
PhD Thesis

Geospatial Processing and
Visualization of Point Clouds: from

GPUs to Big Data Technologies

David Deibe Seoane

2019

Geospatial Processing and

Visualization of Point Clouds:

from GPUs to Big Data

Technologies

David Deibe Seoane

PhD Thesis

October 2019

PhD Advisors:

Margarita Amor López

Ramón Doallo Biempica

PhD Program in Information Technology Research

Dra. Margarita Amor López

Profesora Titular de Universidade

Dpto. de Enxeñaŕıa de Computadores

Universidade da Coruña

Dr. Ramón Doallo Biempica

Catedrático de Universidade

Dpto. de Enxeñaŕıa de Computadores

Universidade da Coruña

CERTIFICAN

Que a memoria titulada “Geospatial Processing and Visualization of Point Clouds:

from GPUs to Big Data Technologies” foi realizada por D. David Deibe Seoane

baixo a nosa dirección no Departamento de Enxeñaŕıa de Computadores da Univer-

sidade da Coruña, e conclúe a Tese de Doutoramento que presenta para a obtención

do t́ıtulo de Doutor en Enxeñaŕıa Informática pola Universidade da Coruña coa

Mención de Doutor Internacional.

En A Coruña, a de de 2019.

Asdo.: Margarita Amor López

Directora da Tese de Doutoramento

Asdo.: Ramón Doallo Biempica

Director da Tese de Doutoramento

Asdo.: David Deibe Seoane

Autor da Tese de Doutoramento

Aos meus pais,

por darme a oportunidade de chegar ata aqúı.

Agradecementos

En primeiro lugar, gustaŕıame agradecerlles a Marga e Ramón, directores desta

tese, a oportunidade que me concederon para participar nun proxecto tan interesante

e con tantas posibilidades coma este e pola axuda e dedicación prestadas ao longo

destes anos.

Gustaŕıame tamén dar as grazas a todos os membros do corpo docente cos que

tiven a sorte de traballar, colaborar e aprender e que sempre se mostraron tan dis-

postos a participar e axudar no proceso de creación desta tese. Tanto a aqueles da

Facultade de Informática da Coruña como aos da Universidade de Santiago de Com-

postela, grazas. Con especial mención ao Grupo de Arquitectura de Computadores

no que desenvolv́ın a miña tarefa investigadora. Tampouco podeŕıa esquecer aos

membros do grupo LaboraTe, especialmente a Sandra, por toda a axuda e tempo

prestados.

Of course, I’d also want to thank Dr. Jürgen Döllner for hosting and advising

me during my visit to the University of Potsdam, as well as to Beate and all my

colleagues at the Hasso-Plattner-Institut, especially Daniel, Willy and Vlad for their

amazing welcome and the support they gave me.

A t́ıtulo persoal, gustaŕıame dedicar tamén unhas palabras especiais a todas

aquelas persoas que supuxeron un apoio moral, que estiveron ao meu carón sempre

que o precisei, por todos eses momentos de alegŕıa e troula e, en definitiva, por ser

unha parte tan importante na miña vida en xeral e nesta etapa en particular. Aos

meus pais e a Laura, grazas por todo, pois fostes sen dúbida as principais persoas

coas que puiden chegar ata aqúı.

Por último, gustaŕıame estender o meu agradecemento a tódalas entidades que

v

vi

fixeron posible o financiamento deste proxecto: a rede de investigación HiPEAC, á

Xunta de Galicia (Ref. ED431C 2017/04, Ref. GRC 2013/055, Ref. R2016/037,

Ref. R2014/049, Ref. ED431G/01), ao Goberno de España (TIN2016-75845-P,

TIN2013-42148-P) e á empresa Inditex polo seu financiamento da miña estad́ıa.

David Deibe Seoane

Quote me as saying I was mis-quoted.

(Citadme diciendo que me han citado mal)

Groucho Marx

Resumo

A tecnolox́ıa LiDAR (Light Detection And Ranging) é actualmente unha das máis

valiosas fontes de información xeográfica xa que permite, mediante dispositivos de

dixitalización láser, a obtención de modelos tridimensionais de alta resolución de

grandes áreas de terra. Os datos LiDAR, normalmente almacenados como nubes

de puntos, utiĺızanse nun gran número de campos cient́ıficos e profesionais como un

elemento fundamental do traballo. Debido á enorme cantidade de información que

pode ser xerada mediante esta tecnolox́ıa, os conxuntos de datos LiDAR sempre

foron considerados coma un gran desaf́ıo á hora de desenvolver aplicacións software

capaces de manexar tales volumes de información de xeito rápido e eficiente.

Toda a investigación realizada durante esta Tese centrouse no desenvolvemento

de novas técnicas, algoritmos e sistemas que mellorasen o rendemento, a eficien-

cia e a calidade dos múltiples e diversos elementos cŕıticos dos contornos LiDAR.

Aśı, desenvolvéronse sistemas web de tipo cliente-servidor para visualizar e proce-

sar en tempo real grandes nubes de puntos de resolución completa, permitindo o

acceso desde calquera tipo de dispositivo, dende tabletas a equipos de sobremesa,

adaptando as súas funcionalidades e caracteŕısticas aos requisitos e necesidades de

campos espećıficos do coñecemento cient́ıfico. As elevadas esixencias de almacena-

mento t́ıpicamente asociadas aos datos LiDAR, aśı como o intenso tráfico de rede

que pode xerarse en aplicacións de tipo web, levou ao desenvolvemento de métodos

de compresión de datos sen perdas xunto con novas estruturas de datos baseadas

na non redundancia de información. Estes novos elementos foron utilizados para

proporcionar un soporte altamente eficiente para técnicas multi-resolución out-of-

core para a visualización en tempo real de nubes de puntos masivas, reducindo de

xeito significativo os requisitos de almacenamento, o consumo de memoria principal

e de v́ıdeo, aśı como a conxestión no tráfico de rede. Por último, estableceuse como

obxectivo da fase final da Tese, superar as limitacións derivadas da execución de soft-

ix

x

ware en computadores compostos por unha única máquina para o almacenamento

e a computación sobre grandes conxuntos de datos LiDAR masivos. A partir dun

estudo preliminar para analizar a idoneidade de diferentes solucións big data para

almacenar, distribúır e dar soporte ao env́ıo de datos a varios clientes LiDAR, de-

senvolveuse un sistema altamente escalable para a computación distribúıda sobre os

volumes de datos mencionados. Como punto de partida, implementáronse diversas

propostas utilizando como caso de estudo a creación de modelos dixitais do terreo

(MDT), servindo como base tecnolóxica para un futuro servizo coa capacidade de

ofrecer unha biblioteca de múltiples procesos xeoespaciais.

Resumen

La tecnoloǵıa LiDAR (Light Detection And Ranging) es actualmente una de las

fuentes de información geográfica más valiosas ya que permite obtener, mediante el

uso de dispositivos de escaneo láser, modelos tridimensionales de alta resolución de

amplias extensiones de terreno. Los datos LiDAR, almacenados t́ıpicamente como

nubes de puntos, son utilizados en un gran número de campos cient́ıficos y profesio-

nales como elemento fundamental de trabajo. Debido a las enormes cantidades de

información que pueden generarse, los conjuntos de datos LiDAR siempre han su-

puesto un enorme desaf́ıo a la hora de desarrollar software capaz de manejar dichos

volúmenes de información de manera rápida y eficiente.

Todas las investigaciones realizadas durante esta Tesis se centraron en desarrollar

nuevas técnicas, algoritmos y sistemas que permitiesen mejorar el rendimiento, la

eficiencia y calidad de múltiples y diversos elementos cŕıticos de los entornos LiDAR.

Aśı, se desarrollaron sistemas web de tipo cliente-servidor para la visualización en

tiempo real y el procesamiento de grandes nubes de puntos de resolución comple-

ta desde cualquier tipo de dispositivo, desde PCs hasta tabletas, adecuando sus

funcionalidades y prestaciones a los requerimientos y necesidades de campos de co-

nocimiento cient́ıfico espećıficos. Las altas demandas de almacenamiento asociadas

a los datos LiDAR, aśı como también el intenso tráfico de red que puede darse en

aplicaciones de tipo web, llevaron al desarrollo de métodos de compresión de datos

sin pérdida junto con nuevas estructuras de datos basadas en la no-redundancia de

información. Estos nuevos elementos se emplearon para dar soporte altamente efi-

ciente a técnicas de multiresolución out-of-core para la visualización en tiempo real

de nubes de puntos masivas, logrando reducir de manera notable los requisitos de

almacenamiento, el consumo de memoria principal y de v́ıdeo, aśı como también la

congestión de red. Por último, se fijó como objetivo de la etapa final de la tesis, el de

superar las limitaciones derivadas de la ejecución de software en equipos compuestos

xi

xii

por una sola máquina para el almacenamiento y computación de grandes conjun-

tos de datos masivos LiDAR. Partiendo de un estudio preliminar para analizar la

idoneidad de distintas soluciones big data a la hora de almacenar, distribuir y dar

soporte al env́ıo de datos hacia múltiples clientes LiDAR, se desarrolló un sistema

altamente escalable para la computación distribuida sobre los citados volúmenes de

datos. Como punto de partida, se implementó un conjunto de propuestas utilizando

como caso de estudio la creación de modelos digitales de terreno (MDT), sirviendo

este como base tecnológica para un futuro servicio con la capacidad de ofrecer una

libreŕıa de diversos procesos geoespaciales.

Abstract

Currently, LiDAR (Light Detection And Ranging) technology is one of the most

valuable sources of geographic information, allowing us to obtain, through the use

of laser scanning devices, high-resolution three-dimensional models of large tracts

of land. LiDAR data, typically stored as point clouds, have been used in a wide

range of scientific and professional fields as a fundamental element of work. Due to

the extremely large volumes of data that can be generated, LiDAR datasets have

always been a challenge for developing software capable of handling such volumes

of information in a fast and efficient way.

All the research carried out during this Thesis was focused on developing new

techniques, algorithms and systems to improve the performance, efficiency and qual-

ity of several critical elements in LiDAR environments. Thereby, client-server web

systems were developed for real-time visualization and processing of large point

clouds of full-resolution grating their access from any type of device, from desktop

PCs to tablets, adapting their functionalities and features to the requirements and

needs of specific fields of scientific knowledge. The high storage demands typically

associated with LiDAR, as well as the intense network traffic that can be produced

in web environments, led to the development of lossless data compression methods

along with novel data structures based on non data redundancy. These new ele-

ments were used to provide highly efficient support for out-of-core multi-resolution

techniques for real-time visualization of massive point clouds, achieving a notable

reduction in storage requirements, main memory and video memory consumptions,

as well as a reduction in network congestion. The objective in the final stage of

the Thesis was to overcome all storage and computational constraints related to the

use of a single machine with large collection of massive LiDAR datasets. Starting

from a preliminary study to analyse the suitability of different big data solutions for

storing, distributing and supporting the concurrent access to the data from several

xiii

xiv

LiDAR clients, a highly scalable system was developed offering distributed comput-

ing capability for processing said volumes of data. As a starting point, a series of

proposals was implemented using as a case study the obtention of digital terrain

models (DTM), serving as a technological basis for a future service with the ability

to offer a much wider library of several geospatial processes.

Preface

Introduction and Motivation

LiDAR (Light Detection And Ranging) technology stands up as one of the

most important and valuable sources of geospatial information among the differ-

ent remote-sensing technologies available nowadays. By providing data in the form

of highly detailed point clouds, this technology has brought great benefits to a

large variety of scientific and professional fields, such as agroforestry, archaeology,

robotics, or autonomous vehicles, among many others.

Some of the most detailed and highest quality point clouds may contain several

billion points with great deal of per-point information, such as (x, y, z) coordinates,

RGB colour or GPS time. Large collections of these massive datasets usually sur-

pass the terabyte, or even the petabyte, in size, which makes LiDAR technology a

challenge when it comes to developing efficient applications to handle such volumes

of geographical information. In professional and scientific environments working

under high data collection rates, the use of highly scalable systems for storing, dis-

tributing and processing all new data becomes a critical requirement. Furthermore,

highly specialised users also demand optimal performance and efficiency on their

client machines, not only on high-end desktop solutions but tablets, laptop hybrids

or even smartphones. From the point of view of hardware capacity, almost any kind

of hardware resource; such as GPU and CPU computing power, network bandwidth

or main memory, fall short to handle large volumes of LiDAR data, demanding the

use of very efficient software algorithms and systems.

xv

xvi

Objectives and Work Methodology

The aim of this Thesis is to propose a series of novel approaches, algorithms and

systems to improve, or to present new solutions, to a wide range of issues related to

the use of aerial LiDAR data. As LiDAR technology stands out as a field involving a

large number of dimensions, ranging from storage, distribution, concurrent access to

data, visualization or processing, we have firstly established a hierarchy based on the

size of the problems to solve, which in the LiDAR field is directly related to the size

and number of the point clouds. Then, a series of global objectives were established

on each level of the hierarchy. Parts, or the whole proposals and contributions of one

level, were exploited in the next ones, helping to build, step by step, a complete and

multifunctional system for aerial LiDAR datasets. Said hierarchy and its objectives

have been set as the following:

Large point clouds (hundreds of million points): Research focused on

full-resolution visualization and client-side processing. Objectives: flexibility,

adequate workflows, field-specific measurement tools and optimizations for

performance maximization (real-time rendering and fast data loading).

Massive point clouds (billion points): Research focused on multi-resolution

and out-of-core visualization. Objectives: optimization of computational re-

sources for real-time visualization systems based on client-server patterns.

Large collections of massive point clouds: Research focused on overcom-

ing single-machine constraints through big data approaches offering solutions

throughout two different stages:

• Distributed storage: Maximization of storage capacity, latency and through-

put of back-end systems supporting LiDAR applications.

• Distributed computing: Maximization of computing capacity, latency and

throughput of geospatial processes of high computational complexity in-

volving extremely large volumes of LiDAR datasets.

Some measurements and geospatial processes employed in the LiDAR field are

intended to operate on specific sub-regions within the point clouds. Additionally,

xvii

the use of certain point densities became unnecessary, since once a certain number

of points per square meter was reached no further improvements or quality increase

could be achieved beyond said density for such measurements and geospatial pro-

cesses. An example of this can be found in [51]. In contexts like this, the number

of points handled, while very high (hundreds of millions of points), is far from the

billions handled in other contexts or use cases. Due to this difference, we decided

to follow two different approaches for each of the contexts. Hence, with the aim of

accomplishing the objectives of the hierarchy presented above, the research of this

Thesis has evolved across four different stages following an incremental methodology.

During an initial stage, improvements and contributions for the narrowed contexts

(framed outside the definition of big data) were developed. After said initial stage,

the Thesis was aimed at facing more complex problems in more demanding contexts

until reaching a purely big data environment during its final stages.

First Stage

In the first stage of this Thesis (Chapter 2), all research was focused on the full-

resolution visualization and client-side processing of large point clouds, establishing

four main goals: flexibility, an adequate workflow, field-specific measurement tools

and optimizations for performance maximization (real-time rendering and fast data

loading). All research and contributions were included and tested in a visualization

application specially developed to do so. The goals of this stage were accomplished

through the following strategies and approaches:

Flexibility: WebGL [78, 106] was the graphics application programming in-

terface (API) chosen for the development of the framework since it allows

the production of powerful web-based visualization solutions. A web-based

approach makes it possible to not be tied to any operating system (OS) or de-

vice in particular, granting instant access to any user from any location with

just running a WebGL-compatible web browser. Our proposal was conceived

as a service-oriented approach; hence application and data would be stored

on a remote server and retrieved by clients as needed, further increasing the

mobility and flexibility of the framework.

Adequate workflow: In certain work contexts, although very large point

xviii

clouds may be collected, the way they are meant to be explored or processed

only requires operating on specific sub-regions, usually involving a waste of

valuable hardware resources handling unnecessary data located outside said

sub-regions. Considering this, data queries based on spatial restrictions were

implemented through spatial hashing techniques and the definition of regions

of interest (ROI) over the point clouds.

Field-specific measurement tools: Client-side tools to make geospatial

measurements directly over the point clouds rendered on screen were imple-

mented through JavaScript (JS) [38] and WebGL in order to provide more

useful tools in comparison to what was offered by other visualization solu-

tions. Specific tools such as facade surface measurement or other much more

complex tools like volumes of irregular base, polygonal contour and projected

top, were included in the framework to expand its functionality.

Optimizations for performance maximization: As previously commented,

the research in this first stage of the Thesis was focused on full-resolution vi-

sualization in order to maximize the accuracy of the measurement tools and

the image fidelity for visual inspections in real-time. By following this ap-

proach, performance becomes a critical element during the development pro-

cess. Thereby, several optimization strategies were implemented trying to

maximize the performance of the rendering process and the acquisition and

loading of remote data.

The research of this stage is based on a bachelor’s thesis1 and it was published

in [34] and [35] and registered in [33].

Second Stage

In the second stage of the Thesis (Chapter 3), new directions in the use of multi-

resolution and out-of-core techniques were explored. As a result, a novel visualiza-

tion strategy was developed supported by a non-redundant data point organization

method called Hierarchically Layered Tiles (HLT), and a tree-like structure called

1Bachelor’s thesis permanent link: http://kmelot.biblioteca.udc.es/record=b1514673 S1*gag

xix

Tile Grid Partitioning Tree (TGPT). These efficient data structures were designed

with the aim of avoiding the data redundancy always associated to the creation

and management of LODs for point clouds. The main ideas behind the structures

were that the points of each point cloud were rearranged and stored in layered tiles

in such a way that no point was repeated across layers. These layered tiles serve

as puzzle pieces to compute and create different LODs at runtime, as needed, by

merging two or more of those pieces.

For testing and analytic purposes, the new structures were included in a new

iteration of the visualization application presented in the first stage of the Thesis,

reorienting its design towards the fast visualization of entire massive point clouds

through a multi-resolution and out-of-core approach. The first visualization frame-

work was capable of efficiently rendering full-resolution clouds and sub-regions of

clouds containing between 50 and 100 million points. This new approach was not

intended to replace the previous one, but to expand its functionalities by including

the capability to efficiently exploring massive datasets containing billions of points.

A wide range of optimizations were achieved on both server side and client side,

thanks to the aforementioned contributions:

Server-side storage requirements: As a result of not storing fully pre-

computed LODs and with the avoidance of data redundancy, storage require-

ments were notably reduced.

Network traffic: On a client-server application system, high levels of traffic

may cause network congestion. Avoiding data redundancy also has an impact

on the total amount of bytes moved through the network, as lower amounts

of points are sent to the clients.

Client-side storage requirements: Same principle as for server-side storage

requirements applies here, since avoiding data redundancy leverages storage

requirements also on the client side, since part of the performance of web-based

visualization tools relies on the use of the client-side browser cache. Data

retrieved from server are stored on client’s disk for accelerating subsequent

use of the same data. Handling large volumes of data may cause same storage

issues as on the server side, or even worse, due to the lower storage capacities

of most client machines, especially laptops or handheld devices.

xx

RAM consumption: Similar layered and non-redundant data organization

has been followed to copy the points in main memory during the execution of

the point rendering process. LODs are computed and discarded in real-time

as required, avoiding the need to hold unnecessary data on RAM. LODs are

recalculated every time the 3D scene camera detects a considerable change

on the point of view (POV). This approach brings great benefits for mid and

low-end systems, tablets or laptops mounting moderate amounts of RAM.

VRAM consumption: New LODs computed in real-time are streamed to

a fixed-size GPU buffer based on a user-defined visual point budget (PB).

Unlike other rendering techniques, this proposal keeps VRAM usage constant

all along the point rendering process.

All the research of this Chapter was published in [32] and registered in [28].

Third Stage

In the third stage of this work (Chapter 4), it was analysed how applications

making an intense use of large collections of massive LiDAR datasets, in particu-

lar web-based applications focused on real-time rendering, could benefit from the

adoption of big data storage technologies. Additionally, a study is presented on the

advantages and disadvantages that could determine the choice of the most suitable

option among the currently available on the market depending on the requirements

and characteristics of each use case.

Several analyses and comparisons were carried out using four of the most adopted

and mature big data storage technologies. It was demonstrated how big data tech-

nologies could be employed as the back-end of said LiDAR applications with no

drawback or penalty in performance or user experience, while gaining all of the

usual advantages associated with big data solutions, such as reliability, availability

and scalability. With a view towards the future, any system adopting such type of

storage technology would be already prepared to incorporate other technologies for

distributed computing, such as Spark, Flink or Storm.

All the research of this Chapter was published in [29].

xxi

Fourth Stage

In the fourth and final stage of the Thesis (Chapter 5), a big data approach on

geospatial processing for massive aerial LiDAR point clouds was fully developed.

The system was intended to support the execution of any kind of geospatial process;

nonetheless, as an initial case of study, the research focused only on fast DTM

obtention from massive point clouds.

Following the analysis and conclusions presented in the previous chapter, data

distribution was done using Cassandra [95], while the computing distribution was

accomplished with Spark [100], due to its versatility, source code compatibility and

batch-oriented design. Thanks to this approach, it was possible to greatly reduce

the time required for processing very large extents of aerial point clouds compared

to other single machine approaches. Another important contribution presented in

this stage was an automated classification error correction strategy that improved

the quality of the DTMs obtained while minimizing user intervention.

The research presented in this chapter was submitted for publication to [31].

Main Contributions of the Thesis

The main contributions of this Thesis can be summarized as:

Two web-based visualization and client-side processing applications for aerial

LiDAR data.

An efficient method to retrieve remote data through queries based on spatial

restrictions.

Optimization strategies for fast data loading of remote LiDAR point clouds.

Optimization strategies for rendering full-resolution point clouds in real-time.

A series of field-specific geospatial measurement tools to work directly on ren-

dered images.

xxii

A novel approach on point cloud rearrangement and storage based on the

non-redundancy of information to support multi-resolution and out-of-core

algorithms.

An up-to-date analysis of big data storage technologies and their benefits for

LiDAR applications.

A highly scalable system for the distributed computing of geospatial processes

that can be applied over large collections of massive point clouds. Specifically,

as an initial use case, the system offers the possibility to obtain rasters of

ground-only points for DTM generation.

A strategy for correcting classification errors on the boundaries of adjacent

zones of a point cloud that have been independently processed.

A lossless compression algorithm for point cloud files.

As a whole, all previous contributions make a complete and multifunctional

client-server system for aerial LiDAR data.

Structure of the Thesis

This Thesis is organized as follows:

Chapter 1 introduces the LiDAR technology, main concepts about aerial data

acquisition, file formats and software tools related to this technology. Ad-

ditionally, it describes some basic concepts about GPUs and 3D rendering,

cloud computing and big data solutions applied to the storage and process-

ing of geospatial information. Finally, an analysis of the challenges related to

handling and processing LiDAR datasets is presented in detail.

Chapter 2 presents a series of geospatial measurement tools specially designed

to work in specific LiDAR fields, such as agroforestry, an efficient method

to perform data queries based on spatial restrictions and several optimiza-

tion strategies for high performance rendering and remote data loading for

full-resolution point cloud visualization. All of these proposals are analysed

xxiii

and compared to some of the most used and well-known LiDAR visualization

applications.

Chapter 3 addresses a novel approach on multi-resolution and out-of-core tech-

niques based on non-redundant data structures aiming to optimise several

computational resources required on visualization systems following a client-

server pattern. All improvements presented were analysed and compared to

one of the most known and best valued visualization frameworks.

Chapter 4 analyses four of the most adopted and mature big data storage

solutions with the aim of overcoming all single-machine constraints related

to the use of traditional server solutions in environments related to the use

of large collections of massive point clouds, placing special attention on web-

based visualization.

Chapter 5 extends the research presented in the previous chapter with the aim

of overcoming single-machine constraints related to the execution of geospatial

processes of very high computational complexity through the use of a big data

approach. A highly scalable system for fast DTM generation is presented

together with a method to correct common errors related to processes of this

type.

Chapter 6 extracts the conclusions of the Thesis and points out a number of

lines for future work.

Funding and Technical Means

The following means and funding have been used to carry out the Thesis:

Working material, as well as human and financial support provided by the

Computer Architecture Ground (GAC) of the University of A Coruña.

Access to bibliographical material through the library of University of A

Coruña.

xxiv

Access to clusters, supercomputers and other computing platforms: Pluton

cluster (Computer Architecture Ground of the University of A Coruña).

Funding through the following research projects:

• Xunta de Galicia: Consolidation Programme of Competitive Reference

Groups, co-founded by ERDF funds from the EU [Ref. ED431C 2017/04]

and [Ref. GRC 2013/055].

• Xunta de Galicia: Consolidation Programme of Competitive Research

Units, co-founded by ERDF funds from the EU [Ref. R2016/037] and

[Ref. R2014/049].

• Xunta de Galicia: Centro Singular de Investigación de Galicia (accredi-

tation 2016/2019) and the European Union (European Regional Devel-

opment Fund, ERDF) under Grant [Ref. ED431G/01].

• Ministry of Economy and Competitiveness of Spain and ERDF funds

from the EU [TIN2016-75845-P] and [TIN2013-42148-P].

Three-month research visit to the Hasso-Plattner-Institut, University of Pots-

dam, Germany, funded by the Inditex-UDC 2019 collaboration grant.

Third party datasets

All LiDAR point clouds used in this work belong to:

LiDAR-PNOA data repository [55]: Provided by Instituto Geográfico Nacional

de España (IGN) [54].

Guitiriz : Provided by Laboratorio do Territorio (LaboraTe) [108].

PG&E Diablo Canyon Power Plant (DCPP): San Simeon, CA Central Coast

[74], PG&E Diablo Canyon Power Plant (DCPP): Los Osos, CA Central Coast

[75] and Sunset Crater Volcano National Monument, AZ [76]: This material

is based on LiDAR Point Cloud Data Distribution and Processing services

provided by the OpenTopography Facility with support from the National

Science Foundation under NSF Award Numbers 1226353 & 1225810.

xxv

ISPRS Filter Test dataset : Samples from the International Society for Pho-

togrammetry and Remote Sensing, provided by the University of Twente [109].

