs as directed graphs whose nodes perform the

computations and whose edges carry the inputs and outputs of those computations,

thus interconnecting data-dependent computational nodes. This view promotes the

parallel execution of independent computations, which are only run when their data

dependencies are fulfilled, very much like DepSpawn tasks. Under this paradigm a

DepSpawn task can be viewed as a node with input edges for its input arguments,

and output edges for its output arguments. The node would only be triggered when

there were data in all its input edges, and it would generate a result in each one

of its output edges. Arguments that can be both inputs and outputs would be

represented with edges both entering and leaving the node. If several tasks had a

dependency on a given output of a task, the node of this task would be connected

to each one of the dependent nodes with a separate output edge labeled with the

output argument name. If the communication between DepSpawn tasks took place

by means of individual copies, mimicking the behavior of edges that carry the data,

this is all that would be needed. However, communication actually takes place

through shared modifiable variables. This implies that if we want to represent a

DepSpawn program with a dataflow graph whose tasks have the same set of legal

schedules, we must prevent tasks that can write to a variable from beginning their

execution while any preceding reader has not finished, even when there is no actual

flow of data between them. This is achieved by connecting tasks that only read a

given argument with output edges associated to it that link them with the next task

that can modify that argument. This way the writer cannot be triggered until the

reader finishes and puts a value in the connecting edge, even if the value read from

the edge is discarded. Figure 4.12 illustrates all the situations described above with

a small piece of code and its corresponding dataflow graph. The edge a′ has been

marked with an apostrophe to indicate that there is no actual flow of data, but a

4.4 Related work 111

signal to prevent f(c, a) from modifying a while f(a, b) is still working on it. The

figure also illustrates why a node must be used per invocation/task rather than by

function, as, for example, otherwise it would be impossible to run parallel instances

of a function.

While all of them have in common that data in the input edges of a node trigger

its computation, which in turn generates new data in its output edges, there are

several models of dataflow networks with different assumptions and semantics [81].

A DepSpawn application in which each task is deterministic and tasks only com-

municate through their arguments can be modeled as a Kahn Process Network

(KPN) [71], which is a network composed by deterministic sequential processes that

communicate through one-way unbounded FIFO channels. In fact since data are

always consumed and produced by means of a single argument, which is of an ag-

gregate type such as Array when several data items are involved, a network of tasks

generated by DepSpawn can be more accurately modeled as a Synchronous Dataflow

(SDF) [80], a restriction of KPN in which nodes consume and produce a fixed num-

ber of data items per firing in each one of their edges. Furthermore, Depspawn

dataflow graphs are homogeneous SDFs, as all nodes produce or consume a single

sample on each input or output arc when invoked. The properties of the associated

computation graphs have been analyzed in [73][113][35].

Notice that the aforementioned characterization is also valid when tasks spawn

children tasks, provided that these children are also deterministic and only commu-

nicate with other tasks through their arguments. This is thanks to the fact that

void g(A& a, A& b, A& c, A& d) {
...

}

void f(const A& x, A& y) {
...

}

spawn(g, a, b, c, d);
spawn(f, a, b);
spawn(f, c, d);
spawn(f, b, d);
spawn(f, c, a);
wait_for_all();

g(a,b,c,d)

f(a,b) f(c,d)

f(b,d)

a b c d

b d

f(c,a)

a'

a

c

Figure 4.12: Small DepSpawn code and associated dataflow graph.

112 Chapter 4. Library for task parallelism with detection of dependencies

DepSpawn tasks wait for all the preceding tasks with which they have dependencies

and their descendants.

Programs developed under the usual imperative languages can also avoid ex-

plicit synchronizations by resorting to data-parallel approaches [119][70][48][39] and

parallel skeletons [34][46][112][52][53], at the cost again of restricting the patterns

of parallelization. Because of their limitations, users are often forced to resort to

lower level approaches [20][110][97][22][112][82][21][99] seeking more flexibility. The

downside is that these tools hurt productivity, being explicit synchronizations one

of the reasons. Some of them [110][112][82][21][99] have in common with DepSpawn

that they allow to build tasks expressed as functions, although often with a more

convoluted syntax, and that they let the runtime manage the execution of these

tasks using advanced techniques such as work-stealing. In fact, as explained in Sec-

tion 4.1.4, DepSpawn in built on top of TBBs [112]. However, none of them can

automatically track and enforce the dependencies among the tasks. This way, they

all require explicitly synchronizing the tasks by linking each task with its successors

or predecessors, establishing synchronization points, or accessing futures attached

to variables that represent the tasks. Achieving a behavior similar to DepSpawn, in

terms of performance, minimal interface and automatic fulfillment of data depen-

dencies by means of these tools is a non trivial task.