Registered Software

David Deibe, Margarita Amor, Ramón Doallo, Rafael Crecente, David Mi-

randa and Miguel Cordero: VGLiDAR 1.0 Visualizador Gallego de Datos Li-

DAR.

Software registration: Universidade da Coruña y Universidade de Santiago de

Compostela, Spain. C-423-2015 11/23/2015.

David Deibe, Margarita Amor, Ramón Doallo: ViLMA (Visualization for Li-

DAR data using a multi-resolution approach).

Software registration: Universidade da Coruña y Universidade de Santiago de

Compostela, Spain. C-388-2018 11/19/2018.

Publications from the Thesis

Journal Papers

David Deibe, Margarita Amor, Ramón Doallo, David Miranda and Miguel

Cordero: GVLiDAR: an interactive web-based visualization framework to sup-

port geospatial measures on lidar data. In International Journal of Remote

Sensing, volume 38, issue 3, pages 827-849, published online January 2017.

JCR Impact Factor 1.782, Q2 in IMAGING SCIENCE & PHOTOGRAPHIC

TECHNOLOGY.

DOI: 10.1080/01431161.2016.1271476

David Deibe, Margarita Amor and Ramón Doallo: Supporting multi-resolution

out-of-core rendering of massive LiDAR point clouds through non-redundant

data structures. In International Journal of Geographical Information Science,

volume 33, issue 3, pages 593-617, published online November 2018.

JCR Impact Factor 3.545, Q1 in COMPUTER SCIENCE, INFORMATION

xxvi

SYSTEMS.

DOI: 10.1080/13658816.2018.1549734

David Deibe, Margarita Amor and Ramón Doallo: Big data geospatial pro-

cessing for aerial LiDAR datasets. Submitted for publication.

Conferences

David Deibe, Margarita Amor, Ramón Doallo, David Miranda and Miguel

Cordero: VGLiDAR: Una herramienta de procesamiento de datos LiDAR en

la GPU usando WebGL. In XXVI Jornadas de Paralelismo (JP2015), pages

146-151. September 2015.

David Deibe, Margarita Amor and Ramón Doallo: Big data storage technolo-

gies: a case study for web-based LiDAR visualization. In 2018 IEEE Interna-

tional Conference on Big Data (Big Data), pages 3831-3840, December 2018.

DOI: 10.1109/BigData.2018.8622589

David Deibe, Margarita Amor and Ramón Doallo: BETi: Sistema para la

gestión y procesamiento de datos masivos LiDAR. In XXX Jornadas de Par-

alelismo (JP2019), pages 516-523. September 2019.

Contents

1. Introduction 1

1.1. LiDAR technology . 3

1.1.1. Aerial LiDAR data . 3

1.1.2. File format . 5

1.1.3. LiDAR software . 6

1.2. GPUs and 3D rendering . 9

1.2.1. Point cloud visualization . 13

1.3. Cloud computing and big data . 14

1.3.1. Distributed storage for LiDAR data 16

1.3.2. Distributed computing for LiDAR data 19

2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds 21

2.1. System structure . 22

2.2. Remote data querying . 25

2.3. Geospatial measurement tools . 26

2.4. Strategies for fast data loading . 30

2.4.1. Data cleaning and transformation 30

xxvii

xxviii Contents

2.4.2. Bulk data operations . 31

2.4.3. Data caching . 34

2.5. Strategies for high performance full-resolution rendering 34

2.6. Results and comparison . 35

2.6.1. Functionality and workflow 37

2.6.2. Performance in terms of FPS 39

2.6.3. Data retrieval and data load times 41

3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds 45

3.1. Structure of ViLMA . 46

3.2. Multi-resolution, out-of-core data structures 48

3.2.1. Hierarchically-Layered-Tiles (HLT) 48

3.2.2. Tile Grid Partitioning Tree (TGPT) 52

3.2.3. Multi-resolution, out-of-core Rendering Techniques 53

3.3. Performance considerations . 55

3.3.1. Tile size . 55

3.3.2. Number of LPT . 57

3.3.3. Compressing the point layers 58

3.4. Experimental results . 60

3.4.1. Memory consumption . 62

3.4.2. Wait times . 64

3.4.3. Interactive visualization . 66

3.4.4. Performance improvements when using an ROI 68

3.4.5. Compression ratio . 69

Contents xxix

3.4.6. Comparison against Potree . 69

4. Big data storage solutions for large collections of massive LiDAR

point clouds 73

4.1. Web-based LiDAR visualization: Migrating to a big data deployment 75

4.2. Big data storage technologies: deployment analysis 77

4.2.1. Testing cluster . 77

4.2.2. HDFS . 78

4.2.3. MongoDB . 79

4.2.4. Cassandra . 79

4.2.5. Redis . 80

4.3. Experimental results . 80

4.3.1. Performance in terms of latency 82

4.3.2. Performance in terms of throughput 85

4.3.3. Performance in terms of storage capacity 88

5. Big data geospatial processing for large collections of massive Li-

DAR point clouds 91

5.1. A scalable big data approach on geospatial processing 92

5.1.1. Geospatial processing: fast DTM obtention 94

5.1.2. Distributed storage: Cassandra 96

5.1.3. Distributed computing: Spark 98

5.2. Automated boundary error correction 99

5.2.1. Creation of the correction patches 101

5.2.2. Filtering of the LiDAR zones and error correction 102

xxx Contents

5.3. Result analysis . 103

5.3.1. Performance in terms of execution times 107

5.3.2. Boundary error correction quality 113

5.3.3. The importance of an adequate point cloud preprocessing . . . 115

5.3.4. Full point classification . 116

5.3.5. Point triangulation . 117

6. Conclusions and future work 119

References 125

A. Resumo Estendido en Galego 139

List of Tables

1.1. Data contained into one data record of LAS (format 0). 6

1.2. Comparative of LiDAR applications based on their performance and

available features. * Indicates the use of a multi-resolution approach. 10

2.1. Basic format structure of a pre-processed LAS file containing P points. 33

3.1. Hardware specifications. 61

3.2. Software specifications. 61

3.3. LiDAR datasets used and their information regarding the Pre-Processing

Stage. P : Number of points. FS: Total file size of the dataset (orig-

inal LAS files). FSLZ : Total file size of the dataset (pre-processed

files). Ratio: Compression ratio of the pre-processed files. TS: Tile

size. LPT : Number of layers per tile. 62

4.1. Hardware specifications. 81

4.2. Software specifications. 81

4.3. LiDAR datasets used during the analysis. 82

4.4. Datasets with original LAS files (O) and pre-processed files (Pre).

The star marks show the datasets that can be stored in each technology. 89

5.1. Optimal values for the input parameters of SC-091-12 algorithm. . . 95

xxxi

xxxii List of Tables

5.2. Properties of the raw LiDAR point clouds selected for preprocessing.

NoP = Number of points (billions). NoF = Number of files. FE =

File extent (meters). FS = File size (average kilobytes per file). TS

= Total point cloud size (GB). 105

5.3. Properties of the datasets used for the analysis. NoZ = Number of

zones. ZE = Zone extent (meters). ZS = Zone size (average kilobytes

per zone). TS = Total dataset size (GB). 106

5.4. System specifications of the machines used for the analysis. 106

5.5. Relevant Spark configuration settings. 107

5.6. Relevant Cassandra configuration settings. 108

5.7. Type I error comparison (lower is better) between EC and NO-EC

using several samples from the ISPRS Filter Test dataset. 115

5.8. A comparison between the full point cloud classification errors (lower

is better) obtained by the naive method proposed and LAStools. . . . 117

List of Figures

1.1. Land surveying using ALS. Source: [67]. 4

1.2. Four different returns produced by a laser pulse as it travels towards

the ground. Source: [6]. 5

1.3. DX9 Pipeline [19]. 11

1.4. DX11 Pipeline [19]. 12

2.1. General structure of GVLiDAR. 23

2.2. (a) Selection page of GVLiDAR over Santiago de Compostela (Spain)

International Airport. In this page we use the GoogleMaps API in

order to help users to locate their areas of interest. The green rectan-

gle represents the area of the map that contains point data while the

blue rectangle represents the specific data selection performed by the

user. (b) Visualization page of GVLiDAR rendering the point cloud

contained in the ROI defined by the user in the Selection page. . . . 24

2.3. Simple schema representing a regular tile grid distribution with a user-

defined ROI over it. The list of files that must be retrieved from the

server are obtained from the coordinates of the two points delimiting

the ROI using spatial hashing techniques. 26

2.4. Projected flat area measurement (bright green area) covering the en-

tire surface of a river. 27

2.5. Vertical height measurement of a mountain. 27

xxxiii

xxxiv List of Figures

2.6. Vertical height measurement in Riazor stadium (A Coruña, Spain). . 28

2.7. Complex volumetric object created using a triangulated base surface,

a projected top and an irregular contour. 28

2.8. DTM overlapping a LiDAR point cloud. This method helps to com-

pare the quality of the DTM in comparison to the source material

(the point cloud). 29

2.9. The two most common ways of storing vertex attributes: 2.9a Struc-

ture of arrays (SOA). 2.9b Array of structures (AOS). 32

2.10. Selection page of GVLiDAR. GoogleMaps API was employed in order

to show users the datasets available and their extension. The green

square delimits the area with point data, in this case, the PNOA

(Galicia, Spain) dataset used in this paper. 36

2.11. OpenTopography website, specifically its data selection tool. The

red zone indicates CA13 dataset, located in San Luis Obispo County,

California. 36

2.12. Distance measurement of one of the roads contained in the CA13

LiDAR dataset, from A to B, using GoogleMaps only. 38

2.13. GVLiDAR point cloud render of the road from CA13 with the same

distance measurement previously taken in GoogleMaps. 38

2.14. Test point clouds: (a) Each white square highlights a different ROI;

(b) Point cloud rendered on the Visualization page using a close view

over the largest ROI. 40

2.15. GVLiDAR Performance in terms of FPS using different amount of

points to render in the Visualization page. 41

2.16. Retrieval times from remote server. 42

3.1. General system structure of ViLMA. 47

List of Figures xxxv

3.2. Construction of a TGPT from an arbitrary ROI and its posterior

usage for computing the different LODs of the image. (a) Illustration

of an ROI defined by a user (inner shaded rectangle, overlapping

16× 18 tiles) over a dataset grid (outer rectangle, 32× 39 tiles). (b)

TGPT structure generated during the multi-resolution process fitting

the ROI shown in (a). (c) Point cloud rendered by ViLMA obtained

from the TGPT shown in (b). 49

3.3. Layer generation of a single tile carried out during the Pre-processing

Stage. Starting with the original point set (upper square) four layers

are generated (labelled squares). 51

3.4. Memory consumption variation with respect to the increase in the

number of tiles. 57

3.5. RAM, VRAM and Unified memory (RAM + VRAM) consumption

during the performance tests for different point budgets. 63

3.6. Wait times (retrieval time + load time) obtained among three differ-

ent datasets with and without browser cache. 65

3.7. Small part (∼1.5 km2) of the San Simeon dataset (803 km2) rendered

by ViLMA using different point budgets: (a) Satellite image of the

zoomed area. (b)-(d) Rendered images using 1, 2 and 4 million points

respectively. 67

3.8. Performance comparison between loading the full dataset of PNOA

and loading only an ROI from it. 68

3.9. Compression formats comparison. 70

3.10. Comparison between ViLMA and Potree. 70

xxxvi List of Figures

4.1. General overview of a conventional and non-big-data-oriented deploy-

ment of a web application for LiDAR data visualization. Box A

encloses the components that must be replaced by the components

of box B in order to transform the system into a big-data-oriented

deployment. Box C is a more specific deployment of the general com-

ponents shown in box B, and it is the deployment that will be used

during the analysis described in Section 4.3. 74

4.2. Point cloud of Galicia (Spain) from the PNOA dataset. 83

4.3. Latency obtained for 1 million points (PB1) and 4 million points

(PB4). Results were obtained for cold start and for the minimum

latency obtained in 10 tries (Min10) 83

4.4. Throughput obtained for different concurrency levels. Each user

makes 10000 requests of 10 KB. 86

4.5. Throughput obtained for different concurrency levels. Each user

makes 1000 requests of 100 KB. 86

4.6. Throughput obtained for different concurrency levels. Each user

makes 100 requests of 1000 KB. 87

4.7. Storage capacity of the technologies. 89

5.1. Global system structure. 93

5.2. Data divisions carried out during the whole computational process.

During an offline preprocessing stage, raw point clouds are divided

following a tile grid pattern. Then, each tile (or zone) is inserted and

stored permanently in Cassandra. During runtime, a raster is created

for each zone by subdividing the zone into cells whose dimensions are

defined by the input parameter CS. 96

5.3. Raster displaying only ground points. The raster was obtained by

independently filtering four adjacent zones and joining the results.

Dotted lines highlight zone boundaries. 100

List of Figures xxxvii

5.4. Schematic representation of the automated boundary error correction

strategy. Squares labelled with letters and outlined with continuous

lines correspond to LiDAR zones. Rectangles labelled with numbers

and outlined with dots delimit overlapping sections between adjacent

zones that will be used as correction patches to detect and remove

classification errors located on the boundaries of the zones. 100

5.5. Schematic example of a classification error correction. The zone-

raster-point (ZRP) has been misclassified as non-ground, and must

be entirely replaced by the correction-patch-point (CPP) as the ZRP

has a higher Z value. 104

5.6. Rendering of the PNOA point cloud, specifically the region of Galicia

(Spain). 104

5.7. Rendering of the Guitiriz point cloud. Village and surroundings (Spain).105

5.8. Performance analysis and scalability comparison using dataset D0

(1600×1600). 109

5.9. Performance analysis and scalability comparison using dataset D1

(400×400). 109

5.10. Performance analysis and scalability comparison using dataset D2

(100×100). 110

5.11. Execution times variation (in logarithmic scale) between the usage of

different zone extents, both with EC and NO-EC. 112

5.12. Performance analysis and scalability comparison between the local

version of the system and the big data approach using 4, 8 and 16

nodes. This test was carried out using dataset D3 to analyse the

system under specially unfavourable conditions. 112

5.13. Filtered rasters containing ground points only. Images represent a

close view over an area with 16 zones (8×8 on 16 km2) from the

dataset D3. 114

xxxviii List of Figures

5.14. Fully triangulated rasters containing ground points only. Images rep-

resent a very close view over an area with 4 zones (2×2 on 1 km2)

from the dataset D3. 114

Chapter 1

Introduction

In the past few decades, the usage of different remote-sensing techniques has

undergone a notable increase, driven by the need to obtain a wide range of earth

surface information, while achieving satisfactory cost-efficiency ratios, high data

precision and short data acquisition times. In particular, LiDAR (Light Detection

And Ranging) surveying has stood out as one of the most valuable sources of ge-

ographic information, providing very useful high-resolution datasets in the form of

point clouds that can be applied in a wide variety of scientific, professional and gov-

ernmental fields, such as public policy planning, agriculture, archaeology, biology or

forestry.

Some of the most detailed and highest quality point clouds may contain several

billion points, reaching or even surpassing a terabyte of disk space usage. For years,

due to the extraordinary large amounts of data that could be collected, LiDAR point

clouds have been considered as an extraordinary challenge when it comes to their

storage, processing or visualization, making the use of efficient and highly scalable

systems a fundamental requirement.

On GIS centres, governmental institutions, or any other group constantly col-

lecting new point clouds of those characteristics, only the storage of such volumes

of raw data entails a significant cost in terms of economic and technical resources.

The popularization of tablets, laptop hybrids and smartphones, in addition to

the release of HTML5, has favoured the appearance of web applications offering

1

2 Chapter 1. Introduction

high portability, flexibility and availability, these features being a major advance

in comparison with classic desktop applications. Despite their advantages, web ap-

plications come with an important handicap, since in such software and hardware

environments, there are strong restrictions and limitations on the main and video

memory available, the disk storage capacity and the performance in terms of execu-

tion times.

Applications for LiDAR data can be found in coastal-change studies [89], mon-

itoring of landslides [111], analysis of volcanoes, from lava flows to volcanic defor-

mation [49, 57], urban and land cover classification [14, 113], forest inventory and

biomass estimation [11, 45], the study of active tectonics [5, 13], automatic extrac-

tion of geo-morphologic features [79] or in the creation of detailed large-scale city

models [61]. Moreover, the combination of LiDAR with other types of remote sens-

ing data can provide additional benefits in several contexts [117]. An extensive list of

further applications can be found in [93], while a useful review on the achievements

and advantages of the usage of LiDAR is provided in [88].

Other popular digital terrain representations, such as two-dimensional (2D)

grids, three dimensional (3D) grids or Triangulated Irregular Networks (TIN), which

in some cases are derived from LiDAR data, have also been widely used for different

types of qualitative and quantitative analysis. Numerous studies have been carried

out regarding the individual or combined usage of these elements, especially in the

field of data visualization [9, 58, 77, 114]. Many of these approaches provide high

resolution information, which may improve the accuracy for recognizing certain to-

pographic features, but fall short in recognizing some structures, such as drainage

ditches or levees, which may be misinterpreted during topographic analysis if high-

resolution data are not used [94]. On the other hand, LiDAR models are capable of

clearly showing buildings, trees or sea ice surface roughness [62], while in most other

digital models, those kinds of structures may be barely recognizable or non-existent.

In the following sections of this chapter, LiDAR data technology is presented in

detail, as it is the core element of the whole Thesis. Section 1.1 introduces the main

concepts of LiDAR technology, in special, the main characteristics of airborne laser

scanning (ALS) for land surveying, since every software component presented in the

Thesis was built upon this source of geospatial information. The following sections

cover the main topics of this work, thereby, a brief summary on GPUs and 3D

1.1 LiDAR technology 3

rendering is presented in Section 1.2 while big data technologies and its paradigms

are presented in Section 1.3.

1.1. LiDAR technology

LiDAR is a surveying method that employs laser pulses to measure distances

between a sensor and a given target. Differences in pulse return times provide 3D

information about the surfaces being reached by the pulses. All information gathered

is presented in the form of 3D point clouds.

Besides the spatial coordinates (x, y, z), additional information may be collected

during the surveying process, or even included later during post-processing stages.

Therefore, points can provide further useful information, such as pulse intensity,

RGB colour or classification (building, vegetation, water, etc.), among others.

For the purpose of scanning large tracts of land, LiDAR sensors can be mounted

on almost any type of vehicle, from unmanned aerial vehicles (UAV) to airplanes,

cars or boats; however, sensors may also be mounted on static structures to capture

indoor 3D scenes or outdoor areas of reduced dimensions.

The precision achieved by LiDAR allows the creation of very accurate 3D rep-

resentations of any type of target surface, including elements of great complexity

or elements that are hard to identify or capture through other types of surveying

methods; e.g., surfaces below dense tree canopies or thin power lines.

Among all the major remote-sensing systems, LiDAR stands out as one of the

most important and useful available nowadays.

1.1.1. Aerial LiDAR data

Figure 1.1 shows a schematic representation of land surveying using airborne

laser scanning (ALS). In the figure, an aircraft equipped with a LiDAR sensor flies

over a target area while an on-board sensor emits laser pulses towards the surface

of the land. Pulses are usually emitted following a striped pattern, although other

emission patterns, such as zigzag or elliptic, can be also used. After hitting the

4 Chapter 1. Introduction

Figure 1.1: Land surveying using ALS. Source: [67].

surface, pulses return to the sensor and the elapsed time between the emission

thereof and the reception of their echoes are measured to calculate points on the

surface. The surveying system is also equipped with GPS and inertial measurement

unit (IMU) subsystems. The GPS subsystem continuously measures the position of

the aircraft in terms of longitude, latitude and height. On the other hand, the IMU

subsystem continuously measures deviations (roll, yaw and pitch) suffered by the

aircraft due to manoeuvres and turbulence. The precise 3D position of each point

is obtained through combining the information provided by these two subsystems

and the information provided by the laser sensor. 3D coordinates are presented

using some global coordinate system, such as WGS84, or other regional systems;

e.g., EPSG:23029 or EPSG:23030, for Spain coordinates [52].

Depending on the surveying system capabilities and the type of surface reflecting

the laser pulses, one or more points can be obtained from a single laser pulse. After

emitting a pulse, and as it travels towards the ground, the pulse can be split into as

many returns as reflective surfaces it encounters. Figure 1.2 may help to understand

this phenomenon. The first return is produced by the first found surface while the

last one is produced by the last reflective surface; for example, the first one can be a

1.1 LiDAR technology 5

Figure 1.2: Four different returns produced by a laser pulse as it travels towards the
ground. Source: [6].

reflection from the top of a tree and the last one can be reflected by the ground below

a forest canopy. Return information is highly useful as it is used by filters in charge

of classifying the points of a cloud into categories such as building, vegetation, water

or ground.

1.1.2. File format

Point clouds can be stored in a wide variety of file formats; nevertheless, LAS is

the standard format used in the LiDAR field. The LAS specification was created by

the American Society for Photogrammetry and Remote Sensing (ASPRS) [4] with

the aim of providing an open format for different LIDAR hardware and software

tools.

LAS files contain binary data consisting of an initial header block, any number

of optional variable length records (VLRs), a block with all the point data records

and finally any number of optional extended variable length records (EVLRs). The

header block contains generic information about the file, such as the number of point

6 Chapter 1. Introduction

Table 1.1: Data contained into one data record of LAS (format 0).

Item Format Size Required

x long 4 bytes *
y long 4 bytes *
z long 4 bytes *

Intensity unsigned short 2 bytes
Return Number 3 bits (bits 0 - 2) 3 bits *

Number of Returns 3 bits (bits 3 - 5) 3 bits *
Scan Direction Flag 1 bit (bit 6) 1 bit *
Edge of Flight Line 1 bit (bit 7) 1 bit *

Classification unsigned char 1 byte *
Scan Angle Rank char 1 byte *

User Data unsigned char 1 byte
Point Source ID unsigned short 2 bytes *

data records stored, the byte position where they begin, or the date when the data

were obtained. Both the VLRs and EVLRs are optional blocks that can be used by

the different LiDAR software in order to store information which they may require.

The LAS specification defines different Point Data Record formats with different

properties each. Table 1.1 shows the properties of a single point stored in an LAS

file following the format number 0.

Although LAS is the standard file format, in many fields where large volumes of

data must be handled, LAS files are compressed using the LASzip format (LAZ).

The technical details regarding this format can be found in [56].

1.1.3. LiDAR software

In recent years, the use of LiDAR technologies has increased along with the

number of software solutions designed to handle data of this type. Some of the most

known and commonly used applications are listed below, since they will be used in

many of the chapters of this Thesis for comparative reasons.

1. LAStools (3D visor) [41]: This is probably the most commonly used desk-

1.1 LiDAR technology 7

top application for LiDAR data. It is free, easy to use and includes several

processing tools. Its 3D visor performs many different visualization options,

such as intensity, classification, height, number of return, RGB or scan di-

rection. Users can filter the point cloud by point properties, or create a full

3D model by triangulating the point set. Nevertheless, the 3D visor offers

low performance, rendering over 4,700,000 points under 10 frames per second

(FPS). Furthermore, it only works with local files loaded by users, and it lacks

geospatial measuring tools over the 3D point cloud.

2. FugroViewer [39]: Simple and easy-to-use desktop visor, it provides different

visualization options, such as intensity, height, classification, return number

or RGB. A complete 3D model can be obtained through a triangulation of the

point cloud. There are two visualization modes: 2D and 3D. The 2D mode

applies level of detail (LOD [2]) techniques over the points set; therefore, when

the camera is near, all points are rendered, but from a distant perspective only

one subset of the points are shown. The 3D mode achieves high performance,

although it only renders the visible points that are shown in a 2D window,

so that, when zooming over the 3D model, no more points are loaded and

detail is lost. The LiDAR data has to be provided by users. Finally, a tool for

measuring distances is available, but only over the 2D image.

3. Global Mapper [7]: Another desktop tool, very similar to the FugroViewer but

with wider features and computing capabilities. It can process and handle

many types of geospatial information and file formats. It can mix and display

together many different data sources with ease, including online data sources.

The basic 3D rendering of the point clouds offers very good performance,

although it has some limitations in the way the point clouds can be rendered,

lacking advance rendering features such as shadows, contour highlighting or

gap filling. It offers a considerable amount of useful measurement tools for use

on 3D images, probably being the most complete set of tools among all the

visualization application of this list. Despite all of its useful features, it can

take over a minute to load 10 or more million points, and may even cause the

application to crash.

4. IDECanarias [44]: Web application well-known in Spain which provides Li-

DAR data from the Canary Islands on-demand. It has low retrieval times,

8 Chapter 1. Introduction

around 5 seconds for 350,000 points (the maximum amount of points re-

trieved), and is easy to use. Nevertheless, in many systems it does not obtain

a fluid interaction due to its Flash programming, achieving about 36 FPS with

250,000 points. Areas of a few square meters and large areas of several square

kilometres are rendered with almost the same number of points. While the

detail obtained in the former case may be good, in the latter case it may not

be enough for recognizing certain land features or structures. The application

has limited visualization options (intensity, height and mixed) and it lacks

geospatial measuring tools over the 3D point clouds.

5. LiDAR Online (3D visor) [64]: Based on Dielmo 3D technology [36], this web

visor allows LiDAR data from various locations around the world to be ob-

tained on-demand. The 3D visor has good visualization options (classification,

intensity, height and RGB) and offers highly satisfactory performance results,

up to 60 FPS displaying around 1 million points. Nevertheless, transferring

more than 1 million points is not permitted because, like IDECanarias, the

number of points shown barely change along with the size of the selected area:

small and large areas are retrieved with almost the same number of points,

so the latter are displayed with reduced detail. Furthermore, the times are

quite long; more than a minute to retrieve 1 million points, and sometimes

the process may get blocked. It lacks geospatial measuring tools over the 3D

point clouds.

6. Plas.io [107]: This web application is based on WebGL. It focuses on the visu-

alization of local files (in LAS and LAZ formats) achieving 45 FPS, handling

around 16 million points. It offers different rendering modes, such as RGB,

intensity or height, but lacks geospatial measuring tools over the 3D point

clouds.

7. Lidarview [3]: Another web application based on WebGL that offers good

performance with around 50 FPS handling 10 million points. It implements

some visualization options such as intensity, classification, height and RGB. It

is easy to use but only works with local files loaded by users (LAS or xyz file

formats). The visor is limited to 10 million point clouds and lacks geospatial

measuring tools over the 3D point cloud.

1.2 GPUs and 3D rendering 9

8. Potree [90]: This web application, also based on WebGL, is an interactive

out-of-core rendering solution for massive datasets (over 1 billion points) us-

ing a multi-resolution octree structure. It has the most similar features to

our proposal; however, it is conceived as a general-purpose point cloud visu-

alization tool and does not focus solely on LiDAR data. Potree allows direct

measurement on the 3D images. Nevertheless, its measurement tools are basic

and not focused on LiDAR data, it does not facilitate information such as the

distance of a point to a plane, the area of complex surfaces or the square me-

ters of facades (frequently required by professionals in the fields of engineering

and architecture). Furthermore, it provides no geographic information on the

images, such as the reference system used or the geographic coordinates of

each point. Therefore, we can consider Potree as a tool mainly focused on the

fast visualization of large areas of land or highly detailed objects, prioritizing

realistic rendering against the functionality of the measurement tools.

9. MegaTree [86]. The designs of Potree and Megatree, follow a very similar client-

server structure and their performance relies on the use of multi-resolution,

out-of-core techniques supported by an octree structure. Nevertheless, this

software solution merely offers visualization capabilities with no measurement

tools or any other additional feature.

As a summary, Table 1.2 shows a comparison between the frameworks listed

above. The second column in the table indicates whether the application offers

remote data retrievals through queries based on spatial restrictions (on-demand

data). The following columns show the maximum number of rendered points al-

lowed, provision of geospatial measuring tools over the 3D point clouds (client-side)

and real-time interaction capabilities (considering the ability to display at least 10

million point cloud achieving above 20 FPS).

1.2. GPUs and 3D rendering

For the last years, iterative graphic systems have become a hot topic, widely

developed by the community. GPU (Graphics Processing Unit) research has been

supported by an increasing real-time and interactive rendering demand for complex

10 Chapter 1. Introduction

Table 1.2: Comparative of LiDAR applications based on their performance and
available features. * Indicates the use of a multi-resolution approach.

LiDAR On-demand Max. points Measuring Real-time
framework data (millions) Tools Interaction

IDECanarias
√

∼0.35
LiDAR Online

√
∼1

Lidarview ∼10
√

LAStools No limit
FugroViewer No limit

√

Global Mapper
√

No limit
√ √

Plas.io 16
√

Potree No limit *
√ √

MegaTree No limit *
√

and realistic models across many engineering and scientific areas and the video games

industry.

In graphic environments, the computational power of the GPUs is accessed

through an application programming interface (API). APIs such as DirectX or

OpenGL have been widely used to create all manner of applications demanding

very efficient 3D rendering. Each API has its own unique pipeline consisting of sev-

eral linked stages that can be processed sequentially. These stages determine how

the GPU should create the 3D images on screen. Only certain stages are meant to

be programmed in order to change the behaviour and output of the pipeline. Two of

the most common programmable stages are the vertex shader and the pixel shader.

The vertex shader is traditionally employed for vertex transformation and per-vertex

computation, while the pixel shader is usually employed for the computation of each

fragment’s colour.

Figure 1.3 shows an example of a basic graphics pipeline. In this figure, a set

of vertex from a 3D object (the teapot) are used as input to the rendering process,

obtaining as output a series of fragments with a colour related to them that define

the 2D representation of the 3D object.

Modern pipelines, like the one shown in Figure 1.4, may contain multiple stages,

1.2 GPUs and 3D rendering 11

Figure 1.3: DX9 Pipeline [19].

some of them being highly programmable. By programming these stages, developers

can define, for example, how the 3D models are built or modified, depending on the

point of view of the camera in the scene.

One of the most recent APIs that have been developed is WebGL [78,106]. This

API was introduced with the aim of vastly improving the performance of GPU-

intensive applications running in a web browser. This novel graphics API, is based

on OpenGL ES 2.0 (OpenGL for Embedded Systems [71]), another API specially

developed for handheld devices such as smartphones and tablets. Like the pipeline

depicted in Figure 1.3, the pipeline of WebGL only contains two programmable

stages: the vertex shader and the pixel shader. The appearance of WebGL has led

to the creation of a lot of new 3D applications with a level of quality close to classic

desktop versions.

12 Chapter 1. Introduction

Figure 1.4: DX11 Pipeline [19].

1.2 GPUs and 3D rendering 13

1.2.1. Point cloud visualization

In general, GPUs are designed to operate mainly with triangles [19]; nevertheless,

other primitives, such as lines or points, can also be processed by GPUs. Research

and literature about point-based rendering is quite extensive, as many data struc-

tures, compression methods or even techniques for computing image shadows, have

been specially designed to adapt to the unique properties of such primitives.

The interactive visual exploration of 3D scenes whose features exceed the hard-

ware capabilities of client machines generally requires the use of some kind of

multi-resolution and out-of-core approach, which always involves a trade-off be-

tween performance and visual quality [2]. With regard to large point clouds, these

approaches may provide enormous performance benefits in a wide variety of ap-

plications [18, 116]. They have been employed in many visualization tools achiev-

ing significant performance results [46, 84] and they have also been used together

with point-based rendering techniques to enhance image fidelity or object recogni-

tion [37,59].

Multi-resolution and out-of-core approaches are generally supported by generic

and well known data structures, such as quadtrees, octrees or kdtrees [47]. A number

of academic publications have already discussed the advantages and disadvantages

of those structures in web environments [40, 60] and their usefulness when used on

mobile devices [87]. Nevertheless, the implementation of the recommended struc-

tures was always almost a straight adaptation of their generic desktop counterparts,

with little optimization concerning the special characteristics of the streaming nature

of the whole system. Conventional multi-resolution and out-of-core approaches for

web-based LiDAR visualization are characterized by the use of static pre-processed

LODs and data structures, such as graphs or tree-like structures. On systems follow-

ing such approaches, given a point cloud with P points, the total amount of points

that must be stored and handled after the pre-processing stage is always greater

than P since, depending on the tree structure used and the number of resolution

levels computed, several points must be replicated on different LODs.

In some scientific and professional environments, the accuracy of the measure-

ment tools and the fidelity of the 3D point clouds displayed on screen while carrying

out visual analyses may be considered as critical requirements of said tasks. In situa-

14 Chapter 1. Introduction

tions like this, a full-resolution visualization and processing approach acquires some

advantages against multi-resolution approaches, since in the latter, the presence of

artificial points, included by interpolation or other methods alike, in addition to the

strong data simplification applied to create all different LODs, can be counterpro-

ductive for the aforementioned requirements.

1.3. Cloud computing and big data

In the last decade, the volume and complexity of all sorts of information gener-

ated every day around the world has been growing exponentially, to such an extent

that, in some cases, traditional software solutions are simply unable to handle it

or they do so in a very inefficient way. In this context arises the term big data,

and with it a great number of new technologies and paradigms exclusively designed

to store, process, visualize and analyse such volumes of information in a fast and

efficient way [50].

Currently, there is a wide variety of big data solutions [16,48] that can be applied

in a wide variety of fields, such as healthcare, economics, earth science, education or

even sports. Big data solutions bring enormous benefits, such as strong reductions

in computational costs and economic resources, or the improvement in the quality of

the services provided, which has a direct impact on the customers satisfaction [53].

Based on their main purpose, big data technologies can be divided into two cat-

egories: technologies for distributed storage and technologies for distributed com-

puting.

From the point of view of distributed storage, we can find NoSQL databases.

These are more scalable and provide much better performance than traditional re-

lational databases. Unlike the latter, NoSQL data models were designed to ad-

dress issues related to working with massive volumes of new and rapidly changing

data types, typically offering dynamic data schemas, data manipulation through

an object-oriented API and very straightforward mechanisms of horizontal scala-

bility. In general, the main advantages of these technologies are: low latency and

high throughput, horizontal scalability, high availability through data replication,

data distribution across several machines or integration with big data computing

1.3 Cloud computing and big data 15

frameworks.

NoSQL databases can be divided into the four main categories, listed below:

Document stores: In this type of store, each key is paired with a more

or less complex data structure known as a document. Data is mostly pro-

cessed through notations such as JSON (JavaScript Object Notation); exam-

ples: MongoDB [69] and Couchbase [21].

Key-value stores: This type of store is based on a simple schema where items

are stored using just an attribute name or key, together with its corresponding

value; examples: Redis [83] and Memcached [23].

Wide-column stores: The design of these stores is focused on providing

efficient queries over large datasets with dynamic columns; examples: Cassan-

dra [95] and HBase [97].

Graph stores: Stores of this type are employed to handle relations between

elements and networks of information; examples: Neo4J [72] and Giraph [101].

From the point of view of distributed computing, two main paradigms can be

found: batch and stream processing:

Batch processing: Batch processing involves operating over extremely large

collections of static datasets, returning results at a later point in time, only af-

ter the whole computational process have finished. Typically, batch processing

operates over finite and well delimited elements of data backed by some type

of NoSQL store, distributed file system or any other type of permanent store;

examples: Hadoop [103], Spark [100] and Flink [102]. Although Flink was

designed with stream-oriented workloads in mind, there are modules available

to operate as a batch processing framework.

Stream processing: Stream processing frameworks operate over data as they

reach the system. Data operations and tasks are only applied over chunks or

individual items of data instead of whole datasets. Usually, the total amount

of data that is going to be processed is unknown with a event-based processing

16 Chapter 1. Introduction

mechanism. As new data arrive, new results are generated or previously results

are updated, not finishing until the processing is explicitly stopped; examples:

Storm [104], Flink [102] and Spark [100]. Spark is in the opposite situation to

Flink, as it was designed with batch-oriented workloads in mind, but specific

modules have been included to operate over streams of data.

The advantages of following a big data approach in geospatial information con-

texts have been studied in [63, 66, 112, 115], some of which discuss the benefits of

using big data in the specific field of LiDAR [8,12]. In [8], the storage and querying

capabilities of NoSQL technologies are explored, and in [12], it is shown how to take

advantage of the usage of the Spark framework on point data visualization.

These LiDAR-oriented publications are part of a much larger literature compar-

ing and analysing big data solutions from similar points of view, such as in [17], where

an analysis on how big data may provide added value in the context of remote sensing

applications, or in [27] where the performance and reliability of MongoDB, Hadoop

and HDFS is analysed from the point of view of scientific data analysis. More

general benchmarks and performance comparisons are presented in [1, 20, 81, 110],

considering several different big data technologies.

1.3.1. Distributed storage for LiDAR data

During the research carried out in the Chapter 4 of this Thesis, four big data

storage technologies were employed: HDFS [96], MongoDB [69], Cassandra [95] and

Redis [83]. These four technologies were chosen with a view to including different

types of storage design among the most adopted and mature technologies currently

available. With them, the following designs have been covered: distributed file

systems, document stores, wide column stores and key-value stores. For more in-

formation about the usage and popularity of these technologies, a complete list of

database management systems can be checked in [92].

We should point out here that, although HDFS is the only technology that is

not, strictly speaking, a database but a distributed file system, it is widely used

across many big data environments for storing and retrieving files. We chose HDFS

over other popular distributed file systems, such as LizardFS or Lustre, because of

1.3 Cloud computing and big data 17

their limited integration within the big data ecosystem.

Additionally, graph databases were excluded since they are best-suited for analysing

interconnections or networks of information, which does not apply in our use case.

Finally, GridFS, a special implementation featured in MongoDB designed for stor-

ing and retrieving binary files, was discarded in our analysis due to it only being

recommended for storing files exceeding 16 MB. In out-of-core multi-resolution ap-

plications, especially in web applications where taking advantage of browser’s cache

is a key point in performance, the size of the files is much lower than 16 MB.

HDFS

HDFS [96] is a distributed file system used by big data computing technologies

such as Hadoop, Spark or Flink. It provides fault tolerance and data replication.

Commonly, it operates over files of more than 1 gigabyte or 1 terabyte in size. These

files are automatically distributed throughout the nodes of the cluster. Before being

distributed, data are divided into chunks of a fixed size. Although the files stored

in HDFS are commonly accessed by Hadoop, Spark or Flink, for computational

purposes it implements a REST API (WebHDFS) allowing any kind of application to

retrieve data directly from the system. The emphasis of HDFS is on high throughput

data access rather than low latency data access.

In an HDFS cluster there are 2 main components: the name-nodes and the data-

nodes. The data-nodes manage the data storage while the name-nodes act as master

servers, managing the file system namespace, regulating the client’s/application’s

access to files among other tasks. HDFS was not designed to work with a large

number of small files but with a moderate number of files of a very large size. For

performance reasons, each time a name-node starts it loads into main memory all

metadata about the files, folders and file chunks contained in the cluster. Each

metadata entry leaves a fixed-size memory footprint in the name-node. Either for

storing an excessive large number of files/folders, or for using an inappropriate

(too small) block size causing large files to be split into a very large number of

file chunks, the excessive amounts of entries produced could end up consuming all

available memory in the name-node.

18 Chapter 1. Introduction

MongoDB

MongoDB [69] is a document store where data are handled in the form of JSON-

like documents. Aside from implementing the same common features presented in all

technologies (data distribution and replication, fault tolerance and high scalability),

MongoDB stands out for its automatic data balancing mechanism. The balancing

mechanism ensures an even distribution of the data across all nodes of a cluster

regardless of its initial distribution.

The main components of a MongoDB cluster are: the shards, the configuration

servers and the query routers. A shard is a single MongoDB instance that stores

some percentage of the total amount of data contained in the cluster. This role

is assumed in the cluster by mongod (MongoDB Daemon) processes. No third-

party applications can communicate directly to shards, it being necessary to do so

through query routers. Query routers are elements in charge of receiving and serving

data queries from any kind of application. They are very lightweight and low CPU

consuming, so they can be deployed in the same node along with a shard or a con-

figuration server. This role is assumed in the cluster by mongos (MongoDB Shard)

processes. Configuration servers store the metadata for the cluster. Metadata holds

the state and organization of all stored data and the different components of the

cluster. Query routers need the information provided by the configuration servers in

order to read and write data. This role is also assumed by mongod processes and by

design, it is mandatory to have at least one node exclusively deployed with this role.

Nodes cannot be shards and configuration servers at the same time; accordingly, in

a cluster with N nodes only N − 1 nodes can be deployed to store dataset.

Cassandra

Cassandra [95] is a wide column store, a class of data base where data are stored

in records with the capability of holding very large numbers of dynamic columns.

It provides features such as fault tolerance, data distribution and data replication.

It is highly scalable, being used by some of the most important companies around

the world, such as Apple or Netflix, with deployments of over 75000 nodes in the

former case and 2500 in the latter. Its performance has been benchmarked against

other solutions in [81], showing a clear advantage of Cassandra over the rest of

1.3 Cloud computing and big data 19

alternatives (HBase, Redis, Voldemort, MySQL and VoltDB). Nevertheless, it is

important to highlight the years that have passed since the study and that some of

the technologies, like Redis, were in an early stage of development at that time.

Redis

Redis [83] is an in-memory, key-value structure store with all the common advan-

tages of big data technologies, data distribution and replication, fault tolerance and

high scalability. Redis achieves especially good performance during data readings,

thanks to its in-memory design, which allows it to serve all data queries directly

from main memory, unlike other solutions, where data are served from disk and

only most recently used data are served from main memory.

In a Redis cluster, two types of nodes can be found: masters and slaves. All data

stored in Redis are divided throughout the master nodes presented in the cluster.

All master nodes have zero or more slaves associated to them, and each slave is in

charge of storing replicas of the data from its corresponding master node. In Redis,

it is mandatory to deploy at least three master nodes, while the number of slaves

depends on the replication factor.

1.3.2. Distributed computing for LiDAR data

GIS elevation models, such as DSMs (Digital Surface Models) or DTMs (Digital

Terrain Models), are one of the most important and valuable products derived from

LiDAR point clouds, as these raster-type three-dimensional (3D) models are the core

element in many geospatial processes, e.g., biomass estimation [80] or linear feature

extraction [119]. Additionally, DTMs and DSMs can be used together with their

source data for carrying out many different visual analyses or simply to compare

the quality of different procedures and techniques employed for their creation [35].

The quality of these elevation models is strongly related to the accurate clas-

sification of LiDAR points under the categories of ground or non-ground, usually

being this a heavy time-consuming process. Computational times and storage re-

quirements involved in this type of classification may become a critical issue on

environments under high data collection rates, such as the already mentioned GIS

20 Chapter 1. Introduction

centres. Considering the massive volumes of data that must be handled in such en-

vironments, during the execution of complex computational tasks a single computer

and the use of conventional software solutions may suffer some important problems,

such as lack of scalability and availability, low throughput and high latency levels.

During the research carried out in the Chapter 5 of this Thesis, Spark was

employed to provide computational capabilities on top of a Cassandra storage system

in order to develop a highly scalable solution to execute filtering algorithms for DTM

generation (or any other very complex geospatial process) on large collections of

massive point clouds.

As briefly commented in Section 1.3, Spark is a fast processing engine compatible

with HDFS, HBase, Cassandra, Hive and any Hadoop InputFormat. It was designed

to perform batch processing in addition to other types of modern workloads such

as streaming, interactive queries or machine learning. Spark has been employed by

many major brands, companies and organizations, many of them with clusters of

thousands of nodes deployed in their facilities and labs. In terms of data size, Spark

is able to work properly up to petabytes.

Chapter 2

Interactive full-resolution

visualization and processing of

large aerial LiDAR point clouds

The first stage of this Thesis focused on full-resolution point cloud rendering

since it was considered the most suitable approach for accurate measuring and visual

analysis under high image fidelity requirements. Nevertheless, this type of approach

demands a considerable amount of hardware resources in order to offer interactive

levels on visualization and processing.

In this chapter, several optimizations for performance maximization on full-

resolution rendering and processing are presented, some of which based on a bach-

elor’s thesis1. Said strategies have been grouped into two categories: strategies for

fast data loading and strategies for high performance rendering. These strategies

were incorporated and tested into a visualization framework specially developed to

do so and called GVLiDAR. The use of an own visualization framework ensured

entire freedom during all development stages, avoiding all possible limitations and

constraints that cloud appear when using as development foundation a pre-existent

API or software package. Additionally, some key features developed and included in

GVLiDAR are also presented here as they were included to grant flexibility and ad-

equate workflow and to provide field-specific geospatial measurement tools, features

1Bachelor’s thesis permanent link: http://kmelot.biblioteca.udc.es/record=b1514673 S1*gag

21

22
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

that are particularly relevant in some professional areas like agroforestry.

The rest of the chapter is organized as follows. Section 2.1 describes the internal

structure and main components of GVLiDAR. The data querying method included

in the framework is described in Section 2.2. In Section 2.3, all measurement capa-

bilities of the framework are explained. Strategies for fast data loading are described

in Section 2.4, while strategies for full-resolution rendering are described in Section

2.5. In Section 2.6, several performance tests are shown. The work presented in this

chapter was originally introduced in [34] and [35].

2.1. System structure

GVLiDAR is a web-based LiDAR visualization framework specially designed to

carry out detailed visual analysis and to make complex measurements over fully de-

tailed 3D point clouds. It allows users to retrieve remote data on-demand through

queries based on spatial restrictions. By defining regions of interest (ROI), it is pos-

sible to visualize and process sub-areas of a much larger point cloud without trans-

ferring unnecessary points. Multiple source files acquired during different scanning

flights can be pre-processed and stored together on the server allowing, for instance,

the visualization of a road stored over multiple files or datasets.

In some technical disciplines, not only is a realistic representation of the data

necessary, but also the capacity to take fast and accurate measurements over the 3D

objects and terrains under study. Considering this, our proposal does not follow a

multi-resolution and out-of-core approach, but an approach to obtain great perfor-

mance rendering point clouds at full-resolution. Furthermore, all measurement tools

included in GVLiDAR were developed by consulting several experts in the field of

agronomy engineering trying to ensure the maximum usefulness of the tools.

Figure 2.1 shows the general system environment. This framework follows a

common client-server architecture, having two clearly separated parts. The first

part is an HTTP web server, in our case Apache HTTP Server [98], which stores the

application source code and the LiDAR files. The second part includes any client-

side WebGL compatible web browser. This type of system allows multiple users to

concurrently access the same data through their browsers, rendering the final image

2.1 System structure 23

Figure 2.1: General structure of GVLiDAR.

on their own platform.

GVLiDAR uses three different programming languages and the WebGL graphics

API. HTML5 and JavaScript, both executed by the CPU, are responsible for tasks

such as handling I/O events, generating the user interface, requesting and loading

LiDAR data from remote servers and computing the geospatial measurements. Al-

though WebGL is also JavaScript code, it is a very distinctive part of the framework.

It is the intermediary between the CPU and GPU, allowing communication and in-

formation delivery to the GPU. Finally, OpenGL Shading Language (GLSL) [71,105]

is used to program the GPU shaders, Vertex Shader and Fragment Shader. Shaders

are programs that provide a significant flexibility in order to implement rendering

and computational algorithms on GPUs. In GVLiDAR, shaders are used for tasks

such as point colour generation, point erasing or mouse picking, which allows the

geospatial measurements tools to be implemented efficiently.

From a user’s perspective, the framework consists of two separate web pages.

The Selection page (see Figure 2.2a) shows a map through GoogleMaps API 3.0.

24
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

(a)

(b)

Figure 2.2: (a) Selection page of GVLiDAR over Santiago de Compostela (Spain)
International Airport. In this page we use the GoogleMaps API in order to help
users to locate their areas of interest. The green rectangle represents the area of the
map that contains point data while the blue rectangle represents the specific data
selection performed by the user. (b) Visualization page of GVLiDAR rendering the
point cloud contained in the ROI defined by the user in the Selection page.

2.2 Remote data querying 25

Over this map users are able to obtain their geographic location or define an ROI

to work with. Once users have defined the ROI, the Visualization page (see Figure

2.2b) pops up showing the rendered model of the point cloud contained in the ROI.

In this page, different LiDAR properties such as height, intensity, classification or

return number can be chosen in order to change the way the scene is displayed.

There are also different camera options, marker tools and rendering options, such

as point size, line width or projection mode.

2.2. Remote data querying

During a normal workflow, it may be necessary to select a small sub-region

of a much larger area to work with, which may involve downloading a large file

containing many more points than necessary, even for multi-resolution approaches.

Remote data queries based on spatial restrictions were implemented through the use

of spatial hashing techniques. Spatial hashing allows fast and efficiently remote data

to be obtained from the server without requiring any additional back-end software,

like a data base. The coordinates delimiting the user-defined ROI can be transformed

into the positions of tiles belonging to a regular grid, each tile being related to a

specific file on the server.

Figure 2.3 shows a very simple example of the process. The yellow circles are

user-defined coordinates which delimit the ROI. This is done in the Selection Page

described on Section 2.1. Dark tiles represent LiDAR files created during the pre-

processing stage, while the inner blue area is the user-defined ROI. The list of files

that must be retrieved from the server are obtained from the geographical coordi-

nates of the two points (yellow circles) delimiting the ROI using spatial hashing

techniques. For example, (43.3357,−8.4542) is converted into [4 1], which is the ID

of the file under the point; the rest of the files are derived based on the shape of

the ROI. In the example depicted in the figure, the retrieval of the fourth column of

tiles is not required, reducing load times, saving memory and CPU resources. The

points outside the ROI contained in the rest of tiles are discarded rapidly on the

client side during the load process.

26
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

Figure 2.3: Simple schema representing a regular tile grid distribution with a user-
defined ROI over it. The list of files that must be retrieved from the server are
obtained from the coordinates of the two points delimiting the ROI using spatial
hashing techniques.

2.3. Geospatial measurement tools

Some common measurement tools were developed to be included in GVLiDAR,

for example, the projected flat area shown in Figure 2.4. Nevertheless, one of the

main differences between GVLiDAR and most of the frameworks listed in Section

1.1.3 is the inclusion of field-specific geospatial measurement tools that can be per-

formed directly over the 3D point clouds. Many of aforementioned frameworks offer

very basic measurement tools, or they do not fulfil specific requirements of profes-

sionals on the LiDAR field, as is the case for the agroforestry experts that were

consulted for this research.

A good example of this lack of specific features can be found while measuring the

height of some structures or terrain shapes. The measurement mechanics of other

frameworks require picking up or selecting rendered points on the image, so height

measurements like the one shown in Figure 2.5 cannot be directly obtained or even

2.3 Geospatial measurement tools 27

Figure 2.4: Projected flat area measurement (bright green area) covering the entire
surface of a river.

Figure 2.5: Vertical height measurement of a mountain.

28
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

Figure 2.6: Vertical height measurement in Riazor stadium (A Coruña, Spain).

Figure 2.7: Complex volumetric object created using a triangulated base surface, a
projected top and an irregular contour.

2.3 Geospatial measurement tools 29

Figure 2.8: DTM overlapping a LiDAR point cloud. This method helps to compare
the quality of the DTM in comparison to the source material (the point cloud).

obtained at all. Said figure shows a vertical height measurement (white triangle)

of a mountain from its top down to a flat plane located at the level of a nearby

river. The green vertical line determines the distance from the top to its virtual

bottom. The green dot (lower) is generated by GVLiDAR from the pink (upper)

and the blue (right) points, which were selected by the user. In all frameworks listed

in Section 1.1.3, dots of this type (like the lower one) cannot be created or defined,

only allowing the height of structures to be obtained directly in scenarios such as the

one shown in Figure 2.6, where selectable points are available at the bottom of the

structure. Other unique measurement tools not presented include: the capability of

defining flat areas projected in arbitrary planes allowing to measure façades or slopes

and tools to accurately measure highly complex volumetric objects (see Figure 2.7).