The idea of exploring arbitrary out-of-order execution of tasks by relying on the

dependences among them has already been explored in the context of libraries and

compilers. This way, Supermatrix [25][27][26] provides a library exclusively focused

on linear algebra algorithms that is able to execute its parallel tasks out-of-order

respecting the serial semantics by means of a task dependency analysis. Since,

contrary to our library, its aim is not general, it does not define any particular

programming model either.

As for compiler-based approaches, the Star Superscalar (StarSs) programming

model, with implementations for different devices such as the Cell broadband en-

gine [105] or general SMP computers [101], similarly to our library, seeks to provide

general out-of-order execution of tasks based on data dependencies. Nevertheless,

this paradigm, which has led to the proposal of extensions to OpenMP [44][13],

requires the user to explicitly annotate such dependencies by means of compiler di-

rectives in the code. This involves not only analyzing the code to establish which

4.5 Conclusions 113

are the inputs and outputs of each task, but also which is the exact size of the area

of the arrays pointed by the pointers used in these tasks, as well as the extension

of the region accessed by each pointer. Our library provides elegant solutions to

these problems by directly extracting the information from the function parameters

or from the Array objects provided, resulting in clearer and less error-prone codes.

There are also important differences in the programming model of both ap-

proaches. Namely, in the programming model supported by these compiler direc-

tives, dependencies are only detected inside the scope of the same parent task. This

way if there is any piece of data on which there can be carried dependencies that

need to be considered by a task, it must be explicitly annotated in its parent. Ob-

viously, this also implies in turn annotating all the ascendants up to the level where

the potential dependency is generated. And these annotations also imply that those

ascendants will have to abide by those dependencies, even when they are actually

only needed for the bottom-level task we were initially considering. Nevertheless,

under the programming model provided by our library, tasks automatically fulfill

any dependencies generated not only in their parent task, but also in all of their

ancestors, there being no need to apply those dependencies to any of those ancestors

if they do not need them. This significatively increases the amount of parallelism

that can be exploited in many situations. Other distinctive features of our library

that improve this aspect are the possibility of releasing (some) dependencies before

a task finishes, or blocking a task at some arbitrary point in order to wait for a

specific set of variables.

4.5. Conclusions

In this chapter we have presented DepSpawn, a new library for parallel pro-

gramming that provides very flexible patterns of parallelism without the need of

explicit synchronizations. Using advanced features of C++11, our library is able

to analyze the parameters of arbitrary functions and detect dependencies between

them. With this information it schedules their parallel execution while respecting

their dependencies. We have also provided a clear description of the programming

model enabled by our library as well as a comparison with a standard high-level

approach to parallelize applications in multicore systems like OpenMP. The results

114 Chapter 4. Library for task parallelism with detection of dependencies

obtained are very satisfactory, both in terms of performance and programmability.

Chapter 5

Conclusions

For decades the scientific community primarily focused on the parallelization of

codes with regular control flows, structures and access patterns, as they are easily

found in the scientific and engineering applications to which parallelism was mostly

restricted until multicores made it ubiquitous, thus sparking the interest in the

parallelization of every kind of application. As a result, while regular perfectly

data-parallel applications are well understood and supported, algorithms that are

better described in terms of more complex patterns of parallelism often require

programmers to resort either to manual parallelization using low-level tools, which is

error-prone and costly, or to transactional solutions that require specific hardware or

present potentially large overheads. This thesis is an attempt to better understand

some of these problems and to provide tools that improve their programmability

while providing reasonable performance.

In this dissertation we have considered three kinds of problems whose paralleliza-

tion does not adjust well to the most commonly used tools for different reasons: the

divide-and-conquer pattern, the amorphous data-parallel algorithms, and the appli-

cations based on tasks with arbitrary patterns of dependences. As a result of our

analysis we have provided a library-based solution well suited for each one of them in

shared-memory systems. Our libraries are developed in C++, as it is a very popular

language that provides both high performance and excellent tools to express high-

level abstractions. The underlying framework used by our proposals to create and

manage the parallelism is the Intel Threading Building Blocks (TBB) library [112],

115

116 Chapter 5. Conclusions

as it is widely available and it showed better behavior than other alternatives in the

tests we performed before developing the final version of our libraries. Thanks to this

and to the multiple optimizations applied in our proposals, the performance that

they achieve is competitive with that of existing approaches, while programmability

improvements are observed in the vast majority of the experiments.

Out of the three problems tackled, the first one, which is the parallelization of

the traditional divide-and-conquer pattern, is the most well-known one. Despite this

fact, and the enormous relevance of this pattern, we did not find a flexible skeleton

based on high-level abstractions for its implementation in shared-memory systems.

The need for such skeleton has been motivated in this thesis based on an analysis of

the problems of its implementation by means of the most similar skeleton provided

by the most widely used skeleton library nowadays, which is the Intel TBB. Our

proposal, which we have called parallel recursion, uses one object to provide

information on the structure and decomposition of the input problem and another

one to provide the operations to perform. Using our skeleton resulted in codes

between 2.9 and 4.6 times shorter in terms of SLOCS than the TBB implementations

when only the portion of the codes affected by the parallelization was considered.