Another feature presented in GVLiDAR is the capacity of overlapping the point

cloud over a DTM. This, for instance, allows researchers who develop algorithms for

DTM obtention to compare their algorithm results (the DTMs) with their source

data (point clouds), allowing them to judge the quality of any DTM overlapping it

with a high dense and precise point cloud. These type of visual analysis demands

to render as many points as possible in order to obtain good results. Inaccurate

30
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

point clouds derived from hard under sampling or point interpolations may not have

enough quality for these type of analysis or other accurate measurements. Figure

2.8 shows a DTM overlapping a LiDAR point cloud obtained from different sources,

this test allows us to compare the quality of the first one.

As a summary for this section, it can be asserted that most of the measurement

tools available on other frameworks are far from being appropriate for many pro-

fessionals in fields using LiDAR data, such as agronomy, urban planning or civil

engineering.

2.4. Strategies for fast data loading

In this section, a series of strategies for fast data loading are presented. They

were implemented in order to minimize data loading times by optimizing the size

of the LiDAR data and the reading functions and by making efficient remote data

transmissions.

All strategies described in following subsections are carried out during a pre-

processing offline stage and the results permanently stored on the server-side to be

retrieved through Apache HTTP Server by any client connected to the system.

2.4.1. Data cleaning and transformation

In practice, some parts of the information stored in LAS files are often not

useful from the point of view of visualization or the geospatial measurements, which

unnecessarily increases the size of these files, demanding longer download times and

storage capacity. Owing to this, it is essential to apply some kind of compression

or file optimization to the original LiDAR file format in order to reduce the amount

of data to be stored, transferred and handled. For example, the entire LiDAR

dataset of Galicia (a region within Spain) gathered by the National Program of Aerial

Ortophography (Plan Nacional de Ortofotograf́ıa Aérea, PNOA [54]) has around 900

GB of information; nonetheless, after removing all the unnecessary data, its size is

reduced to 450 GB, a reduction of 50%. The superfluous information in these files

includes: the entire header block, all VLRs, all EVLRs and point properties, such

2.4 Strategies for fast data loading 31

as Scan Direction Flag, Edge of Flight Line, Scan Angle Rank, User Data and Point

Source ID. Furthermore, some LAS files may contain fields with all their values set to

null or zero, so they become also useless data. PNOA files have a RGB property in

each point record but it is always set to zero, which represents 12 bytes of worthless

information per point, so that this property is also deleted.

Additionally, the group of agroforestry experts consulted was not interested in

the numeric values of the return properties; instead, they demanded information in

the form of return tags; that is, a classification of each point based on its return

information mixing the return number of the point and the number of returns of

its pulse. Thus, 5 tags or categories were created, allowing this information to be

stored in 3 bits instead of the previously 5 bits used in the ASPRS specification

(see Section 1.1.2). These 5 categories allow the point clouds to be filtered in many

useful ways, while helping to further reduce the size of the files. The return tags are

defined as follows:

1. First return (return number 1 out of R, being R > 1). This tag corresponds

to objects like forest canopy.

2. Middle return (return number r out of R, being R > 2, r 6= 1 and r 6= R).

This tag represents points placed between the canopy and the ground, such as

branches or leaves.

3. Last return (return number R out of R, being R > 1). A last return represents

points placed in the ground.

4. No return (return number 0 out of 0). This tag denotes an artificial point.

These are points added to the point cloud after being collected by the laser

scanner. Normally used to outline rivers or lakes.

5. Unique return (return number 1 out of 1 pulse). This tag correspond to points

obtained from a solid surface such as buildings, roads or stones.

2.4.2. Bulk data operations

The two most common ways of storing vertex, or point attributes, in the GPU

memory are the array of structures (AOS) and the structure of arrays (SOA). Figures

32
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

(a)
(b)

Figure 2.9: The two most common ways of storing vertex attributes: 2.9a Structure
of arrays (SOA). 2.9b Array of structures (AOS).

2.9 shows the main differences between the two types. The AOS (Figure 2.9b)

is implemented by using a single buffer configuration, storing all point attributes

together. On the other hand, the SOA (Figure 2.9a) is implemented by using a

multiple buffer configuration; each buffer stores one type of attribute.

In original LAS files, all properties are stored per point, using an AOS approach,

while for the design of GVLiDAR the SOA was chosen to program the GPU shaders

in order to obtain better performance. The fact that original LAS files and inputs

of the Vertex Shaders use different kinds of structures demands a structure trans-

formation from AOS to SOA. Performing this transformation in the client would be

inefficient; hence, it is done in the server during the pre-processing stage.

Another benefit of the SOA approach is that entire sequential block of the same

type of information can be read out of the retrieved files (bulk data reading) and

sent directly to the GPU buffers (bulk data writing), since the values of all points are

packed together based on their type. For example, the entire block of coordinates

(x, y, z) can be read using a single JavaScript function knowing the offset and length

of the coordinates inside the data pack obtained from the server, and the same

principle can be applied to the rest of point properties, such as classification, return

or intensity. On the other hand, in an AOS approach, the value of each property

2.4 Strategies for fast data loading 33

Table 2.1: Basic format structure of a pre-processed LAS file containing P points.

Item Size (Bytes)

x, y, z 3× 4× P
Intensity 4× P

Ret. + Class. P

from each point must be individually read and rearranged in order to be stored in

the corresponding data structures, heavily penalizing data load times.

The (x, y, z) values stored in the original LAS files (and sometimes in other file

formats) are not the actual geographical coordinates of the points; each coordi-

nate has to be adjusted according to a scale and offset. Thereby, as an additional

improvement to accelerate data reading, during the pre-processing stage the coordi-

nate values in the files are analysed. If they can be stored as 32 bits float numbers

without losing precision, they are stored this way. This prevents carrying out extra

operations on the client side each time the point clouds are loaded. If the use of

floating point numbers implies losing precision, offsets and scales are used. Each

dataset owns a metadata file (in JSON format) containing all information required

to retrieve, load and render the dataset properly. These metadata files store infor-

mation such as the name of the dataset, its coordinate system and the offset and

scale (if used) of the point clouds.

Table 2.1 shows an example of the final internal data distribution and total

file size of the pre-processed files after applying the changes described in this and

previous subsections. Here it should be noted that, in case additional properties

would be required, such as GPS Time or RGB, they could be easily included in

auxiliary files if they were required in the future. These files would be stored apart

from the current data and only retrieved from server if required. This provides

flexibility and scalability, allowing new properties to be included as needed and even

including custom properties not included in the LAS format. If new information

were included, the auxiliary files would not be sent to the majority of the clients

that simply wish to visualize the point clouds using basic properties, they would be

retrieved from server only when required by a specific client.

34
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

2.4.3. Data caching

The large sizes of the original LiDAR files make hard to implement efficient spa-

tial hashing techniques since some ROIs may need to retrieve large tiles containing

an excessive amount of unnecessary information located outside the ROI. To solve

this problem, all LiDAR files were subdivided into smaller files of variable size en-

suring that all stay below 5 MB. The limit of 5 MB allows the optimal utilization

of web cache of the most used browsers.

A web cache system stores web documents on local disk so subsequent requests

of the same data may be retrieved from the cache instead of from the remote server.

The small size of the files along with a data distribution in the form of a regular tile

grid allows GVLiDAR to perform efficient data queries based on spatial restrictions

while taking advantage of the browser’s cache system.

Following the example depicted in Figure 2.3, 12 tiles, from [1 3] to [4 1], are

retrieved from the server and stored in local cache. These tiles will be load immedi-

ately on later situations when defining an ROI over the same already cached tiles.

The points contained in the tiles partially covered by the ROI are rapidly discarded

client-side during the load process to avoid being rendered on screen. These dis-

carded points serve as pre-cached data that will also be loaded immediately when

defining an adjacent ROI.

2.5. Strategies for high performance full-resolution

rendering

A full-resolution approach, like the one presented here, may become a challenge

when it comes to obtaining good performance rendering some point clouds with a

large number of points. WebGL is the foundation for accomplishing such a task,

thanks to its capability to exploit the power of the client’s GPU from a web browser.

Nonetheless, additional rendering optimizations are required to reach good frame

rates during the visualization process. In GVLiDAR two main strategies were im-

plemented: a common view-frustum-culling technique and a technique very similar

to an occlusion-culling.

2.6 Results and comparison 35

View Frustum Culling: The idea behind this technique is to avoid the

rendering of objects that lie completely outside the viewing frustum of the

camera in the 3D scene, saving GPU processing power and increasing the

frame rate. For this, LiDAR files contained in the ROI are managed by a tree-

like structure, so it can be efficiently traversed to determine which sections of

the point cloud are visible and which are not.

Occlusion-culling: This technique follows a very similar concept, avoiding

the rendering of objects that are not visible because of being occluded be-

hind other objects. GVLiDAR implements an approximation of this idea by

changing the value of the parameter stride in the WebGL function vertexAt-

tribPointer. Some sections of the point cloud may be located at a certain

distance from the camera, so their points are so close on screen that they over-

lap and some are drawn on top of the others. The function vertexAttribPointer

helps to mitigate this issue while increasing the frame rate, by allowing the

GPU to render only ranges of points instead of rendering them all.

More information about this type of rendering optimizations can be found in [2].

2.6. Results and comparison

In this section, the results of the evaluation of our proposals are presented and

analysed encompassing three different key points: the analysis of the functionality,

the performance in terms of FPS and the data retrieval times observed. Our test

platform is an Intel Core i7 4790, 32 GB of RAM DDR3 with a Nvidia GeForce GTX

Titan (Maxwell). The screen resolution was 2048 × 1152 under a set of different

browsers.

Two datasets, collected through airborne sensors, were used for the analyses:

PNOA and CA13. The PNOA dataset is available in the Spanish GIS database

(IDEE) [54]. Specifically, we have used the region of Galicia, containing over 27.6

billion points (see Figure 2.10) with a point density of 0.5 point/m2. CA13 [74]

(see Figure 2.11) is located in San Luis Obispo County (California), it contains 17.7

billion points with a point density of 22.06 points/m2.

36
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

Figure 2.10: Selection page of GVLiDAR. GoogleMaps API was employed in order
to show users the datasets available and their extension. The green square delimits
the area with point data, in this case, the PNOA (Galicia, Spain) dataset used in
this paper.

Figure 2.11: OpenTopography website, specifically its data selection tool. The red
zone indicates CA13 dataset, located in San Luis Obispo County, California.

2.6 Results and comparison 37

2.6.1. Functionality and workflow

The functionality and workflow test presented in this subsection was carried

out using the web browser Windows Chrome 42.0.2311.135 (64 bits) and the CA13

dataset. GVLiDAR is compared to Potree, since among all frameworks described in

Section 1.1.3, it is the most similar to GVLiDAR.

For the test, we have recreated a use case where a user must take accurate mea-

surements of the length of roads, which is a common use case for some institutions

responsible for calculating the cost of road maintenance. In general, the measure-

ment process requires working from a point of view close to the road in order to

carry out a fine-grained point picking and thus obtain very accurate measurements.

Figure 2.12 shows the zone of road that we want to measure, starting at position A

and finishing at position B.

Potree visualizes up to 1 million points using a multi-resolution technique in

order to maintain good frame rates and low memory consumption. This limit can

be raised up to 4 million; nevertheless, the default configuration of the framework

was used due to 1 million points being sufficient to show LiDAR data with high detail

in order to measure the road. Potree uses around 1.3 GB of RAM at the beginning of

the procedure of measurement on position A; however, it needs up to 4GB of RAM

when the user reaches position B. All points rendered during the measurement

procedure are kept in browser memory which could reach the limitations of software

or hardware due to the requirements of memory used. Chrome has a limit of 4GB

of RAM per tab; therefore, Potree provokes the closing of its tab during the test

losing all the measurements. This memory limitation can be found in all 32 bit web

browsers and the 64 bit versions of Chrome for Windows.

GVLiDAR was used for taking the same measurement but using its data querying

capabilities. Figure 2.13 shows the section of the road loaded from position A to

position B with a total memory usage of 500 MB of RAM and 800 of VRAM.

GVLiDAR shows a considerable margin regarding Chrome’s 4 GB limit allowing

the completion of the whole process without problems and using the maximum

resolution along all road sections.

In summary, with high levels of resolution and a prolonged and intense use of

the application, Potree may fail due to the high memory requirements related to

38
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

Figure 2.12: Distance measurement of one of the roads contained in the CA13
LiDAR dataset, from A to B, using GoogleMaps only.

Figure 2.13: GVLiDAR point cloud render of the road from CA13 with the same
distance measurement previously taken in GoogleMaps.

2.6 Results and comparison 39

the use and handling of the multiple LODs. On the other hand, GVLiDAR exploits

the benefits of the use of an ROI, minimizing memory requirements while displaying

fully detailed point clouds. We should stress here that this analysis was carried out

with the aim of highlighting the importance and usefulness of the use of the ROI,

showing how, for some working contexts, even a single-resolution approach could

get better performance and image quality compared to a multi-resolution approach.

2.6.2. Performance in terms of FPS

For this analysis, a performance test in terms of FPS was carried out on the same

hardware described at the beginning of this section, but with the browser Firefox

41 (64 bits) instead of Chrome, in order to avoid the 4 GB limit. The five point

clouds used for this test are shown in Figure 2.14 highlighted with white squares

(see Figure 2.14(a)). Figure 2.14(b) shows a close view over the largest ROI with a

maximum amount of points of 281,152,780.

Figure 2.15 shows the results of the performance tests in terms of frame rate

(FPS) for each ROI. For each ROI, the maximum number of points rendered is

shown in the horizontal axis. Two different points of view, V P1 and V P2, were

used to place the camera, specifically, for V P1 the camera is located at 1/4 of the

full 2D convex hull while for V P2 it is located at 3/4. These two points of view

were used to analyse the benefits of the rendering optimization techniques described

in Section 2.5.

Results show that, when 20,179,576 points are rendered, up to 60 FPS are

achieved. For larger regions (up to 51 million points), GVLiDAR achieves real-time

interaction (above 20 FPS) for both VP1 and VP2. Even rendering 103 million

points, it is capable of reaching 42 FPS for VP2. It should be noted that GVL-

iDAR is able to render up to 281 million points, which is not achieved in other

applications, with the exception of Megatree and Potree, which manage to achieve

good frame rates by using multi-resolution approaches, although they really never

show more that 4 or 5 million points on screen. Frameworks such as IDECanarias

or Lidar-Online show a similar performance for a small number of points rendered

(350,000 or 1,000,000), while although FugroViewer and Global Mapper, also employ

optimization techniques very similar to a multi-resolution approach, they only show

40
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

(a)

(b)

Figure 2.14: Test point clouds: (a) Each white square highlights a different ROI; (b)
Point cloud rendered on the Visualization page using a close view over the largest
ROI.

2.6 Results and comparison 41

Figure 2.15: GVLiDAR Performance in terms of FPS using different amount of
points to render in the Visualization page.

stable behaviour under a limited amount of points, getting stuck and failing when

surpassing 10 million points.

These performance tests have led us to establish two different theoretical point

limits in GVLiDAR, considering the current GPU market. The maximum amount of

points that can be stored in the 12 GB of VRAM available on the Titan X (Maxwell)

is 281 million, meanwhile, 103 million points is the performance limit of the GPU,

that is, the maximum amount of points that is able to handle with relative good

performance (between 10 and 42 FPS).

2.6.3. Data retrieval and data load times

For this test, retrieval times and load times were taken to confirm the practi-

cal usability of GVLiDAR. Retrieval times are considered as the time required for

moving the LiDAR data from the server side to the client machine, while load times

are considered as the time it takes to read, set and send the data already retrieved

from server to the GPU buffers. The sum of both times (retrieval + load) is called

wait time and it represents the elapsed time between a user making a data query

42
Chapter 2. Interactive full-resolution visualization and processing of large aerial

LiDAR point clouds

Figure 2.16: Retrieval times from remote server.

and the point cloud being rendered on the screen. This test was carried out using

an Apache 2.215 server, running CentOS 6 on an Intel Xeon ES-2603v3, 64 GB of

RAM and a 4TB SATA3 hard drive. The network transfer speed is 90 Mbps and

the browser used was Firefox 41 (64 bits).

Figure 2.16 shows how the load, the retrieval and the wait time vary with the

number of points requested. The graph reflects the worst possible scenario, where

all data selected by the user must be entirely retrieved from server. It is quite clear

from the graph that times increase almost linearly along with the number of points

rendered due to the size of each point always being the same, in this case 17 bytes.

Considering the best possible scenario, where all data contained in the ROI are

already cached in the client disk (as explained in Section 2.4.3), the retrieval time

would be zero, making the wait time equal to the load time.

Although the time spent retrieving non-cached data may become high when

starting to retrieve more than 25 million points, these results were obtained without

using any type of compression algorithms. As already mentioned at the beginning

of this Thesis, all the research focused mainly on the performance and functionality

of the client side, with the strategies outlined in Section 2.4 being only an initial,

2.6 Results and comparison 43

but efficient, approach.

Chapter 3

A multi-resolution, out-of-core

approach for rendering massive

aerial LiDAR point clouds

In this chapter, novel multi-resolution and out-of-core techniques for web-based

visualization are presented in detail, the key performance elements thereof being

a non-redundant data design and a runtime-only LOD computation system. Our

approach is based on a special point data organization called Hierarchically Lay-

ered Tiles (HLT) together with a tree-like structure called Tile Grid Partitioning

Tree (TGPT). The non-redundant data nature of the new approach, together with a

lossless compression method specially developed to be applied on the LiDAR point

clouds, allowed us to greatly reduce the amounts of data handled on both the client

and server sides. Reduction in storage requirements is particularly relevant, being

notably lower compared to traditional multi-resolution approaches using conven-

tional static precomputed models with high levels of data redundancy. The concept

of layered points with a view to avoiding redundant data was explored in [43], but

with totally different goals and a different execution context.

The new approach was tested in ViLMA (Visualization for LiDAR data using

a Multi-resolution Approach), a web-based visualization framework that was built

using many of the main features of the software developed during the first stage of

the Thesis and presented in the previous chapter. Unlike GVLiDAR, ViLMA was

45

46
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

designed to visually explore massive LiDAR point clouds, with visual fidelity being

secondary in relation to performance (see Section 1.2.1 for more information about

performance/visual-fidelity approaches).

In Section 3.4.6, several performance optimizations were validated though a per-

formance comparison between Potree and ViLMA. For the same reasons explained

in the previous chapter, Potree was selected due to its being, among the currently

available web applications (see Section 1.1.3), one of the most well known and highly

valued web-based visualization options and the most similar to ViLMA. We should

note here that the concepts presented in this work regarding non-redundant data

structures could be applied to any other visualization software besides ViLMA, as

it is only a means to test our proposals.

The rest of the chapter is organized as follows. In Section 3.1, the general sys-

tem structure and design of ViLMA is described. Section 3.2 presents the HLT

and TGPT data structures. In Section 3.3, several design decisions regarding per-

formance are discussed, while in Section 3.4, proposals are analysed using ViLMA.

The work presented in this chapter was originally introduced in [32].

3.1. Structure of ViLMA

ViLMA is a web-based application designed for the interactive 3D visualization

and exploration of massive LiDAR point clouds. It shares with GVLiDAR some of

its main features, such as the field-specific geospatial measurement tools and the data

queries based on spatial restrictions, but pursuing different goals for visualization

and measurement accuracy, as was already mentioned in previous paragraphs.

Figure 3.1 shows the general system structure of ViLMA. The front-end, written

in JavaScript and HTML5, can be executed in any WebGL-compatible web browser.

For the back-end, an Apache HTTP Server [98] was deployed for serving the appli-

cation code and the point data requests. ViLMA was also designed to work with

local datasets in addition to the public datasets available online; hence users may

select a local directory from which their own pre-processed LiDAR point clouds can

be loaded. As shown in Figure 3.1, the structure of ViLMA is divided into two

different stages: the Pre-processing Stage and the Interactive Stage.

3.1 Structure of ViLMA 47

Figure 3.1: General system structure of ViLMA.

The Pre-processing Stage takes place off-line on the server side and/or on the

client side. Datasets pre-processed on the server side are intended to be public

and accessed online through the Apache server; meanwhile, datasets pre-processed

on the client side are loaded directly by ViLMA from the user’s local disk. Dur-

ing this stage, points from the original LiDAR datasets are rearranged and stored,

avoiding data redundancy in order to support efficient, multi-resolution and out-

of-core techniques together with data queries based on spatial restrictions. This is

achieved through HLT and TGPT data structures, in addition to a lossless com-

pression method applied over the pre-processed data (see Section 3.3.3).

The Interactive Stage takes place online on the client side, where users are able

to visualize, interact and analyse LiDAR point clouds through their web browser.

Regions of interest can be requested from the entire point cloud using geographic

coordinates. The use of ROIs has several performance implications that are further

discussed in Section 3.4.4.

ViLMA includes several options for the visualization and filtering of the point

48
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

clouds based on LiDAR properties such as classification, intensity, return number or

RGB. It also incorporates measuring tools, such as distance between points, areas

on an orthographic projection, fully 3D surface areas and complex volume measure-

ments comprising a polygonal contour, irregular bottom surface and orthographic

projected top surface.

Although the objective of ViLMA is not to provide an ultra-realistic represen-

tation of the point clouds, three image enhancement techniques have been included

in order to improve the quality of the images in terms of object recognition, ob-

ject definition and depth perception. Circular points, dynamic point size and Eye-

Dome Lighting [10], have been implemented through the programmable components

(shaders) of the graphic processing unit (GPU). More information about this kind

of image enhancements can be found in [47].

3.2. Multi-resolution, out-of-core data structures

The interactive visualization of massive LiDAR point clouds, exceeding available

memory resources, demands the use of multi-resolution, out-of-core techniques. The

proposal presented here is focused on the following factors: minimizing the con-

sumption of both system memory (RAM) and GPU memory (VRAM), leveraging

of communications between the client browser and the data server, and reducing

disk storage usage on both client and server sides. In this section, we present the

two main data structures used for reaching those goals, HLT (Section 3.2.1) and

TGPT (Section 3.2.2). Section 3.2.3 is dedicated to explain the fundamentals of the

rending process using the cited data structures.

3.2.1. Hierarchically-Layered-Tiles (HLT)

Traditionally, in computer graphics, multi-resolution approaches involve the cre-

ation of several different detailed versions of the same 3D model, which implies data

redundancy among all model versions (further information about multi-resolution

models can be found in [2] and [47]). The proposal presented in this chapter of

the Thesis avoids data redundancy in order to achieve the above factors. There are

3.2 Multi-resolution, out-of-core data structures 49

(a)

(b)

(c)

Figure 3.2: Construction of a TGPT from an arbitrary ROI and its posterior usage
for computing the different LODs of the image. (a) Illustration of an ROI defined by
a user (inner shaded rectangle, overlapping 16× 18 tiles) over a dataset grid (outer
rectangle, 32× 39 tiles). (b) TGPT structure generated during the multi-resolution
process fitting the ROI shown in (a). (c) Point cloud rendered by ViLMA obtained
from the TGPT shown in (b).

50
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

no static, precomputed, multi-resolution models of the point clouds, but a specific

rearrangement and storage of the points, intended to act as separate pieces with

which to create the different multi-resolution models at runtime joining those pieces

as necessary.

To achieve this, the bounding box (the minimum volume that wraps the entire

set of points) of the point clouds is divided into T equally-sized tiles forming a

regular grid (see Figure 3.2a as an example of grid of tiles). Points are distributed

in the tiles using their geographic position. For each tile in the grid, points are

scattered into L layers, creating a heap of layers of different point densities. An

input parameter, called downsampling factor (df), defines the percentage of points

that are scattered in each layer of the tiles. The points in each layer are uniformly

distributed over the surface. Given a tile t containing a total amount of Pt points,

the number of points in the layer l is defined by:

Pt,l =


Pt × (1− df)L−l × df l > 1

Pt × (1− df)L−1 l = 1

(3.1)

No point is repeated in more than one layer, hence, the superposition of the points

of all layers from a given tile is an identical representation of the original tile. Thus,

LOD representation of a tile with a level LODl consists of the overlapping of the

points of its layers, from layer 1 to layer l:

LODl =
l⋃

i=1

Li (3.2)

where Li is the layer i of a given tile.

Figure 3.3 shows an example of layer generation. In the example given, a df = 0.5

was used for simplification purposes; hence, all subsets contain half the points of

their parent set. The top square (labelled as Original) represents a tile from the

grid containing all the points. The points are split into two subsets: the subset on

the right is stored in an individual file labelled Layer 4 ; while, the subset on the

left is split again into a further two subsets repeating the same process. The subset

on the right is then stored in a separate file labelled Layer 3, while the subset on

3.2 Multi-resolution, out-of-core data structures 51

Figure 3.3: Layer generation of a single tile carried out during the Pre-processing
Stage. Starting with the original point set (upper square) four layers are generated
(labelled squares).

the left is split again. Finally, the last two subsets are stored in files with the labels

Layer 1 and Layer 2, respectively. All files generated during this stage are lossless

compressed, adhering to a method that will be discussed in Section 3.3.3. Point

subsets labelled as LOD 1, LOD 2, LOD 3 and LOD 4 are reconstructed in main

memory during runtime from the points contained in the different layers and they

work as the actual 3D models used during the rendering process.

The layering approach of the HLT avoids any kind of data redundancy, which

implies a considerable reduction in memory and disk storage usage on both server

and client sides, as well as a reduction in network bandwidth requirements. Following

the example above and considering Pt = 1000, in a traditional approach to multi-

resolution, each LOD would have associated a precomputed 3D model stored on

the server side, in this case, 4 files containing 1000, 500, 250 and 125 points. The

amount of points stored after creating the different LODs is 1.875 times the original

amount of points, while with our approach the amount would always be the same.

52
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

This level of redundancy may vary depending on the number of LODs used, the

type of tree structure used (quadtree, kdtree, octree, etc.) or how many points are

selected for each LOD.

3.2.2. Tile Grid Partitioning Tree (TGPT)

The management and handling of the tiles into which a point cloud is divided is

performed though a tree-like structure, the TGPT. Unlike other classic data struc-

tures, such as quadtrees or octrees, which may have been entirely precomputed and

stored in disk (on server or client side), the TGPT is not a static, precomputed

structure but a structure generated on the client side at runtime, as needed, and

always fitting a given ROI. The TGPT is stored in the client RAM. Once an ROI

is defined, the TGPT is initially built, creating the root node which represents all

tiles overlapping the ROI. Layer 1 of each of those overlapped tiles is retrieved from

server. This initial set of points is the lowest resolution reconstruction of the point

cloud within the ROI. The information contained in layer 1 includes the number of

points in the remaining layers and the minimum and maximum values of the coor-

dinates (x, y, z) in each tile. Using these coordinates, a bounding box is created for

the root node. This is the initial and most basic state of the TGPT. On the basis

thereof, the tree grows as needed, depending on the decisions of the multi-resolution

system. It should be stressed here that the nodes of the TGPT do not store any

points at all, they only stand as a set or subset of tiles from the ROI storing the

indices that indicate the range of tiles they contain, the bounding box that encloses

those tiles, and other minor variables.

All nodes of the TGPT are created as needed during the rendering process using

a criterion based on the screen projections of their bounding boxes (this will be

explained further in Section 3.2.3). Both, the number of new children created for

a given parent node and the subsets of tiles assigned to each child, depend on the

number of tiles in the parent. The width and length (in tile units) of the parent

node are divided by two in order to delimit subsets as proportionally as possible

in terms of their number of tiles. For example, taking the node marked with an

asterisk in Figure 3.2b as a reference, this node contains a set of 8× 9 tiles and it is

split into four children, each one containing a unique subset of tiles: two subsets of

3.2 Multi-resolution, out-of-core data structures 53

4 × 5 tiles and another two subsets of 4 × 4. Occasionally, this could lead to split

a parent node into only two children. At the tree level 4 of Figure 3.2b, the nodes

containing a set of 1× 2 tiles would only be split into 2 children with one tile each.

3.2.3. Multi-resolution, out-of-core Rendering Techniques

The HLT, along with the TGPT, are the core elements of the multi-resolution,

out-of-core technique used by ViLMA and it has two main steps. The first is the

creation of an LOD-distribution-list. Traditionally, multi-resolution approaches use

some kind of point limit or point budget (PB) to avoid consuming all available

memory or surpassing computational capabilities. Following the same approach,

the second step is the calculation of an LOD for each node of the list, attempting

to use as many points as possible without surpassing a defined PB. Higher budgets

produce better image quality, to the detriment of performance, and vice versa; hence,

the choice of a value for the PB is a subjective task focused on finding a balance

between performance and quality. This type of balance has been discussed broadly

in the literature [25].

In the first step, view frustum culling (the process of removing objects that lie

completely outside the camera of the scene) is used in order to determine visible or

partially visible nodes. If the node is a leaf node, it is put into the LOD-distribution-

list for the subsequent computation of its LOD. If it is not a leaf, its bounding box

is used to compute the number of pixels projected on screen. If the projected area is

larger than a system-defined percentage of the screen size, the node is considered to

be too close to the camera’s perspective, and the process continues through its child

nodes. The TGPT is constructed as needed, so if the current node has children but

they are not currently existent in the tree, they are created immediately. If the node

is not too close, it is put into the LOD-distribution-list. As a result, at the end of

the process the LOD-distribution-list contains all visible tiles, grouped into nodes.

In the second step, computing each LOD individually for each tile is not a viable

option in terms of performance and scalability, due to the large number of tiles into

which some datasets may have been divided. Instead of using individual tiles, LOD

is computed over groups of tiles; thus, the nodes collected in the LOD-distribution-

list are used for that task. After an LOD l has been assigned to a node, all tiles

54
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

contained therein must be displayed with the given level l. All the point layers

required to build the LOD are retrieved from the server, unless they are already in

the memory or in the browser cache. The data retrieval process is further detailed

at the end of this section.

The LOD of each node in the LOD-distribution-list is determined by the pro-

jection on screen of its bounding box and the number of points contained in the

different layers of its tiles. The objective is to assign to each node the highest possi-

ble LOD, as long as the number of points displayed in the node is equal or inferior

to the number of pixels projected on screen by its bounding box. This method at-

tempts to avoid situations where too many points are drawn in the same area of the

screen, thus causing the loss of image quality due to an excessive overlapping effect.

An LOD is assigned to each node with a view to providing more detail in nearby

nodes and less detail in those further away, while not exceeding the PB.

Figure 3.2a shows an arbitrary ROI (inner shaded rectangle, 16× 18 tiles) over-

lapping a dataset grid (outer rectangle, 32 × 39 tiles). Figure 3.2b shows a TGPT

structure built during the multi-resolution process fitting the specific ROI where each

tree node represents a subset of tiles contained in the ROI. The final 3D representa-

tion of the multi-resolution process can be observed in Figure 3.2c. For explanation

purposes, white bounding boxes are displayed over the point cloud rendered. These

boxes are the nodes selected for the LOD-distribution-list. Additionally, colours

were used as reference to represent each LOD in the 3D scene and in the TGPT, to

make it easier to identify the nodes in the TGPT and their corresponding bounding

boxes in the scene.

Back-end retrievals

During the Pre-processing Stage, layers in the same level are pre-packed together

into a single file, allowing ViLMA to retrieve several layers at once in a single request

to the server. Retrieving packs instead of individual layers helps to improve retrieval

times if a very large number of layers had to be requested.

Packs of layers with small amounts of points contain many more layers than

packs of layers with a large amount of points. On some occasions, especially when

using an ROI, more layers than needed may be acquired when retrieving certain

3.3 Performance considerations 55

packs. This situation also arises when using conventional static, precomputed mod-

els; nonetheless, in the approach presented, as there is no data redundancy, the

storage requirements are notably lower than for other multi-resolution models with

high redundancy. In both cases (traditional approaches and HLT), information dis-

carded outside the ROI can be considered as pre-cached data if requested in future

uses.

3.3. Performance considerations

While traversing a point cloud very quickly or when the camera makes very

abrupt movements, the detail of areas not loaded in memory could pop up with a

slight delay, showing gaps or no points for a short period of time. Thanks to the use

of fixed-size GPU buffers, VRAM consumption can be kept very low and constant;

however, this implies that the buffers must be updated regularly to adapt to the

camera movements. The update process can be particularly demanding, especially

for a high PB and a low GPU memory bandwidth, so the buffers are not updated in

every single frame but once every 0.25 seconds, which can lead to the aforementioned

gaps.

A number of important decisions must be made regarding how the datasets are

pre-processed, as they have a direct impact on the performance; namely, the size of

the tiles and the number of layers per tile (LPT) (Sections 3.3.1 and 3.3.2). These

are subjective decisions that must aim to strike a balance between performance and

quality [25]. In this section, we also address an additional non-subjective perfor-

mance issue regarding the compression of the data (Section 3.3.3).

3.3.1. Tile size

The size of the tiles affects the accuracy of the view frustum culling techniques [2],

the efficiency of data queries based on spatial restrictions, and the proper use of the

browser cache. These three concepts were already introduced in previous chapters,

so only their main characteristics are highlighted below:

View Frustum Culling. In a 3D scene, view frustum culling techniques are

56
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

implemented to detect partially or fully visible objects from the camera’s per-

spective in order to send all detected objects to the rendering process, thus

increasing the GPU performance by discarding the non-visible ones. Tiles

with a small size form fine-grained grids; hence, these types of techniques can

discard larger non-visible areas by detecting more tiles in a fine-grained grid

than in a coarse-grained one.

Data queries based on spatial restrictions. As commented in previous sections,

the use of an ROI allows the computing resources to be focused in a limited

area. All tiles located outside the ROI can be completely discarded. In a

similar way to what happens with the view frustum culling, tiles with a small

size form fine-grained grids so that tiles can be discarded more accurately.

Browser cache. As was briefly commented during the previous chapter, web

browsers have a special memory space reserved on the client disk called the

browser cache. This is used to store downloaded files so they can be reused

later instead of being retrieved again from the server, thus speeding up the

web page loading. Each web browser has a maximum file size allowed when

storing files in cache. Depending on the version of the browser, the maximum

size may vary from 5 MB, on some mobile browsers, to 25 MB, on desktop

versions. Files not stored in cache must be retrieved from the server each time

they are requested. The use of small tiles reduces the size of files generated

during the pre-processing stages, so the requirements of the cache are more

likely to be met.

Although the choice of a small tile size (TS) has great performance benefits,

it has a counterpart in memory consumption. During the rendering process, each

tile must be handled and managed separately, which implies creating one object in

memory for each tile. These objects have a very small footprint in memory but if

the number of tiles is too large, the memory consumption may not be suitable for

the requirements of certain users. Thus, the choice of TS must be balanced between

memory consumption and the benefits described above.

We have measured the increase in RAM consumption when loading an arbitrary

dataset using different TSs. As a base measurement, we obtain a global RAM

3.3 Performance considerations 57

Figure 3.4: Memory consumption variation with respect to the increase in the num-
ber of tiles.

consumption of 250 MB with 714 tiles. Figure 3.4 shows how the RAM consumption

increases along with the number of tiles created (T).

The number of tiles generated for a given dataset is not only determined by the

size of the tiles, but also by the extent of the dataset itself; therefore, there is no

ideal TS, since the final number of tiles depends on the extent of the dataset and

the balance of quality and performance desired by the users.

3.3.2. Number of LPT

One key point for all multi-resolution applications is the suitable creation of the

different resolution models that are going to be used during the execution of the

software. Resolution transitions between consecutive levels (either to increase or

to decrease detail) should be carried out smoothly, avoiding abrupt changes and

popping effects.

In the example shown in Figure 3.3, a df = 0.5 was selected solely for simplifi-

cation purposes, but in a production environment, this value may be too high. The

change from a given LOD l to the next one l + 1 entails doubling the number of

points, which may be visually too abrupt. df values around 0.25 produce better

58
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

results, obtaining softer transitions between consecutive LODs. On the other hand,

lower df values produce more LPT. For instance, given a tile with 1000 points,

if we need to generate a layer 1 with around 25% of the points (250 points) and

a df = 0.5, using Equation 3.1, the result is that at least 3 LOD must be used:

1000 ∗ (1 − 0.5)3−1 = 250. And using df = 0.25, then 6 LOD would be required:

1000 ∗ (1− 0.25)6−1 ≈ 237. The increase in the number of layers also increases the

number of data retrievals, so two equal tiles divided into a different number of layers

would take different times to render, even when displayed with the same detail.

Using the same dataset as in Figure 3.4, we have measured the wait time when

zooming in close to the ground using 8 LPT and 18 LPT. We define wait time as the

sum of retrieval time and load time. The retrieval time is defined as the time required

to download all necessary data from the server, while the load time is defined as the

time spent reading and decoding downloaded data and creating any other elements

required to handle them. In the second case (18 LPT), the wait time was 1.6 times

the time spent in the first case (8 LPT). This difference becomes almost negligible

when retrieving the data from cache, as the retrieval times are zero in both cases,

and load times are almost equal. Once again, as described for choosing the TS, the

choice of df must aim to strike a balance between LOD quality and retrieval times.

3.3.3. Compressing the point layers

Based upon the optimization strategies presented in Section 2.4, a LiDAR com-

pression format (called LZ for LiDAR-Zipped) was developed for providing suitable

support for the HLT structure. With LZ, LiDAR point clouds are lossless com-

pressed minimizing both client and server disk usage while reducing remote data

retrieval times and network congestion.

Currently, the best lossless compression methods for LiDAR data are LASzip [56]

and LAS Compression software, which implements the method presented in [70].

LASzip (LAZ file format) is considered as the standard in LAS compression and

it outperforms all other general-purpose techniques. With our lossless compression

format, the objective is not to propose an alternative to LAZ but to efficiently

support HLT structure. To achieve this, three main tasks are carried out in order

to generate each LZ file. First, data cleaning, where LiDAR properties not used by

3.3 Performance considerations 59

ViLMA are discarded. Second, delta encoding, where LiDAR properties are stored

in the form of differences (deltas). And third, GZIP [42] compression, where all

generated data are compressed using this software tool. As a result of these three

steps, LAS files are reduced, on average, by around 88%. Additional details on the

compression method used are provided below, while a comparison between LASzip

and our compression method is included in Section 3.4.

Data compression method

Three main tasks are carried out in order to generate LZ files: data cleaning,

delta encoding and GZIP compression:

Data cleaning: A similar process to what was described in Section 2.4.1 is

followed here. Unused or unneeded properties, such as Scan Direction Flag or

Scan Angle Rank, among others, may not be included in the LZ files. Other

properties, such as Intensity, Classification or the Return information, are

adapted or modified in order to optimize their size, taking into account their

function inside the application.

Delta encoding: Delta encoding, also called delta compression, is a method

for storing data in the form of differences or deltas (∆) between sequential

data. The properties of a given point are derived from the properties of its

predecessor plus a series of differences. Byte masks are used per point in

order to specify whether properties have changed or not in comparison to the

previously computed point; if they have changed, it also specifies the byte

length of the delta that has to be used. By default, compressed data are

generated using masks of 1 byte per point storing the geographic coordinates,

the grey scale value of the intensity, the return tag and the classification of the

point. If RGB values are found in the dataset or users require the inclusion

of additional properties, a second byte is used for the mask. In the former

case, between 1 and 9 bytes per point would be required, while in the latter,

between 2 and 16 bytes would be required.

GZIP compression: Although general-purpose compression methods are not

the best option for LiDAR data, when applied in conjunction with techniques

60
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

such as delta encoding, the results obtained are highly lossless compressed

files. GZIP compression [42], a general-purpose compression method based on

the DEFLATE algorithm, is currently used extensively in web applications and

other web environments. Not only does it achieve excellent compression ratios,

it is also supported, by default, by all the main web browsers. This means that

all decompression tasks involving gzipped files are carried out automatically

and efficiently by the browser. ViLMA only has to perform the delta decoding

in order to obtain the raw point data. GZIP compression is commonly applied

on-the-fly by the server (Apache HTTP Server) over files each time they are

requested. The computational overhead of the compression process is greatly

compensated by the improvement in the data retrieval times achieved thanks

to the use of compressed files. Nevertheless, our files are pre-compressed with

GZIP, so there is no additional overhead on the server.

3.4. Experimental results

In this section, we evaluate the performance of the data structures and techniques

presented in previous sections using ViLMA. Performance is presented and analysed

in terms of memory consumption, wait times, frames per second and multi-resolution

image quality. Additionally, we have included a brief analysis of our compression

method, LZ, and finally a performance comparison with Potree [68, 90], once again

as it is the most similar tool to ViLMA found in the current literature. The main

specifications of the platforms and the software used during the tests are described

in Table 4.1 and Table 4.2. ViLMA was tested in several browsers; nevertheless,

for the sake of clarity and simplicity, only the results obtained with Google Chrome

are shown, as this was the browser with the best overall performance. Note that

the objective of this evaluation is not to compare web browsers but to present the

performance of ViLMA.

Table 3.3 lists the three datasets used to evaluate ViLMA along with the number

of points of each dataset (P), their original and compressed file size using our pro-

posal (FS and FSLZ , respectively), the compression ratios obtained (Ratio) defined

as (Sizecompressed /Sizeuncompressed) and expressed as a percentage, the tile size (TS)

and the layers per tile (LPT) used to pre-process each one of them. The PNOA

3.4 Experimental results 61

Table 3.1: Hardware specifications.

Platform O.S. CPU GPU RAM* VRAM* Display Bw**

Client
PC

Windows 7
Intel Core

i7 4790
GeForce
Titan X

32 12
2560×1440

@144Hz
90

Wired
Client
Mobile

Android 7.0
Tegra

K1
Tegra

K1
2

(Unified)
-

1920×1200
@60Hz

65
Wifi

Server CentOS 6.7
Intel Xeon
E5-2603 v3

- 64 - - -

Values measured in: *GB, **Mbps (Bandwidth).

Table 3.2: Software specifications.

Type Name Version

BackEnd Apache HTTP Server 2.4.28
PC Browser Google Chrome (64 bits) 58.0.3029.110

Mobile Browser Google Chrome 58.0.3029.83

(National Plan of Aerial Orthophotography, Spain) dataset is available in the Span-

ish GIS database (IDEE) [55]. Specifically, we have selected the region of Galicia,

which contains around 28 billion points. The airborne LiDAR survey of the selected

area was taken with a point density of 0.5 point/m2. The San Simeon dataset was

taken from the region of San Simeon, California - Central Coast, and it contains

17.7 billion points, with a point density of 22.06 points/m2 and it is available at

OpenTopography [74]. Finally, the Volcano dataset contains 0.55 billion points,

with a point density of 13.71 points/m2 being available at OpenTopography [76].

During the tests, the point budget (PB) employed was changed, taking values of

1, 2 and 4 million points. These quantities were chosen as they can be easily handled

by most systems, regardless of whether they are low-end or high-end, allowing good

results to be achieved in terms of performance, while obtaining fairly good visual

representations of the original point clouds.

62
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

Table 3.3: LiDAR datasets used and their information regarding the Pre-Processing
Stage. P : Number of points. FS: Total file size of the dataset (original LAS files).
FSLZ : Total file size of the dataset (pre-processed files). Ratio: Compression ratio
of the pre-processed files. TS: Tile size. LPT : Number of layers per tile.

Dataset P* FS** FSLZ** Ratio TS*** LPT

PNOA 28 802 118 14.71% 500×500 16
San Simeon 17.7 561 132 23.52% 400×400 36

Volcano 0.55 14.6 2.78 19.04% 200 ×200 24

Values measured in: *Billion, **GB, ***Meters.

3.4.1. Memory consumption

Figure 3.5 shows the memory consumption observed for rendering each dataset

using three different PBs. Both, the RAM and VRAM values were taken from

the Task Manager provided by the desktop version of Google Chrome. Unified

memory values represent the memory consumption on the tablet and they are further

explained in their corresponding section.

RAM

The RAM consumption rises along with the PB; this behaviour is expected, as

the application must store more points and manage more point layers. During the

tests, consumption ranges between 98 MB and 498 MB. Taking into account that

most current desktop PC configurations are equipped with 8 or more GB of RAM,

we can consider the RAM consumption of ViLMA in desktop devices as notably

low.

VRAM

Each point property, such as RGB colour or intensity, has its own buffer in

the client GPU but, as long as a property is not necessary for rendering purposes,

it will not be sent to the GPU, which helps to leverage the VRAM consumption.

By default, point clouds are rendered by ViLMA as height maps based on the z

coordinate of their points, so properties such RGB or intensity are kept in RAM but

3.4 Experimental results 63

Figure 3.5: RAM, VRAM and Unified memory (RAM + VRAM) consumption
during the performance tests for different point budgets.

not in VRAM.

Throughout the entire execution of ViLMA, GPU buffers have a fixed size that

always matches the current PB; therefore, while the PB does not change, the use of

GPU memory remains constant. The use of fixed-size buffers also implies an equal

consumption of VRAM across different datasets as long as the same PB is used.

This can be clearly seen in the results of the three datasets in Figure 3.5, where the

VRAM consumption of each PB is equal across all of them.

We should stress here that the VRAM usage is always constant throughout the

entire use of the application. VRAM may vary only if measurement tools are used,

since new elements derived from those measurements, such as the triangulation of a

surface, are stored in VRAM once they are created. This is a critical optimization

element, given that other multi-resolution approaches increase the VRAM consump-

tion as new resolution levels are loaded in the GPU.

As even current low-end GPUs are equipped with 2 or more GB of VRAM, the

VRAM consumption of ViLMA in desktop devices can be considered moderately

64
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

low as during the tests it ranges between 291 MB and 350 MB.

Unified memory

Mobile devices have a unified memory architecture, meaning that there is only

a single main memory storage unit shared between the CPU and GPU. Any device

running ViLMA will use the same JavaScript code with the same data structures

and data formats. This implies that loading the same point cloud with the same PB

will consume the same amount of memory (RAM and VRAM), irrespective of the

device used, with the only exception of a small percentage of VRAM that depends

on the device’s screen resolution. In WebGL, graphic elements, such as textures

and framebuffers (for further information, see [2]), are used as part of the rendering

process. These elements have a footprint in VRAM which is directly proportional to

the screen size of the device used. In our case, our tablet uses 10 MB of VRAM less

than the desktop PC, as its screen resolution is lower. The unified columns of Figure

3.5 represent the tablet’s memory consumption, and they are simply the addition of

the RAM and VRAM values minus the aforementioned 10 MB difference.

Despite the tablet being equipped with 2 GB of unified memory, this is not com-

pletely available for user applications. It was observed that, on average, only 1 GB

of memory is available. The free memory may vary depending on the previous usage

of the device, the background tasks of the operating system or other applications

currently running. In Figure 3.5 the memory limit is marked with a horizontal line.

Point clouds and PBs with consumption values close to the limit may be feasible

but they depend on the current state of the memory. As can be observed, we were

able to load the three datasets without any problems, even when using a PB of 4

million points.

3.4.2. Wait times

Figure 3.6 shows the wait times (data retrieval time + data load time) observed

from the moment when a full dataset is selected until it is displayed on screen using

only a static top-view camera. For testing purposes, no ROIs have been used in

order to analyse the most resource demanding scenario for each dataset. Times

3.4 Experimental results 65

Figure 3.6: Wait times (retrieval time + load time) obtained among three different
datasets with and without browser cache.

were taken using a PB of 1, 2 and 4 million points, with and without data caching.

The bandwidth values shown in Table 4.1 are not theoretical speeds, but the

maximum values obtained after performing several network speed tests on both

client platforms. We observed that the Wi-Fi performance is 28% lower than the

wired connection and; therefore, this difference should be taken into account in the

results of this section.

Data not in cache

Considering the wait times for first-time retrievals (the data are not in the

browser cache) we obtained between 5 and 10 seconds for the Volcano dataset on

PC platform and between 8 and 21 in the tablet. Between 5 and 12 seconds for the

San Simeon dataset on the PC and between 9 and 35 on the tablet. For PNOA

datasets, times between 6 and 12 seconds were obtained on PC and between 16 and

48 on the tablet.

All times obtained for the desktop PC were considerably lower, being above 10

seconds in just a couple of cases. Despite the differences in computing power and

66
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

network speeds between the two systems, times obtained on the tablet are higher

than on PC but also acceptably low, with the only exception of PNOA and San

Simeon, with a PB of 4 million points. As the memory consumption starts to reach

the memory limit, the general performance of the tablet decreases greatly, which

increases the time needed to read and prepare the retrieved data. We should stress

here that in the extreme case of use (28 billion points), and despite of the increment

in times, we were able to load said dataset on the tablet.

Data in cache

The size of all the data retrieved from the server by ViLMA is, whenever possible,

small enough to be cached by all browsers, both desktop and mobile. When the

data are cached, they are retrieved from local storage, so the retrieval times are

zero, significantly reducing the wait times in all cases. The positive effect of data

caching can be clearly observed in the results obtained for the two devices. The three

datasets are loaded, between 4 and 8 seconds with any PB on the PC platform and

between 6 and 33 on the tablet.

3.4.3. Interactive visualization

Figure 3.7 shows the satellite image of a small area of the San Simeon dataset

and three renderings of its point cloud using different PBs. The images are zoomed

close to the ground to better appreciate the quality of the multi-resolution techniques

and the difference between the three selected PBs.

On the desktop PC, FPS benchmark results were constant at 144 FPS for all

datasets and PBs. The refresh rate of the screen used in the tests was 144 Hz,

which explains why the FPS were locked at 144. On the tablet, for all datasets, we

attained a stable rate of 60 FPS using 1 million points, up to 55 FPS with 2 million

points, and up to 38 FPS for 4 million points.

3.4 Experimental results 67

(a) (b)

(c) (d)

Figure 3.7: Small part (∼1.5 km2) of the San Simeon dataset (803 km2) rendered
by ViLMA using different point budgets: (a) Satellite image of the zoomed area.
(b)-(d) Rendered images using 1, 2 and 4 million points respectively.

68
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

Figure 3.8: Performance comparison between loading the full dataset of PNOA and
loading only an ROI from it.

3.4.4. Performance improvements when using an ROI

In ViLMA, the use of an ROI can be considered a before-load spatial restriction

which decreases the memory consumption and the number of data retrievals. Other

approaches achieve similar results by allowing users to manually crop the point cloud

after-load or by cropping the point cloud beforehand in a pre-processing stage. In

the first case, if the cropping is done after having loaded the point cloud, many

unnecessary data could be retrieved or loaded, which could be a problem in contexts

with small amounts of memory. In the second case, users are limited to the use of

previously cropped point clouds, which may not fully meet their requirements.

We have analysed the differences when using an ROI on a massive dataset like

PNOA. The chosen ROI was the city centre of Santiago de Compostela (Spain), with

a total amount of 19 million points. Figure 3.8 shows the improvements when using

PBs of 1 and 4 million points on the tablet. Given the adaptation of the TGPT to

the size of the ROI, there is a notable reduction in the RAM consumption, which

is 52% with PB = 1 and 48% with PB = 4. The VRAM consumption is the same

in both cases, so the unified memory is also reduced, but not at the same degree as

3.4 Experimental results 69

the RAM. Unified memory is reduced by around 28%. With regard to wait times,

when using PB = 1 million, these were reduced by 19% without cache and by 47%

with cache. For PB = 4 million, times were reduced by 42% without cache and by

52% with cache.

These improvements benefit both platforms, PC and tablet, but they have a

special relevance in the latter due to its hardware limitations. The point cloud inside

the ROI can be displayed on the tablet with shorter wait times, using significantly

less memory and showing much more detail, as the points are distributed in a smaller

and highly delimited area.

3.4.5. Compression ratio

Results from a comparison between our LZ + GZIP compression method and

LASzip can be observed in Figure 3.9. The efficiency of both compression methods

varies depending on the topology and characteristics of the processed point clouds, so

four sample files (city, mountain, village and forest) were taken for the comparison

with a view to selecting different point distribution patterns. The samples were

taken from the PNOA dataset.