Even when considering the whole application and the more accurate programming

effort metric, which takes into account the number and variety of symbols used in

the code, parallel recursion required 14.6% less effort than the standard TBB for

the parallelization of these algorithms. We have also noted that in the specific case of

algorithms that do not need any function to combine the results of their subproblems

to build the final result and that are based on arrays, which naturally fit the TBB

ranges in which TBB templates are based, TBB provided better programmability

metrics than our library, requiring 11.7% less effort. As for performance, our skeleton

performed on average better than both the TBB and OpenMP implementations

in the two machines tested when automatic work partitioning was used, although

manual granularity selection could allow TBB to outperform parallel recursion

in one of the machines.

Amorphous data-parallelism is the second and probably the most complex prob-

lem considered in this dissertation, given the highly irregular nature and the dynam-

ically changing conditions that characterize the applications that fit this paradigm.

This thesis proposes the parallelization of these problems by extending data-parallelism

117

with powerful abstractions [18] and applying the well-known concept of skeleton [57]

to this new field. This way, our proposal is a skeleton called parallel domain proc

that is based on the abstraction of a domain on which the elements to process are

defined. Our skeleton uses this domain both to partition work, by recursively subdi-

viding the input domain, and to detect potential conflicts among parallel computa-

tions, by testing the ownership of the elements to access by the current subdomain

considered. The skeleton is totally agnostic with respect to the object that repre-

sents the irregular structure to process, just requiring that it can support concurrent

updates from parallel tasks, and it has a few requirements on the API and semantics

of the domain objects. In addition, the fact that the skeleton tests to detect conflicts

are based on conditions computed on the elements to process, namely on their be-

longing to a domain, rather than on the usual lock-based strategies, avoids the busy

waiting and contention problems usually associated to locks. Another advantage of

our approach is that work-items are examined at most once per level of subdivision

of the input domain, which provides a clear bound on the maximum number of

attempts to process them. In our experiments the parallel versions developed using

our skeleton required a maximum of 3% more lines of code than their sequential

counterparts, while they used in fact even fewer conditional statements in the user

code, which is reflected in a smaller cyclomatic number, thanks to the embedding

in our library of several of the required tests and loops. As for performance, we

have showed that in these applications it largely depends on many factors that our

skeleton allows to adjust, such as the work decomposition policy, the granularity

of the tasks or the data structures used. Finally, a qualitative comparison with

the related work indicates that the speedups achieved with our library are on par

with those achieved using other approaches, some of them being manual parallel

implementations.

The third problem we have considered is the ability to express in the most con-

venient way tasks that must abide by arbitrary data dependencies so that such

dependencies are automatically enforced. Our solution, called DepSpawn, requires

to write such tasks as functions, which can be regular C++ functions, but also the

new convenient C++11 lambda functions or std :: functions, so that their inputs

and outputs are solely provided by their list of parameters. These functions must

be launched to execution using the provided function spawn, followed by their list

of arguments. This effectively discovers which are the inputs and outputs of the

118 Chapter 5. Conclusions

function and takes the necessary steps to ensure the function is only run when all its

dependences are satisfied. The concrete semantics implemented by our library have

been carefully described, and a special data type to support the parallel processing

of different portions of arrays has been provided together with a few explicit synchro-

nization facilities. Our evaluation reveals that the applications based on DepSpawn

typically match or outperform the codes developed using OpenMP because it can

run tasks just as soon as their individual dependencies are met and thanks to the

advantages of TBB with respect to OpenMP. Just as in the other problems consid-

ered, our solution usually resulted in better programmability metrics than the codes

parallelized with OpenMP. In addition, a detailed discussion that has examined both

existing functional and imperative approaches has shown that DepSpawn is either

more general or presents several programmability and performance advantages with

respect to the previous proposals. In the case of the more related imperative ap-

proaches the reason is that they are either oriented to specific fields of application

or they require more information from the users and present more restrictions in

their applicability.

5.1. Future Work

As future work, the set of libraries can be expanded to address a wider set of

parallel programing models. One interesting idea is to expand the backend of the

libraries so they support distributed memory systems. Also, the configurability of

the libraries can be increased, adding optional interfaces that allow the programmer

to use her knowledge of the concrete problem to introduce hints that could improve

load balancing and performance. This would be specially useful for the case of

parallel domain proc, which uses complex data structures whose best processing

strategy can not be fully known at compile time.

While the domain partitioning strategies provided for parallel domain proc in

our library are reasonable generic approaches, they may be enhanced with the use of

well-known graph-partitioners [74][100] and domain specific strategies. Also, meth-

ods to backup data to be modified so that they can be restored later automatically

by the library if the computation fails can be added in order to support non cautious

operations.

5.1 Future Work 119

As for DepSpawn, a current limitation is that it cannot manage the return values

of the functions used as tasks, which forces them to return all their results by means

of their arguments. We plan to extend the support for functions that return values

using the concept of futures. Namely, for these functions spawn would return a

special object to hold the value returned by the function. Reading this object would

conform an implicit synchronization point.

Bibliography

[1] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable Graph Explo-

ration on Multicore Processors. In Proceedings of the 2010 ACM/IEEE Inter-

national Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Com-

puter Society.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[3] S. Aldea. Compile-Time Support for Thread-Level Speculation. PhD disserta-

tion, Departamento de Informática, Universidad de Valladolid, 2014.

[4] S. Aldea, A. Estebanez, D. R. Llanos, and A. González-Escribano. A New GCC

Plugin-Based Compiler Pass to Add Support for Thread-Level Speculation into

OpenMP. In Proc. 20th Intl. Euro-Par Conf. on Parallel Processing, Euro-Par

2014, pages 234–245, 2014.

[5] S. Aldea, D. R. Llanos, and A. González-Escribano. Support for Thread-

Level Speculation into OpenMP. In Proc. 8th Intl. Conf. on OpenMP in a

Heterogeneous World (IWOMP 2012), pages 275–278, 2012.

[6] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment support-

ing structured parallel programming in Java. Future Gener. Comput. Syst.,

19(5):611–626, 2003.

[7] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Am-

ato, and L. Rauchwerger. STAPL: an adaptive, generic parallel C++ library.

121

122 BIBLIOGRAPHY

In Proceedings of the 14th international conference on Languages and compil-

ers for parallel computing, LCPC’01, pages 193–208, Berlin, Heidelberg, 2003.

Springer-Verlag.

[8] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,

S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: a portable

linear algebra library for high-performance computers. In Proceedings of the

1990 ACM/IEEE conference on Supercomputing, Supercomputing ’90, pages

2–11, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[9] D. Andrade, B. B. Fraguela, J. C. Brodman, and D. A. Padua. Task-

Parallel versus Data-Parallel Library-Based Programming in Multicore Sys-

tems. In 17th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP 2009), pages 101–110. IEEE Computer

Society, 2009.

[10] J. Armstrong. Programming Erlang: Software for a Concurrent World. Prag-

matic Bookshelf, 2007.

[11] R. C. Armstrong and A. Cheung. POET (Parallel Object-oriented Environ-

ment and Toolkit) and Frameworks for Scientific Distributed Computing. In

Proc. of 30th Hawaii International Conference on System Sciences (HICSS),

pages 54–63, 1997.

[12] V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and A. Pothen.

Graph Coloring Algorithms for Multi-core and Massively Multithreaded Ar-

chitectures. Parallel Comput., 38(10-11):576–594, Oct. 2012.

[13] E. Ayguadé, R. M. Badia, P. Bellens, D. Cabrera, A. Duran, R. Ferrer,

M. González, F. D. Igual, D. Jiménez-González, and J. Labarta. Extend-

ing OpenMP to Survive the Heterogeneous Multi-Core Era. Intl. J. Parallel

Program., 38(5-6):440–459, 2010.

[14] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB

= C [F4]. Commun. ACM, 15(9):820–826, sep 1972.

BIBLIOGRAPHY 123

[15] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ort́ı, and R. A.

van de Geijn. The Science of Deriving Dense Linear Algebra Algorithms.

ACM Trans. Math. Softw., 31(1):1–26, Mar. 2005.

[16] G. Bikshandi, J. Guo, C. von Praun, G. Tanase, B. B. Fraguela, M. J.

Garzarán, D. Padua, and L. Rauchwerger. Design and Use of htalib – A

Library for Hierarchically Tiled Arrays. In Languages and Compilers for Par-

allel Computing, volume 4382 of Lecture Notes in Computer Science, pages

17–32. Springer Berlin Heidelberg, 2007.

[17] Boost.org. Boost C++ libraries. http://boost.org.

[18] J. C. Brodman, B. B. Fraguela, M. J. Garzarán, and D. Padua. New abstrac-

tions for data parallel programming. In First USENIX Conf. on Hot Topics

in Parallelism (HotPar’09), pages 16–16, 2009.

[19] D. Buono, M. Danelutto, and S. Lametti. Map, reduce and mapreduce, the

skeleton way. Procedia CS, 1(1):2095–2103, 2010.

[20] D. R. Butenhof. Programming with POSIX Threads. Addison Wesley, 1997.

[21] C. Campbell, R. Johnson, A. Miller, and S. Toub. Parallel Programming with

Microsoft .NET - Design Patterns for Decomposition and Coordination on

Multicore Architectures. Microsoft Press, 2010.