As can be observed, compression ratios (Sizecompressed/Sizeuncompressed) obtained

with LZ + GZIP are slightly better than LASzip. The objective of LZ + GZIP is

not to serve as an alternative for LASzip but to support our multi-resolution, out-

of-core techniques. Considering the rest of the performance results shown in this

Section, the support of LZ + GZIP is entirely suitable for ViLMA.

3.4.6. Comparison against Potree

The comparison is focused on memory consumption and wait times, two measures

strongly related to the different data structures used by the applications: HLT

and TGPT in ViLMA, and octree in Potree. The dataset used was San Simeon

(17.7 billion points). Although on the Potree website it is indicated that the last

stable version is 1.3, the release candidate 1.5 has been tested, as better results

in memory consumption were reported. For a fair comparison, both ViLMA and

70
Chapter 3. A multi-resolution, out-of-core approach for rendering massive aerial

LiDAR point clouds

Figure 3.9: Compression formats comparison.

Figure 3.10: Comparison between ViLMA and Potree.

3.4 Experimental results 71

Potree use the RGB values of the points for rendering the scene, which implies a

slight increase in VRAM for ViLMA compared to what was shown in Figure 3.5,

as has already been explained in Section 3.4.1. Figure 3.10 shows the percentage of

improvement of ViLMA over Potree, analysing RAM and unified memory (RAM +

VRAM) consumptions, and wait times.

In all cases regarding memory consumption, ViLMA shows better results. Be-

tween 71% and 86% lower in RAM consumption and between 54% and 62% in

unified memory consumption. The multi-resolution approach of Potree consists in

progressively loading several subsections of the point cloud with different resolu-

tion levels. This increases the amount of both RAM and VRAM used, as the user

moves the camera across the point cloud. In ViLMA, the GPU buffers are im-

mutable and constantly reused; hence, over time, Potree ends up consuming more

VRAM than ViLMA, where consumption remains constant. In addition, ViLMA

uses a non-redundant, multi-resolution approach which leaves a smaller footprint on

RAM. These differences lead Potree to ultimately reach memory limits, such as the

1 GB of unified memory on the tablet or 4 GB of RAM security limit of Google

Chrome.

During the tests on the tablet, even though Potree was able to load the San

Simeon dataset using a PB of 1 million points with a very high frame rate (a

stable rate of 60 FPS), the memory limit was reached quickly as soon as the point

cloud was zoomed and the camera moved. ViLMA is not exempt from progressively

increasing its use of RAM; nevertheless, with the non-redundant data nature of its

approach, the increment in RAM consumption is much slower. The difference over

the unified memory consumption is especially relevant when considering the real

values obtained for Potree: 1064, 1258 and 1499 MB using a PB of 1, 2 and 4

million points, respectively. This means that Potree could not be used on the tablet

with 2 and 4 million points, as it exceeds the 1 GB limit. Even for 1 million points,

the correct performance of Potree would depend on the memory available at the

moment of use (in fact, only after rebooting the tablet, without any use other than

the web browser, was it possible to load the dataset using 1 million points).

Finally, regarding results about wait times without data caching, ViLMA ob-

tains much better results (between 47% and 54% lower), which greatly helps the

improvement of user’s experience.

Chapter 4

Big data storage solutions for

large collections of massive LiDAR

point clouds

In this chapter, we analyse how web-based applications for LiDAR data visual-

ization can benefit from the adoption of big data storage technologies, as well as

the advantages and disadvantages that may determine the choice of one of them

when considering different scenarios and use cases. Specifically, four of the most

adopted and mature big data storage solutions were selected for testing: HDFS [96],

MongoDB [69], Cassandra [95] and Redis [83].

The rest of the chapter is organized as follows. In Section 4.1, we present a brief

system overview of both big-data-oriented and non-big-data-oriented web-based vi-

sualization applications. In Section 4.2, the storage technologies used in this chapter

and their deployment are detailed. Finally, experimental results are shown in Section

4.3. The work presented in this chapter was originally introduced in [29].

73

74
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

Figure 4.1: General overview of a conventional and non-big-data-oriented deploy-
ment of a web application for LiDAR data visualization. Box A encloses the compo-
nents that must be replaced by the components of box B in order to transform the
system into a big-data-oriented deployment. Box C is a more specific deployment
of the general components shown in box B, and it is the deployment that will be
used during the analysis described in Section 4.3.

4.1 Web-based LiDAR visualization: Migrating to a big data deployment 75

4.1. Web-based LiDAR visualization: Migrating

to a big data deployment

Figure 4.1 (without considering boxes B and C) shows the general structure of

a simple and traditional web application for LiDAR data visualization. This type of

application follows the common client-server architecture deployed over a standard

Apache HTTP Server using a standard hard disk device (HDD); any compatible web

browser can connect to the server in order to retrieve both, the application code and

the point data.

When attempting to render massive LiDAR point clouds, many visualization

applications could end up being not able to store all point data in main memory,

and if so, the computational power of the GPU of the running machine may not be

enough for handling such amount of points. In order to overcome these hardware

limitations, out-of-core multi-resolution techniques [46] are used by many LiDAR

applications. These techniques make it possible to load and render simplified models

from the original point cloud offering a visual quality very similar to the original

model. Point clouds are shown on screen using a user-defined or algorithm-defined

maximum amount of points, established so as not to exceed the hardware capabilities

of the client’s machine. This point limit is usually called point budget (PB) [26].

Higher LODs are loaded as the point cloud is traversed, while off-camera points

are discarded. This process demands the rearrangement of the points in multiple

pre-processed files and the creation of auxiliary complex data structures in order

to efficiently handle and load the points as they are required [47, 60]. Applications

for LiDAR visualization retrieve the information of each different LOD of the point

cloud, directly from local disk or from remote servers. In the case of applications

retrieving data from a remote server, the software running in the back-end becomes

a key point in the global performance, as it has to serve the data fast enough for

obtain a real-time interaction.

For GIS centres, or any other kind of big company or governmental institution,

that may use a very large number of LiDAR datasets, conventional server soft-

ware solutions may suffer from several problems, such as scalability, availability and

throughput. Considering the massive volumes of LiDAR data that could have to

76
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

be stored, a stand-alone server might not be enough for storing all LiDAR datasets

and, if so, the throughput of the system may not be enough for handling very high

levels of network traffic, being an important issue when attempting to offer real-time

interaction for all connected clients.

Additionally, Apache stands out as a single point of failure, meaning that, any

malfunction on the server could cause a temporary shutdown of the service or the

permanently loss of data. In order to overcome those problems, it is necessary to

deploy big data technologies to the detriment of the standard Apache HTTP Server

or any other traditional server software.

In order to migrate from a non-big-data-oriented approach to a big-data-oriented

one, components enclosed in the box A (Figure 4.1) must be replaced by the com-

ponents of box B. In general, a big data storage deployment consists of the following

components:

Gateways or proxies. Web applications should not access or communicate with

big data storage technologies directly for security, access control and workload

balance reasons. Instead, applications use some kind of gateway or proxy that

work as intermediaries in order to grant access to storage functionalities.

Data servers. The common factor of all big data storage technologies are

the data servers. These components are in charge of handling all read/write

operations of the data. The number of these components may vary from a

minimum D min to a maximum D max servers. In most technologies, the

minimum is 1, but in technologies like Redis it is 3, while the theoretical

maximum is unlimited.

Metadata servers. Some technologies, such as MongoDB or HDFS, have ded-

icated components in charge of handling and managing all kind of metadata,

from information about folders and files to information about the cluster topol-

ogy and the distribution of the data. Not all technologies have metadata

servers, so clusters may have from 0 to M elements of this type.

Query routers. Some technologies, such as MongoDB, may have dedicated

components in charge of receiving and serving data queries. No software can

4.2 Big data storage technologies: deployment analysis 77

access data; they need to be accessed through components of this type. Clus-

ters may have from 0 to Q elements of this type.

We should note here that this general description of the components of the stor-

age technologies may vary when describing each technology in detail. For example,

Cassandra has no exclusive components dedicated to handling metadata or data

queries, instead, all nodes in a Cassandra cluster are in charge of handling and

managing queries from users, data and metadata.

4.2. Big data storage technologies: deployment

analysis

Four big data storage technologies are analysed in order to determine which could

be the best candidate to replace the Apache HTTP Server for the management of

massive LiDAR datasets: HDFS [96], MongoDB [69], Cassandra [95] and Redis [83].

The motivation behind this selection was already explained in Section 1.3.1, where

detailed descriptions about the four technologies were also presented. During the

following subsections, we will go on explaining certain relevant issues about the

deployment of the testing cluster and each one of the four technologies.

4.2.1. Testing cluster

Our testing cluster consists of four nodes. At this stage of the Thesis, we were

unable to use more nodes; nevertheless, although it could not reflect the ideal real-

world setup of a large scale deployment, it is enough to notice the main differences

between technologies, as will be shown during Section 4.3.

Box C in Figure 4.1 shows the topology followed for deploying all storage tech-

nologies that will be used during the analysis presented in Section 4.3. Only one

node can be accessed from outside the cluster, so is in this machine where we have

deployed an Express server [73]. Express works as an access-point; it receives all

data queries from the visualization clients and connects with the different technolo-

gies in order to send back the queried data from them. Node 0 is the one where

78
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

the Express server is deployed, connecting the cluster with the rest of the network.

Node 0 is also where the metadata warehouses of the four technologies (if needed)

are going to be deployed in order to obtain direct communication between them and

the Express server. All of the nodes, from 0 to 3, are intended to store LiDAR data.

As was previously mentioned, in a production environment, it is strongly rec-

ommended to provide high availability and fault tolerance through data replication,

deploying several nodes in the cluster in order to store copies of the original data.

All technologies offer data replication and fault tolerance, so no technology is worse

than the others at this point. Owing to this, and due to limitations in the number

of nodes of our cluster, data replication has been avoided during the comparison

between the storage technologies.

4.2.2. HDFS

Since it is in a web-based visualization context, the system employed here op-

erates on a large number of small files, which is not an ideal use case, as described

in Section 1.3.1. In order to solve this problem, we have used the Hadoop Archives

(HAR) solution provided by Hadoop. Hadoop is able to pack multiple small files

into a single larger file which can be stored more efficiently in HDFS. In addition to

the HAR file, Hadoop creates a lookup file to access the individual files contained in

the pack. HAR files are a copy of the originals, so, although after the creation of the

HAR files the originals can be deleted, at certain point in the process, a given dataset

uses twice the space it needs, which can cause disk space issues. The use of HAR

is a solution to the small-files problem, but it is still a time-consuming workaround.

The insertion of new datasets in the system is less straightforward than in other

technologies, with the additional storage problems cause by the data duplication of

the HAR creation process. Furthermore, all data queries have a small-time penalty

due to the additional search needed to access the individual file store into the HAR.

For the deployment of HDFS, since, for performance reasons, it is strongly rec-

ommended not to place a data-node and a name-node in the same machine, in our

testing cluster (see label C of Figure 4.1), Node 0 holds the name-node, so the Ex-

press server can retrieve the data directly from the same machine. The rest of the

nodes (from Node 1 to Node 3) are used for hosting the data-nodes.

4.2 Big data storage technologies: deployment analysis 79

4.2.3. MongoDB

Unlike common SQL technologies, the internal data structures of MongoDB are

not so rigid or immutable; therefore, new attributes can be added to each file in the

system as needed. It provides native geospatial queries, which may be very useful

when working with geo-referenced data, and native built-in Map-Reduce computa-

tional capabilities. MongoDB is compatible with some big data computing solutions,

such as Spark, which is an added value to MongoDB for future applications beyond

the storage service.

All technologies distribute data throughout the nodes of a cluster attempting to

store almost the same amount of data in every node. This balancing is aimed at

achieving a whole parallel access to the data which helps to speed up read/write

operations. Nevertheless, obtaining this speed up is only possible if the access

pattern to the data is similar to the distribution pattern, which is not always the case.

In [65], the authors have developed a monitoring software for MongoDB capable of

redistributing data based on the workload and the access pattern to it.

Taking into account the characteristics of MongoDB, in our deployment, Node 0

hosts the query router so that the Express server can retrieve the data directly from

the same machine. Along with them, the configuration server is deployed leaving

the rest of the nodes for the shards (Node 1 to Node 3).

4.2.4. Cassandra

Unlike HDFS or MongoDB, Cassandra can take advantage of all storage capac-

ity of the nodes in a cluster, this may be especially relevant for clusters with a

small number of nodes. Big data computing solutions like Spark or Flink are also

compatible with Cassandra, adding value to it for future applications.

In order to deploy Cassandra, every node in the cluster is identical, being able

to store data and resolve client/application queries. In a cluster with N nodes, data

can be divided among the N nodes, so for our analysis, a Cassandra instance was

deployed in each of the four nodes. We should also remark here, as an important

feature of Cassandra, its fast and easy deployment process.

80
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

4.2.5. Redis

One of Redis’s strengths is to be designed as an in-memory database, allowing it

to always serve data from main memory, which is much faster than serving data from

disk. Nevertheless, all technologies use some kind of data caching, which keeps the

most recently used (MRU) elements in main memory speeding up later retrievals of

the same elements. The four analysed technologies, and also Apache HTTP Server,

can be configured to behave like Redis, using a large amount of main memory for

data caching purposes, while simple scripts can be used to send all datasets from disk

to main memory at start-up time. In fact, as Redis stores all datasets in memory

without being aware of the data usage, it may be end up wasting space storing data

rarely or never used. In a multi-resolution out-of-core visualization context, highly

detailed point information about a sub-area without interest for users inside a larger

point cloud, has a good chance of never been retrieved, since users should move the

camera specifically very close to that area. Therefore, an MRU strategy is more

suitable for the nature of the cited context.

In the deployment for our analysis, nodes from 0 to 3 host master nodes for stor-

ing data with no slaves, as data replication has not been included. Like Cassandra,

it is important to highlight the fast and easy deployment process of Redis.

4.3. Experimental results

In this section, we analyse the performance of the four previously described

storage technologies. The analysis was carried out considering: latency, throughput

and storage capacity. In addition to the big data technologies, we have also measured

the performance of Apache HTTP Server using a classic deployment (Figure 4.1, box

A) as reference for comparing results against a non-big-data-oriented approach.

Table 4.1 and Table 4.2, show the hardware and software specifications of the

equipment used during the analysis and useful information about the datasets of the

analysis is shown in Table 4.3. The information listed in Table 4.3 is: the number of

points of each dataset (P), the total disk space required to store their original LAS

files (OFS), the total disk space required to store the pre-processed files (PFS),

4.3 Experimental results 81

Table 4.1: Hardware specifications.

Platform O.S. CPU RAM (GB) Storage (TB)

Client
Latency

Windows 7
Intel Core

i7 4790
32

0.25
SATA3 SSD

Client
Throughput

CentOS 6.9
2 x Intel Xeon

E5-2650 v2
64

1
SATA3 7.2k

Server (×4) CentOS 6.7
Intel Xeon
E5-2603 v3

64
4

SATA3 7.2k

Table 4.2: Software specifications.

Type Name Version Node Driver

Browser Google Chrome 63 (64-bit) NA
Server Apache HTTP Server 2.4.28 NA

ExpressJS 4.16.2 NA
HDFS 2.9.0 NAa

Storage MongoDB 3.4.9 mongodb 3.0.3
Technology Cassandra 3.9.0 cassandra-driver 3.4.1

Redis 3.2.0 ioredis 3.2.2
aDoes not require any specific driver as it is accessed through WebHDFS
using conventional HTTP requests.

that is, the files retrieved by our visualization software for rendering the different

resolution models, and finally, the total number of pre-processed files (NPF). The

network connection used for the analysis was Gigabit Ethernet.

To store the LiDAR data, we have followed the same schema in all analysed

technologies. An indexed id field of string type for storing file names and a data field

of a BLOB type for storing the raw binary data. With regard to distributing data

after their storage, although each technology distributes the data using their own

procedures, all nodes in charge of storing data ended up with an even distribution.

All technologies except HDFS distribute data using the keys (id) of each entry. By

default, Redis and Cassandra apply hash functions over each key to obtain the node

where values must be stored. This ensures an almost perfect distribution throughout

the nodes. On the other hand, by default MongoDB uses the raw keys, without any

82
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

Table 4.3: LiDAR datasets used during the analysis.

Dataset P (billion) OFS (GB) PFS (GB) NF

PNOA Galicia 28 802 118 436,960
PNOA Asturias 13.4 425 NA NA

San Simeon 17.7 561 132 436,824
Los Osos 6.1 161 NA NA

modification, so the final distribution depends on the randomness of the keys chosen

by the user. In our case, the file names were not enough for an even distribution, so

we had to create a hashed index (a functionality inside MongoDB) to achieve the

same behaviour as for Cassandra and Redis. HDFS, by default, randomly selects a

data-node to store each block of data.

In all the tests, data are retrieved from the storage systems using the standard

HTTP method, GET. In the case of Apache, requests are sent directly to it and data

are fetched and sent back by Apache from local storage. For the rest of technologies,

GET requests are sent to the Express server and from there, Express connects to

the storage technologies using the corresponding driver, except for HDFS, which is

accessed by using again GET requests through WebHDFS.

4.3.1. Performance in terms of latency

We have used our own web-based visualization software for LiDAR data as the

client for the latency analysis. We have measured the retrieval time obtained while

loading the PNOA Galicia dataset. Retrieval time can be defined as the time spent

retrieving data from the server since the application starts loading a given dataset

until it ends and the 3D representation of the point cloud appears on screen for the

first time. This measurement can be considered as the latency of the system, as it

represents the time it takes for a single user to obtain the minimum data necessary

to show the point cloud in screen. Figure 4.2 shows the point cloud of PNOA Galicia

rendered by our visualization software just after being loaded.

Retrieval time is measured using the Google Chrome’s DevTools network mon-

itor. When measuring latency through a network, there are some uncontrollable

4.3 Experimental results 83

Figure 4.2: Point cloud of Galicia (Spain) from the PNOA dataset.

Figure 4.3: Latency obtained for 1 million points (PB1) and 4 million points (PB4).
Results were obtained for cold start and for the minimum latency obtained in 10
tries (Min10)

84
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

variables that may slightly alter the final results; thus, we have taken the minimum

latency obtained after 10 tries (Min10). We have also analysed the latency for a

cold start in order to show the differences between cached and non-cached data on

the server side.

As we are working with a multi-resolution out-of-core application, only one sub-

set, dependent on the PB, is retrieved from the whole dataset (118 GB in 436,960

files). For this analysis, we have measured the latency with a PB=1 and PB=4

million points. With PB=1 million points, our framework sends to the server 32

concurrent requests, retrieving a total of 13 MB. For PB=4 million points, it sends

114 concurrent requests retrieving a total of 46 MB.

Figure 4.3, show the results obtained in the analysis. As can be observed, Apache

achieves the lowest times in all cases. This is an expected result, as Apache rep-

resents a thin layer of software in comparison to the other technologies. Unlike

Apache, in the rest of technologies, data have to pass through a larger number and

more complex layers of software; moreover, data have to be moved throughout nodes,

adding additional delay. Considering only the four storage technologies, Redis is the

fastest one in all cases, followed by Cassandra, MongoDB and finally HDFS which

obtains the highest results.

We should note here that Redis and Cassandra use 4 nodes to store the LiDAR

data, so that, at least one of their nodes in charge of storing data is placed in the

same machine as the Express server. This gives them an advantage when the files

been retrieved are stored in the node of the Express server, as those files do not have

to be sent from other nodes.

In cold start, Redis shows the lowest times of the four technologies due to in-

memory design. After 10 retrievals, Redis keeps showing the lowest result, but they

are almost identical to those shown by MongoDB and Cassandra thanks to the

different levels of caching provided by the operating system and the technologies

themselves.

The high results obtained in cold start by HDFS+HAR are partly due to Express,

which, upon receiving the first data request, must build the access indexes to the

files in main memory, adding around 2.8 seconds to the final latency. This procedure

follows the same philosophy as the name-nodes, storing all data in memory to speed

4.3 Experimental results 85

up subsequent data requests.

Except for a cold start in HDFS+HAR, the highest difference observed between

the times of the storage technologies and Apache is only 0.56 seconds in favour of

Apache so, even though differences in latency between technologies do exist, from

the point of view of the user experience, they are almost negligible, which means

that, replacing a traditional server software, like Apache HTTP Server, with any

of the big-data-oriented solutions, has a very limited impact on the latency of a

web-based multi-resolution out-of-core application.

4.3.2. Performance in terms of throughput

The throughput analysis has been carried out using Apache JMeter [99]. Table

4.1 shows the specifications of the client machine used for running the client software.

Three throughput tests were performed using from 8 to 256 concurrent users, each

of them using 6 simultaneous connections to simulate the behaviour of most web

browsers.

The way a point cloud is pre-processed largely determines the size of the files

handled by a multi-resolution system. The files handled, the format of the files,

the number of LODs chosen, and the resolution they display are some of the most

important features that determine the final size of the files. All technologies show

performance differences based on file size; hence, three throughput tests were carried

out attempting to simulate three different workloads based on different file sizes. In

the first test, each user requests a total of 10,000 files of 10 KB. In the second one,

1,000 files of 100 KB and in the third one, 100 files of 1,000 KB. Each test was

performed 10 times taking the throughput as the mean of all of them.

As can be observed in Figure 4.4, for a size of 10 KB, Redis, Cassandra and

MongoDB, obtain a much higher throughput than Apache, except for HDFS, which

is slightly below. For files of 100 KB (see Figure 4.5), Apache has an irregular

performance, being considerably inferior to the rest of solutions as the number of

concurrent users increases, but being almost equal or slightly higher when users

are 16 or less, once again, with the only exception of HDFS, which obtains lower

throughputs except for 64 users. Regarding the test for 1,000 KB (see Figure 4.6),

86
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

Figure 4.4: Throughput obtained for different concurrency levels. Each user makes
10000 requests of 10 KB.

Figure 4.5: Throughput obtained for different concurrency levels. Each user makes
1000 requests of 100 KB.

4.3 Experimental results 87

Figure 4.6: Throughput obtained for different concurrency levels. Each user makes
100 requests of 1000 KB.

Apache obtains slightly higher results for 16 users or less. For 16 users or more, the

performance of all the technologies is almost the same, since all of them reach the

maximum of 12.5 MB/s of the Gigabit Ethernet network.

Visualization applications powered by multi-resolution techniques may handle a

large variability of files sizes, from a few KB up to several MB. This variability is

determined by how the point cloud has been pre-processed. The file formats and the

compression techniques used (Gzip, Delta-Encoding, etc), the type of data structures

selected to handle and manage the point clouds (kd-tree, quad-tree, octree, etc), the

number of LODs, as well as the point density and resolution of each LOD, have a

direct impact in the number and size of the files that are going to be stored in the

storage systems.

Visualization applications that use fine-grained data structures and efficient com-

pression techniques, where points end up stored in small files, will take much more

advantage of the performance provided by the big data solutions.

Another point to consider would be the type of network used. A big data system

that is accessed through a Gigabit Ethernet connection could not offer any improve-

88
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

ment in terms of throughput if files larger than 1 Mb are only retrieved from the

system.

4.3.3. Performance in terms of storage capacity

Figure 4.7 shows a comparison between the storage capacity of the technologies,

expressed as a percentage with respect to the capacity of Apache HTTP Server. Each

node of the analysis has a 4 TB disk, but only 2 TB are available for data storage.

This is the space available for Apache, so it is taken as reference for comparison.

Cassandra, MongoDB and HDFS, clearly overcome the storage capacity of Apache

and Redis, with Cassandra being even superior to HDFS and MongoDB, thanks to

its extra node for storing data. The capacity of Redis is very limited, due to its

being an in-memory database. This means that, Redis has only 256 GB available

for storing data.

Although, in theory, MongoDB and HDFS have the same storage capacity when

using the same nodes, every time a dataset of B bytes must be inserted in HDFS

as an HAR, it would require at least 2×B bytes of free space in the cluster, which

could be an important issue, especially when trying to insert massive datasets.

Table 4.4 shows a comparison between the storage capacity of the technologies

taking the size of real datasets as reference. The PNOA Galicia dataset was managed

by all technologies without problems during the latency analysis. When trying to

include the pre-processed files of another dataset (San Simeon (Pre)), Redis was the

only one unable to store it. When trying to store the LAS files of the cited datasets,

Apache reached its maximum capacity, while MongoDB, Cassandra and HDFS can

store those datasets and another two very large datasets (the last two columns on

the right of Table 4.4) without even consuming half of their storage capacity.

In conclusion, just two pre-processed datasets and their original data are enough

to overcome the storage capacities of Apache and Redis, which highlights how the

use of highly scalable storage technologies, such as HDFS, MongoDB or Cassandra,

is critical nowadays, especially in the field of LiDAR data. Despite its results on the

storage comparison, Redis achieved the lowest latency and the highest throughput

in the previous tests. Being an in-memory database has performance advantages

4.3 Experimental results 89

Table 4.4: Datasets with original LAS files (O) and pre-processed files (Pre). The
star marks show the datasets that can be stored in each technology.

PNOA
Galicia
(Pre)

San
Simeon
(Pre)

PNOA
Galicia

(O)

San
Simeon

(O)

PNOA
Asturias

(O)

Los
Osos
(O)

Apache ? ? ? ?
HDFS + HAR ? ? ? ? ? ?

MongoDB ? ? ? ? ? ?
Cassandra ? ? ? ? ? ?

Redis ?

Figure 4.7: Storage capacity of the technologies.

90
Chapter 4. Big data storage solutions for large collections of massive LiDAR point

clouds

but makes the vertical scalability much more economically expensive, depending on

the total size of the point clouds to be stored.

Chapter 5

Big data geospatial processing for

large collections of massive LiDAR

point clouds

In this chapter, a big data approach on geospatial processing for massive aerial

LiDAR point clouds is presented. The system is intended to support the execution

of any kind of geospatial process; nonetheless, as an initial case of study, we have

focused on fast ground-only rasters obtention to generate DTMs from massive point

clouds. Thanks to this approach, it was possible to greatly reduce the time required

for processing large extents of aerial point clouds in comparison with single machine

approaches, while also obtaining all the common advantages associated with big

data technologies (reliability, availability, scalability). Following the analysis and

conclusions presented in the previous chapter, data distribution was performed using

Cassandra [95], while the computing distribution was accomplished with Spark [100],

due to its versatility, source code compatibility and batch oriented-design.