[22] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. War-

ren. Introduction to UPC and Language Specification. Technical Report CCS-

TR-99-157, IDA Center for Computing Sciences, 1999.

[23] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and

S. Chatterjee. Software Transactional Memory: Why Is It Only a Research

Toy? Queue, 6(5):46–58, 2008.

[24] B. Chamberlain, S.-E. Choi, E. Lewis, L. Snyder, W. Weathersby, and C. Lin.

The case for high-level parallel programming in ZPL. Computational Science

Engineering, IEEE, 5(3):76 –86, jul-sep 1998.

[25] E. Chan, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, and R. van de Geijn. Super-

matrix out-of-order scheduling of matrix operations for SMP and multi-core

124 BIBLIOGRAPHY

architectures. In Proc. 19th ACM symp. on Parallel algorithms and architec-

tures, SPAA’07, pages 116–125, 2007.

[26] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı,

and R. van de Geijn. SuperMatrix: a multithreaded runtime scheduling system

for algorithms-by-blocks. In Proc. 13th ACM SIGPLAN Symp. on Principles

and practice of parallel programming, PPoPP’08, pages 123–132, 2008.

[27] E. Chan, F. G. Van Zee, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, and R. van de

Geijn. Satisfying your dependencies with SuperMatrix. In Proc. 2007 IEEE

Intl. Conf. on Cluster Computing, CLUSTER’07, pages 91–99, 2007.

[28] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun,

V. Saraswat, and V. Sarkar. X10: An Object-oriented Approach to Non-

uniform Cluster Computing. In Procs. of the Conf. on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA) – Onward

Track, 2005.

[29] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In

Proceedings of the ninth annual symposium on Computational geometry, SCG

’93, pages 274–280. ACM, 1993.

[30] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Münster Skeleton Library

Muesli - A Comprehensive Overview. Technical Report Working Papers, ER-

CIS No. 7, University of Münster, 2009.

[31] M. Cintra and D. R. Llanos. Toward efficient and robust software speculative

parallelization on multiprocessors. In Proceedings of the SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 13–24,

2003.

[32] M. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural support for scalable

speculative parallelization in shared-memory multiprocessors. In Proc. of the

27th intl. symp. on Computer architecture (ISCA), pages 256–264, 2000.

[33] M. Cole. Algorithmic skeletons: structured management of parallel computa-

tion. MIT Press, 1991.

BIBLIOGRAPHY 125

[34] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for

skeletal parallel programming. Parallel Computing, 30:389–406, March 2004.

[35] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs.

J. Comput. Syst. Sci., 5(5):511–523, oct 1971.

[36] D. E. Culler, A. Gupta, and J. P. Singh. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 1st edition, 1997.

[37] M. Danelutto. Efficient Support for Skeletons on Workstation Clusters. Par-

allel Processing Letters, 11(1):41–56, 2001.

[38] M. Danelutto and M. Torquati. Loop Parallelism: A New Skeleton Perspec-

tive on Data Parallel Patterns. In Parallel, Distributed and Network-Based

Processing (PDP), 2014 22nd Euromicro International Conference on, pages

52–59, Feb 2014.

[39] A. de Vega, D. Andrade, and B. B. Fraguela. An efficient parallel set container

for multicore architectures. In intl. conf. on Parallel Computing, ParCo 2011,

pages 369–376, 2011.

[40] J. B. Dennis. First version of a data flow procedure language. In B. Robinet,

editor, Programming Symposium, volume 19 of Lecture Notes in Computer

Science, pages 362–376. Springer-Verlag, 1974.

[41] J. B. Dennis. Data Flow Supercomputers. Computer, 13(11):48–56, nov 1980.

[42] A. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. Zapata. High-level tem-

plate for the task-based parallel wavefront pattern. In High Performance Com-

puting (HiPC), 2011 18th International Conference on, pages 1–10, Dec 2011.

[43] A. J. Dios, R. Asenjo, A. G. Navarro, F. Corbera, and E. L. Zapata. Evaluation

of the task programming model in the parallelization of wavefront problems. In

12th IEEE Intl. Conf. on High Performance Computing and Communications

(HPCC 2010), pages 257–264, 2010.

[44] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia, and J. Labarta. A proposal

to extend the OpenMP tasking model with dependent tasks. Intl. J. Parallel

Program., 37(3):292–305, June 2009.

126 BIBLIOGRAPHY

[45] J. Enmyren and C. Kessler. SkePU: a multi-backend skeleton programming

library for multi-GPU systems. In 4th intl. workshop on High-level parallel

programming and applications, HLPP ’10, pages 5–14, 2010.

[46] J. Falcou, J. Sérot, T. Chateau, and J.-T. Lapresté. Quaff: efficient C++

design for parallel skeletons. Parallel Computing, 32(7-8):604–615, 2006.

[47] B. B. Fraguela, G. Bikshandi, J. Guo, M. J. Garzarán, D. Padua, and C. von

Praun. Optimization techniques for efficient HTA programs. Parallel Com-

puting, 38(9):465 – 484, 2012.

[48] B. B. Fraguela, J. Guo, G. Bikshandi, M. J. Garzarán, G. Almási, J. Moreira,

and D. Padua. The Hierarchically Tiled Arrays programming approach. In

Proc. 7th Workshop on languages, compilers, and run-time support for scalable

systems, LCR ’04, pages 1–12, October 2004.

[49] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas. Pro-

gramming the FlexRAM Parallel Intelligent Memory System. SIGPLAN Not.,

38(10):49–60, June 2003.

[50] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious

Algorithms. In FOCS ’99: Procs. 40th Annual Symp. on Foundations of Com-

puter Science, page 285, 1999.

[51] A. Geist. PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for

Networked Parallel Computing. Scientific and engineering computation. MIT

Press, 1994.

[52] C. H. González and B. B. Fraguela. A Generic Algorithm Template for Divide-

and-Conquer in Multicore Systems. In 12th IEEE Intl. Conf. on High Per-

formance Computing and Communications (HPCC 2010), pages 79 –88, sept

2010.

[53] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frame-

works: High-level Structured Parallel Programming Enablers. Softw. Pract.

Exper., 40(12):1135–1160, Nov. 2010.

BIBLIOGRAPHY 127

[54] C. H. González and B. B. Fraguela. A framework for argument-based task syn-

chronization with automatic detection of dependencies. Parallel Computing,

39(9):475–489, 2013.

[55] C. H. González and B. B. Fraguela. An algorithm template for domain-based

parallel irregular algorithms. International Journal of Parallel Programming,

42(6):948–967, 2014.

[56] C. H. González and B. B. Fraguela. Enhancing and evaluating the configu-

ration capability of a skeleton for irregular computations. In 23rd Euromicro

International Conference on Parallel, Distributed and Network-based Process-

ing, 2015. accepted for publication.

[57] S. Gorlatch and M. Cole. Parallel skeletons. In Encyclopedia of Parallel Com-

puting, pages 1417–1422. 2011.

[58] K. Goto. GotoBLAS2. http://www.tacc.utexas.edu/tacc-projects/gotoblas2.

[59] W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd ed.): portable parallel

programming with the message-passing interface. MIT Press, Cambridge, MA,

USA, 1999.

[60] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn.

FLAME: Formal Linear Algebra Methods Environment. ACM Trans. Math.

Softw., 27(4):422–455, dec 2001.

[61] M. Gupta and R. Nim. Techniques for run-time parallelization of loops. Su-

percomputing, pages 1–12, 1998.

[62] P. Haller and M. Odersky. Scala Actors: Unifying thread-based and event-

based programming. Theor. Comput. Sci., 410(2-3):202–220, Feb. 2009.

[63] M. H. Halstead. Elements of Software Science. Elsevier, 1977.

[64] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for

a chip multiprocessor. In Proc. of the 8th Intl. Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages

58–69, 1998.

128 BIBLIOGRAPHY

[65] T. Harris and K. Fraser. Language support for lightweight transactions. In

Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented

programing, systems, languages, and applications, OOPSLA ’03, pages 388–

402. ACM, 2003.

[66] M. A. Hassaan, M. Burtscher, and K. Pingali. Ordered vs. unordered: a com-

parison of parallelism and work-efficiency in irregular algorithms. SIGPLAN

Not., 46(8):3–12, Feb. 2011.

[67] K. A. Hawick, A. Leist, and D. P. Playne. Parallel graph component labelling

with GPUs and CUDA. Parallel Computing, 36(12):655–678, 2010.

[68] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 5th edition, 2011.

[69] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support

for lock-free data structures. In Proceedings of the 20th annual international

symposium on computer architecture, ISCA ’93, pages 289–300. ACM, 1993.

[70] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for

MIMD distributed-memory machines. Commun. ACM, 35:66–80, August

1992.

[71] G. Kahn. The semantics of a simple language for parallel programming. In

IFIP Congress, pages 471–475, Aug 1974.

[72] R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-

salesman problem in the plane. Math. of Operations Research, 2(3):209–224,

1977.

[73] R. M. Karp and R. E. Miller. Properties of a model for parallel computations:

Determinacy, termination, queueing. SIAM J. Appl. Math., 14(6):1390–1411,

nov 1966.

[74] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-

titioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–

392, 1998.

BIBLIOGRAPHY 129

[75] H. Kuchen. A Skeleton Library. In Proc. 8th Intl. Euro-Par Conf. on Parallel

Processing, pages 620–629, 2002.

[76] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How

much parallelism is there in irregular applications? SIGPLAN Not., 44:3–14,

February 2009.