Filtered rasters created from the isolated processing of adjacent zones (something

that is usually done when dealing with very large point clouds) may exhibit errors

located on the boundaries of the zones in the form of misclassified points. These

issues must be corrected through manual or semi-automatic procedures. In this

chapter, we also present an automated strategy for correcting errors of this type,

improving the quality of the DTMs obtained while minimizing user intervention.

91

92
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

This chapter is structured as follows: The whole big data approach on geospatial

processing is presented in Section 5.1. Our automated strategy for the correction

of errors located on the boundaries between different processing units is described

in Section 5.2. Analyses in terms of quality and performance are shown in Section

5.3, along with the applicability of the framework for generating DTMs close to real

time. The work presented in this chapter was originally introduced in [30] and [31].

5.1. A scalable big data approach on geospatial

processing

The main goal in this stage of the Thesis was to develop a highly scalable geospa-

tial processing system through the distributed computing and storage capabilities

of big data technologies. Using said technologies, LiDAR datasets are distributed

throughout a cluster of N nodes, granting all common advantages associated to big

data storage solutions (reliability, availability and scalability [15]) while making it

possible to parallelize complex geospatial processes to reduce their execution times.

The system presented here provides users with the ability of easily launching

any kind of computational task using as input one or more massive aerial LiDAR

point clouds. The whole system design was conceived to offer great versatility by

expanding its functionality with the inclusion of different types of geospatial pro-

cesses. Nonetheless, as first case of study, we have focused solely on fast DTM

obtention from massive aerial LiDAR point clouds, since, as was briefly explained

in the introduction, DTMs are one of the most valuable data resources that can be

obtained from LiDAR datasets.

The global structure of the system is composed of three main elements: a geospa-

tial process library containing a progressive morphological filter for carrying out the

main point classification tasks (Section 5.1.1); a wide column store for distributing

and storing the LiDAR datasets (Section 5.1.2), and a batch processing technology

for distributing all computational tasks (Section 5.1.3). Figure 5.1 shows the global

system structure just described.

5.1 A scalable big data approach on geospatial processing 93

Figure 5.1: Global system structure.

94
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

5.1.1. Geospatial processing: fast DTM obtention

The general method we have employed to obtain DTMs begins with the creation

of a raster from the input point cloud and then applying a progressive morphological

filtering [118] in order to classify its points. As a result, a raster containing only

ground points is obtained, which represents the final DTM. It should be stressed

here that the output is not stored on disk in the form of an already triangulated file

format, but like a regular point cloud, so each user can triangulate the results using

the software and properties they consider most appropriate.

SC-091-12 [22] was the base algorithm selected to carried out the tasks described

above. The reasons behind this selection were: the good results of SC-091-12, in

terms of quality and performance, in comparison to Fusion [91] for the generation

of DTMs [82]; and its potential integration with Spark and Cassandra, since the

algorithm is coded in Java, and this is one of the programming languages supported

by Spark and the Spark-Cassandra connectors.

The point classification accuracy of SC-091-12 relies directly on a series of main

input parameters: initial window size (IWS), maximum window size (MWS), initial

elevation threshold (IET), maximum elevation difference (MED) and cell size (CS).

Further technical information about these parameters and the functioning of the

filter used by SC-091-12 can be found in [118]. In [82], the authors found optimal

values for all parameters except for CS, which had to be adjusted depending on the

characteristics and type of the point cloud being processed; e.g., urban, rural, flat

or mixed. Table 5.1 shows those input parameters along with their optimal values.

These values will be used during the analyses of Section 5.3.

As has already been mentioned, the point classification is not applied directly

to the whole input cloud but to a raster version of it. In our proposal, the raster

is obtained by dividing the surface of the point cloud into a grid of regular cells,

whose size is defined by the input parameter CS, and then selecting the point

with the lowest Z component in each cell. This point selection method improves

the final quality of the DTMs, as the points located at the lowest heights have

a higher probability of being ground points. In the event of finding more than

one point sharing the lowest value, the point closest to the centre of the cell is

selected. This rule is applied to ensure that the same point is always selected

5.1 A scalable big data approach on geospatial processing 95

Table 5.1: Optimal values for the input parameters of SC-091-12 algorithm.

Input parameter Optimal value

IWS 3
MWS 30

IET (m.) 0.5
MED (m.) 5
CS (m.) -

through different executions. Selecting, for example, just the first point that has

been loaded with the lowest height may produce different output results in different

executions, as during our error correction stage (see Section 5.2), points may be

loaded in different order from one execution to another. Selecting the point closest

to the centre may sometimes also improve the quality of the classification. This

occurs when selecting the most central point avoids the selection of a point placed

very close to the boundaries of the cell, as at such positions the point may be not

very representative of the rest of the points in the cell.

In order to minimize execution times, the SC-091-12 algorithm, in its original

version, is able to benefit from the use of multiple CPU cores. During the filtering

process of a single LiDAR zone, all cores available on the CPU are used to complete

the different internal tasks of the filter, e.g., dilation or erosion operations (see [118]

for more technical information about this and other internal operations in the filter).

However, the CPU usage observed during the filtering process was very irregular over

time, both in the number of threads used and in the workload of each of them, since

occasionally one or more cores were inactive or they did not work at full capacity,

wasting computing power that could have been used to complete additional tasks.

Considering this, the design of the big data version of the filtering algorithm was

oriented towards zone-level parallelism in such a way that several zones in a point

cloud could be processed in parallel, using all the available cores in the CPU.

Aiming to achieve the aforementioned level of parallelism, in the current version

of the filtering algorithm, each raw point cloud (an original and unprocessed version

of the point cloud) is subdivided following a two-dimensional (2D) tile grid pattern.

No other more complex data partitioning is required thanks to the 2.5 dimensional

96
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Figure 5.2: Data divisions carried out during the whole computational process. Dur-
ing an offline preprocessing stage, raw point clouds are divided following a tile grid
pattern. Then, each tile (or zone) is inserted and stored permanently in Cassandra.
During runtime, a raster is created for each zone by subdividing the zone into cells
whose dimensions are defined by the input parameter CS.

nature of the aerial LiDAR point clouds. The points of each tile are packed together

in a single file, then individually inserted into Cassandra to be distributed through-

out the cluster. This subdivision is carried out during an offline preprocessing stage

and it is up to the users to decide the number and size of the zones (see Figure 5.2).

Such decisions will have a direct impact on the performance of the whole system

in general, and the DTM obtention process in particular, as will be explained in

Section 5.3. Inserted files are considered as independent zones and will be used later

by Spark as parallel processing units.

5.1.2. Distributed storage: Cassandra

In the previous chapter, four of the most currently adopted and mature storage

technologies were analysed in order to determine the best option for the management

5.1 A scalable big data approach on geospatial processing 97

of massive LiDAR datasets, as well as for supporting a web-based visualization

framework. In the cited analysis, HDFS [96], MongoDB [69], Cassandra [95] and

Redis [83] were studied, attempting to include with each one of them a different type

of database design: distributed file systems, document stores, wide column stores

and key-value stores [92].

Considering the conclusions of the aforementioned analysis, Cassandra was the

storage technology selected for this chapter of the Thesis, since its querying capa-

bilities are broad and very similar to those featured in other classic SQL databases,

and its integration with big data computing solutions, such as Spark, is efficient,

stable and robust. Additionally, all nodes in a Cassandra cluster play the same role,

so, unlike other technologies, it is not mandatory to deploy nodes for exclusive tasks

such as metadata storage. This helps to maximize the level of parallelism in the

system, since all nodes available can be used for LiDAR data distribution. All these

excellent qualities are further reinforced by the performance, in terms of latency

and throughput, achieved on executing read operations, which are a key point in

the proper functioning of the system.

LiDAR files are stored in Cassandra using a simple two-column schema. A string

type column for the name of the files, which is used as the main key of the table,

and a BLOB (binary large object) type column for the binary data of the files. This

schema allows the files to be inserted directly into the storage system as binary

data without any kind of additional modification or transformation. As described

in the previous chapter, the size of the BLOBs directly affects the performance

of the system. As the size of the BLOBs increase, the latency and throughput

of the system worsen. This means that the file format of the files, as well as the

extent of the point clouds they contain (i.e., the size of the zones), should be chosen

carefully in order to avoid causing a negative impact on the system performance.

For example, text files tend to be larger and more expensive in computational time

than raw binary files when it comes to reading data out of them. In addition, files

compressed with efficient methods may improve the system performance as long as

the overhead of the decompression are small enough. The entire big data system

tends to perform better with files containing small extents of land; nevertheless,

it can produce a decrement in the quality of the output using certain algorithms.

These issues will be further explained in Section 5.2 and taken into account for the

98
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

performance analysis of Section 5.3.1.

5.1.3. Distributed computing: Spark

The big data system presented here can be considered as a batch processing

system, since geospatial processes operate without supervision on static LiDAR

datasets. Map-reduce is one of the best-known paradigms of distributed computing

for batch processing in big data contexts; nevertheless, this paradigm does not

entirely fit the way the filtering algorithm works, in addition to being very rigid

and limited, which could become a problem in the future when the inclusion of new

geospatial processes would be required. Taking all this into account, map-reduce was

discarded along with the use of Hadoop [103] and other similar computing solutions.

Other technologies, such as Storm [104] or Flink [102], were also discarded as they

are mainly focused on stream processing rather than batch processing. On the

other hand, Spark stands out as the most suitable option for the proposal presented

here thanks to its great integration with Cassandra through the Spark-Cassandra

connector [24], as Java is one of its programming languages (same as the base source

code of the filtering algorithm used), and owing to its design focused on batch

processing and its operational versatility.

Since Spark implements a Master/Slave design pattern, our big data approach

ensures maximum parallelism during the execution of the geospatial processes by

deploying a Spark worker on each Cassandra cluster node. The global system de-

picted in Figure 5.1 shows a Spark master deployed on its own node separated from

the rest of the components (Cassandra nodes and Spark workers) on the system.

This would be the ideal structure on a production environment since, usually, only

the Spark master would be directly accessible for the users, allowing them to send

a computational request to the system without exposing the rest of components on

it. Additionally, such a deployment allows the Spark master to use as much CPU

power as needed without interfering with the execution of other system components.

However, in the case of node exposure not being important and the workload of the

Spark master always being very low, the master could be deployed together with one

of the Cassandra nodes and a Spark worker, without causing any negative impact

on their performance and with the additional benefit of not requiring an additional

5.2 Automated boundary error correction 99

node for the master alone. This last deployment configuration is the one used for

the analysis of Section 5.3.

Moving logic or algorithms between nodes is faster than moving data, this is

one of the main principles of big data. Following this principle, the Spark master

distributes a copy of the geospatial process code (explained in Section 5.1.1) among

the Spark workers so they can apply its computational tasks on subsets of LiDAR

zones retrieved from Cassandra. The Spark-Cassandra connector ensures data local-

ity, this means that each Spark worker only operates with the LiDAR zones stored

on its own node, avoiding data movements between nodes. This is the general rule;

nevertheless, it is not always followed or even desirable, as will be explained dur-

ing the following sections. Pursuing the zone-level parallelism described in Section

5.1.1, each Spark worker operates only on its local subset of LiDAR zones, which

are processed in parallel by being distributed among all physical cores available on

each worker’s CPU.

Cassandra uses table keys to distribute data evenly throughout the nodes. The

optimal performance of our application is achieved when the data distribution pat-

tern matches the workload distribution pattern. If every node on the cluster stores

the same percentage of the total data, and a geospatial process is executed using the

whole data as input, every Spark worker will be assigned almost the same amount of

workload. This is always the scenario during the analysis of Section 5.3. Workload

distribution optimization [65] is beyond the scope of the research presented here.

5.2. Automated boundary error correction

The classification of a given point under the categories of ground or non-ground

largely depends on the features of its neighbouring points. Points located at the

boundaries of adjacent zones filtered independently lack important information about

their neighbours, so it is very common to find classification errors at such locations.

Figure 5.3 shows a raster of ground points obtained after filtering a point cloud

that was subdivided into four zones during the preprocessing stage. Each zone was

filtered independently from the rest and the classification results displayed together.

As can clearly be seen, the final classification shows a regular pattern of gaps, far

100
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Figure 5.3: Raster displaying only ground points. The raster was obtained by
independently filtering four adjacent zones and joining the results. Dotted lines
highlight zone boundaries.

Figure 5.4: Schematic representation of the automated boundary error correction
strategy. Squares labelled with letters and outlined with continuous lines correspond
to LiDAR zones. Rectangles labelled with numbers and outlined with dots delimit
overlapping sections between adjacent zones that will be used as correction patches
to detect and remove classification errors located on the boundaries of the zones.

5.2 Automated boundary error correction 101

from being produced by natural geographic features or human-made structures,

which match the boundaries of each zone. These gaps represent points that were

misclassified as non-ground and thus not appear on the image.

Usually, this type of errors are avoided through manual or semi-automatic (scripted)

procedures. Users must firstly define overlapping sections between adjacent zones,

then filter the zones together with the points from the overlapped sections, and fi-

nally crop the results to fit the original extent of each zone. In any case, these type

of solutions always imply some kind of user intervention.

In this chapter, we present an automated error correction strategy which, taking

advantage of the computational power of the big data system, automatically creates

new additional overlapping rasters encompassing boundary sections between adja-

cent zones. The points from these overlapping rasters are also classified, obtaining

as a result a collection of ground points that will be used to detect and correct the

errors that may appear during the classification of the points of the zone rasters.

For convenience, we call these collections correction patches. For example, in Figure

5.4, the squares outlined with continuous lines represent LiDAR zones, while the

rectangles outlined with dots delimit the areas of the new overlapping rasters. The

whole process is explained in following subsections.

5.2.1. Creation of the correction patches

New overlapping rasters are created through a distributed process also carried out

by the Spark + Cassandra system. Following the pattern depicted in Figure 5.4, a list

with these new elements is made, taking into account all the LiDAR zones that are

going to be filtered. Then, the elements of the list are evenly distributed throughout

the Spark workers. Workers must retrieve from Cassandra all the necessary LiDAR

zones to gather the points of each overlapping raster. For instance, in order to collect

the points of the overlapping raster 5 (see Figure 5.4), the worker in charge must

request zones B, C, E and F. In the same way as for the rasters of the zones, the

input parameter CS is used to define the cell dimensions on the overlapping rasters

(see Figure 5.2).

Once the points of each overlapping raster have been gathered, the final cor-

102
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

rection patches are created by passing all those rasters to the classification process

as input and obtaining as a result a collection of ground-only points for each one

of them. The correction patches are stored temporally in Cassandra and deleted

once the entire process is finished, since they are only valid for the specific input

parameters used in the current classification process.

5.2.2. Filtering of the LiDAR zones and error correction

All LiDAR zones are passed as input to the filtering algorithm. In order to

ensure data locality, each Spark worker executes the algorithm over the zones stored

in the same node it is deployed. A raster is created for each zone using CS (as

depicted in Figure 5.2) and then its points classified under the ground or non-ground

categories. This output is a provisional classification, very likely to display errors

on the boundary zones between zones.

After filtering a given LiDAR zone, each Spark worker retrieves from Cassandra

the corresponding correction patches overlapping its surface. For instance, in order

to correct the errors on the raster obtained from zone H (see Figure 5.4), the worker

in charge must request correction patches 8, 9, 11 and 12. The information from

the raster of the zone and the correction patches is combined to correct the errors

found in the first one. Given two already classified points located at overlapping

raster cells, one point taken from the raster of the LiDAR zone (zone-raster-point or

ZRP) and the other point taken from the correction patch (correction-patch-point

or CPP), the rules to correct the errors are defined as follows:

If both points are labelled with the same class, the ZRP is considered as

correctly classified, as was confirmed by the results of the patch.

If a ZRP is classified as ground, but the CPP is classified as non-ground, the

ZRP is considered as correctly classified. The overlapping rasters have their

own boundary errors; if this scenario were considered as a classification error,

the final results would display gaps that would match with the boundaries

of the correction patches, so instead of correcting errors, new ones would be

introduced.

5.3 Result analysis 103

If a ZRP is classified as non-ground, but the CPP is classified as ground, the

ZRP is considered as misclassified and ZRP should be labelled as ground. Ad-

ditionally, following the same logic described in Section 5.1.1 for the selection

of raster points, if the Z coordinate of ZRP is higher than the Z from CPP,

the ZRP is replaced entirely by the CPP.

Figure 5.5 shows an example of the third case listed above. Squares outlined with

an outer bold continuous line correspond to LiDAR zones, the vertical rectangle

outlined with dots represents a correction patch and the rest of smaller squares

are the raster cells from their corresponding rasters. In this example, an error is

detected, as ZRP was classified as non-ground meanwhile CPP was classified as

ground. The error is corrected by not only changing the class label of ZRP but

replacing it entirely by CPP, since CPP has a lower Z value.

5.3. Result analysis

This section covers the analysis, in terms of executions times, on the performance

and scalability of our proposal (Section 5.3.1), along with it, a visual and quantitative

analysis of the boundary error correction strategy (Section 5.3.2), and finally, further

functional and computational considerations that should be highlighted regarding

pre-processing decisions (Section 5.3.3), full point classification (Section 5.3.4) and

point triangulation (Section 5.3.5).

Two massive raw point clouds, whose details are described in Table 5.2, were

preprocessed in order to obtain the datasets employed for the analyses of this section.

Four different datasets, whose details are described in Table 5.3, were obtained out

of the two raw point clouds. Datasets D0, D1 and D2 were created from the same

point cloud (PNOA, see Figure 5.6) varying the size of their processing units by

using three different zone extents. On the other hand, D3 (created from the point

cloud Guitiriz, see Figure 5.7) was included to analyse system performance under

specially unfavourable conditions, forcing the system to handle large processing units

(29,690 KB per zone on average). During the preprocessing stage, not only was the

subdivision of the point clouds carried out, but also a compression of the resultant

files. A compression method, very similar to the one described in [32], was employed

104
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Figure 5.5: Schematic example of a classification error correction. The zone-raster-
point (ZRP) has been misclassified as non-ground, and must be entirely replaced by
the correction-patch-point (CPP) as the ZRP has a higher Z value.

Figure 5.6: Rendering of the PNOA point cloud, specifically the region of Galicia
(Spain).

5.3 Result analysis 105

Figure 5.7: Rendering of the Guitiriz point cloud. Village and surroundings (Spain).

Table 5.2: Properties of the raw LiDAR point clouds selected for preprocessing.
NoP = Number of points (billions). NoF = Number of files. FE = File extent
(meters). FS = File size (average kilobytes per file). TS = Total point cloud size
(GB).

Point cloud NoP NoF FE FS TS

PNOA (Region) 28 8697 2000×2000 96731 802
Guitiriz (Village) 1 304 500×500 126194 37

to reduce the size of the data to be handled by the system.

The filtering algorithm was configured with the input parameters shown in Table

5.1, setting CS to 1.5 following recommendations from [82].

All machines used on the system deployment follow the specifications shown in

Table 5.4. As was already explained in Section 5.1.3, the Spark master runs along

with a Spark worker and a Cassandra node due to the negligible workload on the

master and because the exposure of the nodes is irrelevant in this context.

Both, Spark and Cassandra, offer a large number of configurable settings. In

order to obtain the best performance results, these settings must be configured

106
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Table 5.3: Properties of the datasets used for the analysis. NoZ = Number of zones.
ZE = Zone extent (meters). ZS = Zone size (average kilobytes per zone). TS =
Total dataset size (GB).

Dataset Source NoZ ZE ZS TS

D0 PNOA 11662 1600×1600 8925 99
D1 PNOA 181823 400×400 563 99
D2 PNOA 2875097 100×100 39 108
D3 Guitiriz 304 500×500 29696 9

Table 5.4: System specifications of the machines used for the analysis.

O.S. CPU RAM HDD Network

CentOS
(6.10)

2×Intel Xeon E5-2660
(16 Cores / 32 Threads)

64 GB
(DDR3)

SATA3
(7.2k)

InfiniBand

taking into account the nature of the algorithms executed as well as the amount

and type of data involved. The most relevant settings configured for Spark 2.4.0

are described in Table 5.5, while the settings for Cassandra 3.11.3 are described in

Table 5.6.

Several performance differences between Java 8, 9, 10 and 11 were found during

the research of this stage of the Thesis, with Java 11 being the version that offers

best performance results. Hence, the big data version of the filtering algorithm

was compiled using JDK11 and both, the Spark Master and the Spark workers,

are launched using JRE11 as well. However, the latest Java version supported by

Cassandra is Java 8, so it is launched using JRE 8.

Spark’s documentation defines spark.locality.wait as how long Spark must wait

to launch a data-local task before giving up and launching it on a less-local node.

The same wait is used to step through multiple locality levels (process-local, node-

local, rack-local and then any). After a number of tests, it was determined that a

value of 0 seconds (default is 3) offers the best results. This configuration implies

that, as soon as a node gets idle, data are moved from another node and a task is

assigned to the idle node. This improves performance as, in most cases, the time

5.3 Result analysis 107

Table 5.5: Relevant Spark configuration settings.

Setting Value

Java Runtime Environment (JRE) 11
spark.locality.wait 0

spark.serializer DEFAULT
spark.driver.memory 5 GB

spark.executor.instances 4, 8, 16
spark.executor.cores 16

spark.executor.memory 32 GB

penalty for moving data between nodes is lower than the time penalty for having a

node idle.

Due to the volumes of data handled by the system, the JVM parameters -Xms

and -Xmx configured in Cassandra must be raised as needed. For the analysis

presented here, and considering the amount of memory presented on each node, -Xms

and -Xmx were set to 24 GB. Memory configuration ends up with 32 GB for Spark,

24 GB for Cassandra and 8 GB for the OS. Additionally, some parameters such as

native transport max frame size in mb and commitlog segment size in mb were also

raised as needed when handling D0 and D3, the two datasets with the largest byte

size per zone.

5.3.1. Performance in terms of execution times

In order to analyse the scalability and performance of the system, we have mea-

sured the time it took to filter each of the four datasets described in Table 5.3.

We should remember here that the whole filtering process encompasses the creation

of the rasters, the classification of the points from the rasters and, if selected, the

error correction. Times were taken for two execution scenarios: one using the error

correction strategy (EC) and the other one without using it (NO-EC). The analysis

was carried out using 4, 8 and 16 computing nodes. As a base comparison, a local

non-big-data version of the system was also tested. This local version was specially

configured to run in one node, without using Cassandra or Spark, being capable

108
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Table 5.6: Relevant Cassandra configuration settings.

Setting Value

Java Runtime Environment (JRE) 8
Heap size 24 GB

Garbage collector G1
Read/Write/Request timeouts 10–120 seconds

native transport max frame size in mb 256–1024
commitlog segment size in mb 32–128

disk optimization strategy spinning
concurrent reads 16
concurrent writes 128

concurrent counter writes 16
concurrent materialized view writes 16

of processing in parallel several zones by sharing the workload among the 16 local

nodes.

Performance results for D0, D1 and D2 can be observed in Figures 5.8, 5.9

and 5.10, respectively. Figures show execution times (in hours) and speed-ups in

comparison to the reference value (the local version of the algorithm).

Regarding speed-ups, results obtained for D0 were 1.57×, 3.62× and 7.92× with

EC and 2.44×, 4.67× and 9.42× with NO-EC (using 4, 8 and 16 nodes, respectively).

For D1, speed-ups observed were almost the same in both execution scenarios, be-

ing around 2.1×, 4.2× and 8.4×. Finally, for D2, speed-ups were 2.14×, 4.54× and

9.16× with EC and 1.78×, 3.77× and 7.61× with NO-EC. Considering these results,

it can be asserted that the base speed-up obtained when moving from a local exe-

cution to the big data system using 4 nodes is, on average, 2×. Hence, the big data

system shows lineal scalability for all node configurations and datasets, both with

EC and NO-EC, by doubling the performance when doubling the nodes available.

Regarding execution times, the fastest configuration observed offering the best

quality was the 16 nodes configuration with EC and zones of 400×400 (D1) achieving

3.41 hours. Presumably, execution times observed for D2 should be always better

than D1, and times observed for D1 better than D0, since a reduction in the KB per

5.3 Result analysis 109

Figure 5.8: Performance analysis and scalability comparison using dataset D0
(1600×1600).

Figure 5.9: Performance analysis and scalability comparison using dataset D1
(400×400).

110
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Figure 5.10: Performance analysis and scalability comparison using dataset D2
(100×100).

zone would improve the throughput and latency of Cassandra, as demonstrated in

the previous chapter. However, in this comparison, the effects on the reduction in the

extent of the zones showed very different results. These differences are explained

by the variation on the amount of information that moves between nodes in the

two different execution scenarios and the start-up/initialization time penalty of the

filtering algorithm. Every time a given processing unit (zone) begins to be filtered, a

certain number of data structures must be initialized and some initial computations

must be made causing a small start-up/initialization time penalty; hence, the more

zones that are filtered, the more start-up/initialization time penalties will occur.

In the first scenario (NO-EC), data movements between nodes are almost non-

existent as the Spark-Cassandra connector ensures data locality. Spark workers only

apply the filtering algorithm on the zones stored in their own nodes and, as a result,

little to no reduction on execution times is obtained by reducing the KB per zone.

On the other hand, the start-up penalty of the filtering algorithm increases along

with the number of zones to be processed. As a result of the combination of these

two performance issues, in this scenario a reduction in the extent of the zones is

5.3 Result analysis 111

very likely to always produce an increment in the execution times.

In the second scenario (EC), there are considerably more data movements be-

tween nodes; for example, a given correction patch should be moved between nodes

for correcting the errors of adjacent zones that were stored in different nodes. Once

the amount of data movements is significant enough, the potential performance gain

related to the reduction of the KB per zone begins to show up. The time reduction

related to the movement of the data between nodes may end up compensating the

time increment related to the start-up penalties, producing an overall decrement in

the execution times.