[77] M. Kulkarni, M. Burtscher, and K. Pingali. Lonestar: A suite of parallel

irregular programs. In in IEEE International Symposium on Performance

Analysis of Systems and Software, pages 65–76, 2009.

[78] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and L. P.

Chew. Optimistic parallelism benefits from data partitioning. SIGOPS Oper.

Syst. Rev., 42(2):233–243, 2008.

[79] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and

L. P. Chew. Optimistic parallelism requires abstractions. SIGPLAN Not.,

42(6):211–222, June 2007.

[80] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, sept 1987.

[81] E. Lee and T. Parks. Dataflow process networks. Proceedings of the IEEE,

83(5):773 –801, may 1995.

[82] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library.

SIGPLAN Not., 44(10):227–242, Oct. 2009.

[83] M. Leyton and J. Piquer. Skandium: Multi-core Programming with Algorith-

mic Skeletons. In Parallel, Distributed and Network-Based Processing (PDP),

2010 18th Euromicro International Conference on, pages 289–296, Feb 2010.

[84] R. Loogen, Y. Ortega-mallén, and R. Peña maŕı. Parallel functional program-

ming in Eden. J. Funct. Program., 15(3):431–475, May 2005.

[85] R. Lublinerman, S. Chaudhuri, and P. Cerný. Parallel programming with

object assemblies. In Proceedings of Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 61–80, 2009.

130 BIBLIOGRAPHY

[86] S. Marlow, P. Maier, H.-W. Loidl, M. Aswad, and P. Trinder. Seq no more:

better strategies for parallel Haskell. SIGPLAN Not., 45(11):91–102, Sept.

2010.

[87] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic

parallelism. SIGPLAN Not., 46(12):71–82, Sept. 2011.

[88] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore

Haskell. SIGPLAN Not., 44(9):65–78, Aug. 2009.

[89] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A library of constructive

skeletons for sequential style of parallel programming. In Infoscale, 2006.

[90] T. Mattson, B. Sanders, and B. Massingill. Patterns for parallel programming.

Addison-Wesley Professional, 2004.

[91] McCabe. A Complexity Measure. IEEE Transactions on Software Engineer-

ing, 2:308–320, 1976.

[92] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan, M. Kulka-

rni, M. Burtscher, and K. Pingali. Structure-driven optimizations for amor-

phous data-parallel programs. In Proceedings of the 15th ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’10,

pages 3–14. ACM, 2010.

[93] J. Meng, S. Che, J. W. Sheaffer, J. Li, J. Huang, and K. Skadron. Hierarchical

Domain Partitioning For Hierarchical Architectures. Technical Report CS-

2008-08, Univ. of Virginia Dept. of Computer Science, June 2008.

[94] National Science Foundation and Department of Energy. BLAS.

http://www.netlib.org/blas/, 2011.

[95] A. Navarro, R. Asenjo, F. Corbera, A. J. Dios, and E. L. Zapata. A case study

of different task implementations for multioutput stages in non-trivial parallel

pipeline applications . Parallel Computing, 40(8):374 – 393, 2014.

[96] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: a portable

shared-memory programming model for distributed memory computers. In

BIBLIOGRAPHY 131

Supercomputing ’94: Proc. of the 1994 Conf. on Supercomputing, page 340.

IEEE Computer Society Press, 1994.

[97] R. W. Numrich and J. Reid. Co-array Fortran for parallel programming.

SIGPLAN Fortran Forum, 17(2):1–31, Aug. 1998.

[98] S. Olivier and J. F. Prins. Comparison of OpenMP 3.0 and Other Task Parallel

Frameworks on Unbalanced Task Graphs. Intl. J. Parallel Program., 38(5-

6):341–360, 2010.

[99] OpenMP Architecture Review Board. OpenMP Program Interface Version

3.1, July 2011. http://www.openmp.org.

[100] F. Pellegrini and J. Roman. Scotch: A software package for static mapping

by dual recursive bipartitioning of process and architecture graphs. In High-

Performance Computing and Networking, pages 493–498. Springer, 1996.

[101] J. Perez, R. Badia, and J. Labarta. A dependency-aware task-based program-

ming environment for multi-core architectures. In 2008 IEEE Intl. Conf. on

Cluster Computing, pages 142 –151, oct 2008.

[102] S. Peyton Jones. Harnessing the Multicores: Nested Data Parallelism in

Haskell. In Proc. 6th Asian Symp. on Programming Languages and Systems,

APLAS’08, pages 138–138, 2008.

[103] K. Pingali, M. Kulkarni, D. Nguyen, M. Burtscher, M. Mendez-lojo,

D. Prountzos, X. Sui, and Z. Zhong. Amorphous Data-parallelism in Irregular

Algorithms. Technical Report TR-09-05, The Univ. of Texas at Austin, Dpt.

of Computer Sciences, Feb. 2009.

[104] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,

T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and

X. Sui. The Tao of Parallelism in Algorithms. SIGPLAN Not., 46(6):12–25,

June 2011.

[105] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based

Programming With StarSs. Int. J. High Perform. Comput. Appl., 23(3):284–

299, Aug. 2009.

132 BIBLIOGRAPHY

[106] A. Pothen. Graph Partitioning Algorithms with Applications to Scien-

tific Computing. In Parallel Numerical Algorithms, pages 323–368. Springer

Netherlands, 1997.

[107] A. Prokopec, P. Bagwell, T. Rompf, and R. Odersky. A generic parallel collec-

tion framework. In Proc. 17th intl. conf. on Parallel Processing, Euro-Par’11,

pages 136–147, 2011.

[108] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared Memory:

Concepts and Systems. IEEE Parallel Distrib. Technol., 4(2):63–79, June

1996.

[109] F. A. Rabhi. Abstract machine models for highly parallel computers. chap-

ter Exploiting parallelism in functional languages: a ”paradigm-oriented” ap-

proach, pages 118–139. Oxford University Press, 1995.

[110] K. H. Randall. Cilk: Efficient Multithreaded Computing, 1998.

[111] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time paral-

lelization of loops with privatization and reduction parallelization. In Proceed-

ings of the ACM SIGPLAN 1995 conference on Programming language design

and implementation, PLDI ’95, pages 218–232. ACM, 1995.

[112] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism. O’Reilly, July 2007.

[113] R. Reiter. Scheduling Parallel Computations. J. ACM, 15(4):590–599, oct

1968.

[114] J. V. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S. Banerjee,

W. F. Humphrey, S. R. Karmesin, K. Keahey, M. Srikant, and M. Dell Thol-

burn. POOMA: A Framework for Scientific Simulations of Parallel Architec-

tures. In G. V. Wilson and P. Lu, editors, Parallel Programming in C++,

chapter 14, pages 547–588. MIT Press, 1996.

[115] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting Dy-

namic Data Structures on Distributed-Memory Machines. ACM Transactions

on Programming Languages and Systems, 17(2):233–263, March 1995.

BIBLIOGRAPHY 133

[116] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg.

McRT-STM: a high performance software transactional memory system for a

multi-core runtime. PPoPP ’06, pages 187–197, 2006.

[117] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe. Delaunay

Triangulation with Transactions and Barriers. In Proc. 2007 IEEE 10th Intl.

Symp. on Workload Characterization, IISWC ’07, pages 107–113, 2007.

[118] C. Smith. Programming F# 3.0. O’Reilly Media, 2012.

[119] L. Snyder. The Design and Development of ZPL. In Proc. 3rd ACM SIGPLAN

conf. on History of programming languages, HOPL III, pages 8–1–8–37, 2007.

[120] M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for High-Level Pro-

gramming of Multi-GPU Systems. In V. Malyshkin, editor, Parallel Comput-

ing Technologies, volume 7979 of Lecture Notes in Computer Science, pages

258–272. Springer Berlin Heidelberg, 2013.

[121] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A Portable Skeleton Library

for High-Level GPU programming. In 2011 IEEE Intl. Parallel and Distributed

Processing Symp. Workshops and Phd Forum (IPDPSW), pages 1176 –1182,

may 2011.

[122] C. Teijeiro, G. L. Taboada, J. Touriño, B. B. Fraguela, R. Doallo, D. A.

Mallón, A. Gómez, J. C. Mouriño, and B. Wibecan. Evaluation of UPC

Programmability Using Classroom Studies. In Proceedings of the Third Con-

ference on Partitioned Global Address Space Programing Models, PGAS ’09,

pages 10:1–10:7, New York, NY, USA, 2009. ACM.

[123] E. Totoni, M. Dikmen, and M. J. Garzarán. Easy, Fast, and Energy-efficient

Object Detection on Heterogeneous On-chip Architectures. ACM Trans. Ar-

chit. Code Optim., 10(4):45:1–45:25, Dec. 2013.

[124] P. Totoo and H.-W. Loidl. Parallel haskell implementations of the n-body

problem. Concurrency and Computation: Practice and Experience, 26(4):987–

1019, 2014.

[125] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm

+ strategy = parallelism. J. Funct. Program., 8(1):23–60, Jan. 1998.

134 BIBLIOGRAPHY

[126] University of Rome. Dimacs Implementation Challenge. http://www.dis.

uniroma1.it/~challenge9/.

[127] T. L. Veldhuizen. Arrays in Blitz++. In Proc. 2nd Intl. Scientific Computing in

Object-Oriented Parallel Environments (ISCOPE98), pages 223–230. Springer-

Verlag, 1998.

[128] D. A. Wheeler. SLOCCount.

[129] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-

murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken.

Titanium: A High-Performance Java Dialect. In Workshop on Java for High-

Performance Network Computing, 1998.