Figure 5.11 shows (using a logarithmic scale) how the execution times vary when

changing the extent of the zones, both with NO-EC and EC. It can be clearly seen

how there is always a reduction in the execution times when increasing the extent

of the zones from 100 × 100 to 400 × 400. The reduction in the number of zones

to be filtered causes an important improvement in the execution times observed,

which helps to compensate the potential performance decrement produced by the

increase in the number of bytes that must be moved throughout the system when the

boundary errors are corrected. However, when going from 400×400 to 1600×1600,

execution times almost stall. There is no a significant improvement with NO-EC,

thereby, when the boundary errors are corrected, the amount of data becomes high

enough to cause decrement in the performance of the system, leading to the obtention

of worse times with EC.

Finally, speed-ups obtained for D3 (Figure 5.12) were 1.9×, 3.06× and 3.57×
for NO-EC and 1.82×, 3.01× and 3.99× for EC. As can be observed, although the

performance boost of the big data approach was notable, in comparison, results were

not as good as those obtained with the other datasets, even starting to stall just

at ≈ 4× when running on 16 nodes. These results are explained by, not only the

small amount of zones to process in comparison to the available cores (1.19 zones

per core), but also by the very large size of the zones (≈ 30 MBs) that are being

processed (see the analysis of previous chapter for more information).

112
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

Figure 5.11: Execution times variation (in logarithmic scale) between the usage of
different zone extents, both with EC and NO-EC.

Figure 5.12: Performance analysis and scalability comparison between the local
version of the system and the big data approach using 4, 8 and 16 nodes. This test
was carried out using dataset D3 to analyse the system under specially unfavourable
conditions.

5.3 Result analysis 113

5.3.2. Boundary error correction quality

With the intention of analysing our boundary error correction strategy, we have

employed two separate methods: a visual analysis using the massive dataset D3 and a

quantitative analysis using several samples from the ISPRS Filter Test dataset [109].

Visual comparisons between EC and NO-EC can be observed in Figure 5.13 and

Figure 5.14. Images from Figure 5.13 show a close view over two filtered rasters

from D3 containing ground points only. The surface shown in Figure 5.13a presents

noticeable errors with blank zones that are completely removed in Figure 5.13b. The

only blank zones that can be seen in this image correspond to large zones of forest

or small groups of houses. On the other hand, Figure 5.14 shows an even closer view

over two fully triangulated rasters from the previous raster set. Ground points from

the rasters were triangulated using the software tool Global Mapper [7]. As in the

previous figure, clear errors can be observed in Figure 5.14a along the boundaries of

the zones, while they are completely absent in Figure 5.14b.

A quantitative comparison between EC and NO-EC can be observed in Table

5.7. The comparison was carried out using samples from the ISPRS Filter Test

dataset. Each sample was divided into 4 smaller and equally-sized zones to force

the appearance of boundary errors. Type I error (rejection of ground points) was

measured to compare the classification quality observed on the original samples and

on their 4-split counterparts with EC and NO-EC. For these tests, CS was set to 1

due to the low point density of the samples. We should stress here that type I errors

are calculated only with points from the rasters, so every point from a raw point

cloud not included in the raster counts as an error, leading to the high percentages

shown in the table.

As it can be clearly seen, after applying the error correction strategy the per-

centage of errors is reduced beyond the level prior to the division of the samples.

Errors with EC are slightly inferior to the originals, due to small amounts of extra

points contained in the rasters of the divided samples.

Considering a raster created from a zone of 9×9 meters and using CS=1 meter,

the resultant raster will contain 81 points distributed in a grid of 9×9 cells. After

dividing the zone in 4 smaller areas of 4.5×4.5 meters, the 4 resultant rasters will

contain 100 points distributed in 4 grids of 5×5 cells, since those half meters re-

114
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

(a) NO-EC (b) EC

Figure 5.13: Filtered rasters containing ground points only. Images represent a close
view over an area with 16 zones (8×8 on 16 km2) from the dataset D3.

(a) NO-EC (b) EC

Figure 5.14: Fully triangulated rasters containing ground points only. Images rep-
resent a very close view over an area with 4 zones (2×2 on 1 km2) from the dataset
D3.

5.3 Result analysis 115

Table 5.7: Type I error comparison (lower is better) between EC and NO-EC using
several samples from the ISPRS Filter Test dataset.

Sample
Type I Error (%)

Original
Divided in 4

(NO-EC)
Divided in 4

(EC)

Sample 11 45.99 50.18 44.97
Sample 22 39.71 40.59 39.44
Sample 52 10.79 13.43 10.54
Sample 53 14.87 15.71 14.25
Sample 54 6.80 7.22 6.47
Sample 61 8.03 8.44 7.76

maining imply the presence of an additional cell on each grid dimension. This tiny

extra information helps to improve the quality of the classification reducing, as a

result, the type I errors.

5.3.3. The importance of an adequate point cloud prepro-

cessing

All results presented in Section 5.3.1 and 5.3.2 reveal the great importance of the

decisions taken during the preprocessing stages of the LiDAR datasets. Reducing

the size of the zones by reducing their extent may improve the overall system perfor-

mance; nevertheless, once a certain extent is reached, the performance improvement

may get stuck or even get worse, depending on the nature of the geospatial processes

running on the system. Additionally, it should also be taken into account whether

the quality of the output is related to the size or extent of the zones or not. As

shown in Table 5.7 (second and third column), if the size of the zones is reduced

by reducing their extent, the amount of boundary surfaces will increase, raising the

number of errors on the output.

By way of conclusion, it should be stressed how critical it is to find a suitable

balance between the number of zones (NoZ), the size per zone (ZS) and the output

quality of the geospatial process. Developing an automated method to determine

the optimal number of zones, or their extent, is beyond the scope of this work, but

116
Chapter 5. Big data geospatial processing for large collections of massive LiDAR

point clouds

it would be considered as an interesting part of the future work.

5.3.4. Full point classification

It is intended to expand the type of output of the current filtering algorithm with

the goal of offering full point classification. We have developed a naive approach to

analyse the potential of this additional feature. To accomplish this task, the current

filter output is used as input for a new final stage to classify all the points in the

raw point cloud. Based on their X and Y coordinates, each point from the LiDAR

zones is placed in a cell from the already filtered rasters. If the height difference

between the point located in the raster cell and the point from the zone is less than

an user-defined parameter, which we have called height threshold (HT), the new

unclassified point is labelled using the same class as the raster point, otherwise the

point will be labelled with the opposite class.

Table 5.8 shows a comparison between this naive approach and LAStools [41]

using several samples from the ISPRS Filter Test dataset. The LAStools results

were obtained from [85], as it is one of the latest research articles about ground

classification from LiDAR point clouds. The analysis was carried out comparing

total errors (percentage of misclassified points), type I errors (rejection of ground

points) and type II errors (acceptance of non-ground points as ground points). The

CS parameter was set to 1, again due to the low point density of the samples, while

the HT parameter was set to 30 centimetres.

The results obtained show how our approach is better, on average, than LAStools

when considering the total errors and the type I errors, but slightly worse when

considering type II errors. This is an expected result, since the core design of the

SC-091-12 algorithm was focused on the obtention of rasters with ground points

that could be easily triangulated for generating high quality DTMs.

The inclusion of the full point classification has been established as future work

as well as the reduction in the percentage of errors.

5.3 Result analysis 117

Table 5.8: A comparison between the full point cloud classification errors (lower is
better) obtained by the naive method proposed and LAStools.

Sample
Total Error (%) Type I Error (%) Type II Error (%)

Our approach LAStools Our approach LAStools Our approach LAStools

Sample 11 17.05 17.67 27.06 26.94 3.61 5.18
Sample 12 5.28 6.97 8.25 12.87 2.16 0.77
Sample 21 1.79 6.66 1.42 7.98 3.09 1.87
Sample 53 14.33 14.37 14.55 14.84 8.92 3.24
Sample 61 7.29 17.24 7.38 17.85 4.89 0.40
Average 9.15 12.58 11.732 16.10 4.53 2.29

5.3.5. Point triangulation

As was already explained in Section 5.1.1, it is up to the users to triangulate the

results obtained from the filtering process by using the software and properties they

consider most appropriate. In order to obtain the fully triangulated representation of

the four filtered zone rasters shown in Figure 5.14, the software tool Global Mapper

was employed running on commodity hardware, taking no more than 2 seconds to

finish the triangulation of the whole surface.

It is important to highlight that, although several sets of rasters could be tri-

angulated in parallel, it would be necessary to blend them all together in order to

obtain a continuous surface across many different sets, which would imply additional

computation time. However, it is here where the importance and potential of a sys-

tem like the one presented in this chapter clearly appears, bringing the opportunity

of including additional computational stages for obtaining full triangulated DTMs,

achieving very low processing times in comparison to traditional desktop solutions,

and even reducing them close to real time.

Chapter 6

Conclusions and future work

Nowadays, LiDAR technology stands out as one of the most valuable sources of

geospatial information and it is considered as a challenge when it comes to developing

efficient software to handle the volumes of data this surveying method is able to

collect. This particularity forces researchers to constantly look for new approaches

and solutions in order to overcome all constraints related to the manipulation of such

volumes of information. Throughout this Thesis, a wide range of contributions have

been presented to drastically improve the performance and functionality of many

critical elements in the field of aerial LiDAR data.

The visualization framework presented in Chapter 2 offers great flexibility and

an adequate workflow for users thanks to its web-based approach, together with

its efficient data querying capabilities and its fast data loading mechanics. Unlike

most of the other proposals, it shows high stability and performance, achieving real

time interaction, handling around 103 million points and up to 281 million with

an acceptable level of interaction. Additionally, its geospatial measurement tools

constitute one of the main advantages over the other proposals available.

It could be argued that a full-resolution approach, like the one presented in

Chapter 2, may not be useful or it could show poor performance under a situation

where an excessively large point cloud were fetched into the ROI (region of interest);

nevertheless, as was briefly explained during the preface of this work, since this

approach was meant to be included in an application with the purpose of providing

accurate measurement tools over very delimited areas, said situation will be highly

119

120 Chapter 6. Conclusions and future work

unlikely. For example, it would be very unlikely to create a complex volumetric

object over very large extents of land surfaces, such as an entire province or region,

or even an entire city, with the definition of ROIs being limited to relatively small

to medium sized areas in most situations.

In Chapter 3, we have demonstrated how multi-resolution, out-of-core techniques

can be implemented though non-redundant data structures, to support web-based

point cloud rendering. Through a special non-redundant rearrangement and storage

of the points, we were able to avoid the creation of unnecessary static and precom-

puted elements usually required in other multi-resolution approaches. Thanks to

our proposal, depending on the characteristics of the point clouds and the different

LODs (levels of detail) created for them, the reduction in the storage requirements

on the server side can be notable, as well as the reduction in the network traffic.

These optimizations become especially meaningful achievements in contexts where

large amounts of LiDAR datasets are constantly collected and entail a significant

cost of economic and technical resources. As it has been demonstrated, on the client

side, memory consumption is remarkably low, allowing massive point clouds up to 28

billion points to be loaded and rendered in real time, even in mobile devices, where

memory capacity is very limited, or in browsers with hard memory restrictions, such

as Google Chrome. The proposal presented in Chapter 3 was tested against one of

the most known and well rated LiDAR visualization frameworks, overcoming all its

performance results.

During Chapter 4 of this Thesis, it has been proven how web-based real-time

visualization of massive LiDAR datasets can be supported by big data storage tech-

nologies without any drawback or penalty in performance or user experience, while

gaining all of the usual benefits of big data, such as scalability and fault toler-

ance. Additionally, with a view towards the future, systems using these kinds of

technologies would be already prepared to incorporate large-scale data processing

technologies such as Spark or Flink. In Chapter 4, some of the most adopted and

mature storage technologies were chosen, not only to analyse their viability as sub-

stitutes of traditional storage technologies, but also to compare their advantages and

disadvantages, forming a guide (or starting point) for their adoption or avoidance

in other use cases involving LiDAR data.

In Chapter 5, we have proven how big data technologies, in this case Cassan-

121

dra and Spark, provide very powerful solutions for the large-scale parallelization of

geospatial processes. The distributed computing system presented in this chapter

allowed us to greatly improve the performance of a filtering algorithm [22] specially

designed to obtain rasters of ground-only points for DTM generation. In addition

to the outstanding computing capacity of these two technologies working together,

their highly programmable design provides the opportunity to further improve and

expand the functionality of the geospatial processes through the easy inclusion of

new computational stages, such as the error correction stage also introduced in

Chapter 5. Said strategy allowed us to correct the classification errors that can be

found on the boundaries of adjacent zones independently processed by the filtering

algorithm. Performance results obtained show how our proposal was capable of re-

ducing the time it took to process 28 billion points in a single machine, from 28.57

hours down to 3.41 hours when correcting the boundary errors, and from 13.32 hours

down to 1.56 with no error correction, obtaining a speed-up of 8.4× for deployments

of 16 nodes (see Figure 5.9 of Chapter 5). The use of a big data approach does not

only bring distributed computing to LiDAR data, but also all the common storage

advantages associated to this type of technologies, such as high data availability and

scalability or fault tolerance. GIS centres, governmental institutions or any other

kind of group working with very large volumes of data will greatly benefit from the

proposal presented in this chapter and, with the appropriate amount of computa-

tional resources, the entire process of obtaining fully triangulated DTMs could get

near to real-time processing.

Finally, during the development of the Thesis, a lossless compression method

was also presented to support many of the main features, algorithms and systems

described. Reaching compression ratios of 0.1 (a file size reduction of 90%), our

method outperforms LASzip, the preferred compression method used with LAS

files, while allowing total control over the data due to not being restricted to the

characteristics of a pre-existing format, and therefore, data files employed may be

adapted to maximize the performance of the elements that make use of them.

122 Chapter 6. Conclusions and future work

Future work

Currently, we are heading towards finishing the full classification of point clouds

using a more refined and complex algorithm than the one presented in Section

5.3.4, so that users can choose whether to obtain just a filtered raster from a given

point cloud or the whole filtered point cloud. Additionally, we plan to include an

optional final processing stage for obtaining fully triangulated DTMs, as explained in

Section 5.3.5. The development of an automated method to determine the optimal

number and extent of the processing units could be considered for minimizing the

user intervention while maximizing the performance of the distributed computed

system, as was already mentioned in Section 5.3.3.

The autonomous nature of all computing stages, along with the low processing

times achieved, opens up the possibility of considering the system as a service-

oriented solution for on-demand DTM/DSM generation, which would be a highly

useful and unique service for many users in the LiDAR field, and one which could

get near to real-time processing with the appropriate amount of computational re-

sources. The distributed computed system presented in Chapter 5 serves as base

system to a larger one offering several geospatial processes in the form of a library of

geospatial processes, with the aim of applying those process over entire point clouds

or only ROIs defined by the users. One of these additional options could be the

massive point triangulation commented in Section 5.3.5.

All contributions presented in this Thesis will be integrated onto the same sys-

tem, BETi (Big data for the Exploration of Terrain Infomation) offering a com-

plete and multi-functional solution for data distribution, replication, availability and

client-side and server-side processing. The system will be capable of offering parallel

access to a very large collection of massive point clouds, including a wide geospatial

process library powered by a highly scalable distributed computing system under a

queue system. Visualization of public and private datasets will be granted through

the web-based clients together with all geospatial measurement tools already de-

scribed. Finally, we should highlight here that part of the research presented during

this work is now being used in another Thesis developed in the Computer Graphics

Systems research group of the Hasso Plattner Institute and the Computer Archi-

tecture Group of the University of A Coruña. Many of the concepts presented in

123

Chapter 3 regarding efficient adaptive data structures generated at runtime are be-

ing used to improve the output quality and performance of semantic enrichment

algorithms for indoor point clouds. Additionally, an improved revision of the multi-

resolution and out-of-core approach presented in said chapter is being developed

with the aim of correcting some of its weakness and further expanding the resource

optimizations achieved.

Bibliography

[1] V. Abramova and J. Bernardino. Nosql databases: Mongodb vs cassandra.

In Proceedings of the International C* Conference on Computer Science and

Software Engineering, pages 14–22, 07 2013.

[2] T. Akenine-Moller, E. Haines, and N. Hoffman. Real-Time Rendering. A. K.

Peters, Ltd., 3rd edition, 2008.

[3] Alexander Krivutsenko. Lidarview. http://lidarview.com/. Accessed on

02/20/2019.

[4] American Society for Photogrammetry and Remote Sensing. LAS specifica-

tion. https://www.asprs.org/divisions-committees/lidar-division/

laser-las-file-format-exchange-activities. Accessed on 02/20/2019.

[5] J. R. Arrowsmith and O. Zielke. Tectonic geomorphology of the San Andreas

fault zone from high resolution topography: an example from the Cholame

segment. Geomorphology, 113(1–2):70–81, 2009.

[6] A. Beck. Airborne laser scanning discrete echo and full waveform

signal comparison. https://commons.wikimedia.org/wiki/File:

Airborne_Laser_Scanning_Discrete_Echo_and_Full_Waveform_

signal_comparison.svg. New labels and text by David Deibe,

https://creativecommons.org/licenses/by-sa/3.0/legalcode. Accessed on

02/19/2019.

[7] Blue Marble Geographics. Global mapper - all-in-one gis software. https:

//www.bluemarblegeo.com/products/global-mapper.php. Accessed on

05/10/2019.

125

http://lidarview.com/
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://commons.wikimedia.org/wiki/File:Airborne_Laser_Scanning_Discrete_Echo_and_Full_Waveform_signal_comparison.svg
https://commons.wikimedia.org/wiki/File:Airborne_Laser_Scanning_Discrete_Echo_and_Full_Waveform_signal_comparison.svg
https://commons.wikimedia.org/wiki/File:Airborne_Laser_Scanning_Discrete_Echo_and_Full_Waveform_signal_comparison.svg
https://www.bluemarblegeo.com/products/global-mapper.php
https://www.bluemarblegeo.com/products/global-mapper.php

126 Bibliography

[8] J. Boehm. File-centric organization of large lidar point clouds in a big data

context. In IQmulus First Workshop on Processing Large Geospatial Data,

pages 69–76, 2014.

[9] M. Bóo, M. Amor, and J. Döllner. Unified hybrid terrain representation based

on local convexifications. GeoInformatica, 11(3):331–357, February 2007.

[10] C. Boucheny. Visualisation scientifique de grands volumes de données: Pour

une approche perceptive. Theses, Université Joseph-Fourier - Grenoble I, Feb.

2009.

[11] J. Boudreau, R. F. Nelson, H. A. Margolis, A. Beaudoin, L. Guindon, and D. S.

Kimes. Regional aboveground forest biomass using airborne and spaceborne

lidar in Québec. Remote Sensing of Environment, 112(10):3876 – 3890, 2008.

[12] M. Brédif, B. Vallet, and B. Ferrand. Distributed dimensonality-based render-

ing of lidar point clouds. ISPRS - International Archives of the Photogram-

metry, Remote Sensing and Spatial Information Sciences, XL-3/W3:559–564,

2015.

[13] C. A. Brunori, R. Civico, F. R. Cinti, and G.Ventura. Characterization

of active fault scarps from LiDAR data: a case study from Central Apen-

nines (Italy). International Journal of Geographical Information Science,

27(7):1405–1416, 2013.

[14] S. Buján, E. González-Ferreiro, L. Barreiro-Fernández, I. Santé, E. Corbelle,

and D. Miranda. Classification of rural landscapes from low-density lidar

data: is it theoretically possible? International Journal of Remote Sensing,

34(16):5666–5689, 2013.

[15] R. Buyya, A. Dastjerdi, and R. Calheiros. Big Data Principles and Paradigms.

Elsevier, 2016.

[16] C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, tech-

niques and technologies: A survey on big data. Information Sciences, 275:314

– 347, 2014.

Bibliography 127

[17] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu. Big data

for remote sensing: Challenges and opportunities. Proceedings of the IEEE,

104(11):2207–2219, Nov 2016.

[18] M. Comino, C. Andújar, A. Chica, and P. Brunet. Error-aware construction

and rendering of multi-scan panoramas from massive point clouds. Computer

Vision and Image Understanding, 157:43 – 54, 2017.

[19] R. Concheiro. Real Time Rendering of Parametric Surfaces on the GPU.

Departamento de Electrónica y Sistemas, Universidade da Coruña, 2013.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-

marking cloud serving systems with ycsb. In Proceedings of the 1st ACM

Symposium on Cloud Computing, SoCC ’10, pages 143–154. ACM, 2010.

[21] Couchbase, Inc. Couchbase nosql database. https://www.couchbase.com/.

Accessed on 06/13/2019.

[22] R. Crecente, E. González, D. A. Arias, D. Miranda, and M. Suárez. LI-

DAR2MDTPlus generación de modelos digitales de terreno de pendiente vari-

able a partir de datos lidar mediante filtro morfológico adaptativo y com-

putación paralela sobre procesadores multinúcleo. Software registration: Uni-

versidade de Santiago, Spain. SC-091-12 03/28/2012.

[23] Danga Interactive. Memcached - a distributed memory object caching system.

http://www.memcached.org/. Accessed on 06/13/2019.

[24] Datastax. Github - datastax/spark-cassandra-connector: Datas-

tax spark cassandra connector. https://github.com/datastax/

spark-cassandra-connector. Accessed on 01/22/2019.

[25] K. Debattista, K. Bugeja, S. Spina, T. Bashford-Rogers, and V. Hulusic.

Frame rate vs resolution: A subjective evaluation of spatiotemporal perceived

quality under varying computational budgets. Computer Graphics Forum,

00(0):1–12, 2017.

[26] K. Debattista, K. Bugeja, S. Spina, T. Bashford-Rogers, and V. Hulusic.

Frame rate vs resolution: A subjective evaluation of spatiotemporal perceived

https://www.couchbase.com/
http://www.memcached.org/
https://github.com/datastax/spark-cassandra-connector
https://github.com/datastax/spark-cassandra-connector

128 Bibliography

quality under varying computational budgets. Computer Graphics Forum,

37(1):363–374, 2018.

[27] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan.

Performance evaluation of a MongoDB and Hadoop platform for scientific

data analysis. In Proceedings of the 4th ACM Workshop on Scientific Cloud

Computing, Science Cloud ’13, pages 13–20. ACM, 2013.

[28] D. Deibe, M. Amor, and R. Doallo. ViLMA (VIsualization for Lidar data using

a Multi-resolution Approach). Software registration: Universidade da Coruña

and Universidade de Santiago de Compostela, Spain. C-388-2018 11/19/2018.

[29] D. Deibe, M. Amor, and R. Doallo. Big data storage technologies: a case study

for web-based LiDAR visualization. In 2018 IEEE International Conference

on Big Data (Big Data), pages 3831–3840, Dec 2018.

[30] D. Deibe, M. Amor, and R. Doallo. BETi: Sistema para la gestión y proce-

samiento de datos masivos LiDAR. In XXX Jornadas de Paralelismo - JP2019,

pages 516–523, September 2019.

[31] D. Deibe, M. Amor, and R. Doallo. Big data geospatial processing for aerial

LiDAR datasets. 2019. Submitted for publication.

[32] D. Deibe, M. Amor, and R. Doallo. Supporting multi-resolution out-of-core

rendering of massive LiDAR point clouds through non-redundant data struc-

tures. International Journal of Geographical Information Science, 33(3):593–

617, 2019.

[33] D. Deibe, M. Amor, R. Doallo, R. Crecente, D. Miranda, and M. Cordero.

VGLiDAR 1.0 visualizador gallego de datos lidar. Software registration: Uni-

versidade da Coruña and Universidade de Santiago de Compostela, Spain.

C-423-2015 11/23/2015.

[34] D. Deibe, M. Amor, R. Doallo, R. Crecente, D. Miranda, and M. Cordero.

VGLiDAR: Una herramienta de procesamiento de datos LiDAR en la GPU

usando WebGL. In XXVI Jornadas de Paralelismo - JP2015, pages 146–151,

September 2015.

Bibliography 129

[35] D. Deibe, M. Amor, R. Doallo, D. Miranda, and M. Cordero. GVLiDAR: An

interactive web-based visualization framework to support geospatial measures

on LiDAR data. International Journal of Remote Sensing., 38(3):827–849,

2017.

[36] Dielmo 3D S.L. Dielmo. http://www.dielmo.com/. Accessed on 19/2/2019.

[37] S. Discher, R. Richter, and J. Döllner. Interactive and View-Dependent See-

Through Lenses for Massive 3D Point Clouds, pages 49–62. Springer Interna-

tional Publishing, 2017.

[38] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., 6st

edition, 2011.

[39] Fugro Geospatial Services. FrugoViewer. http://www.fugroviewer.com/.

Accessed on 02/20/2019.

[40] Z. Gao, L. Nocera, M. Wang, and U. Neumann. Visualizing aerial lidar cities

with hierarchical hybrid point-polygon structures. In Proceedings of Graph-

ics Interface 2014, GI ’14, pages 137–144. Canadian Information Processing

Society, 2014.

[41] R. GmbH. Lastools. https://rapidlasso.com/lastools/. Accessed on

05/15/2019.

[42] GNU Project - Free Software Foundation. Gzip. https://www.gnu.org/

software/gzip/. Accessed on 01/22/2019.

[43] E. Gobbetti and F. Marton. Layered point clouds: a simple and efficient

multiresolution structure for distributing and rendering gigantic point-sampled

models. Computers & Graphics, 28(6):815 – 826, 2004.

[44] Gobierno de Canarias. Visor IDECanarias. http://visor.grafcan.es/

visorweb/. Accessed on 02/20/2019.

[45] E. González-Ferreiro, D. Miranda, L. Barreiro-Fernández, S. Buján, J. Garćıa-

Gutiérrez, and U. Diéguez-Aranda. Modelling stand biomass fractions in gali-

cian eucalyptus globulus plantations by use of different lidar pulse densities.

Forest Systems, 22(3):510–525, 2013.

http://www.dielmo.com/
http://www.fugroviewer.com/
https://rapidlasso.com/lastools/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
http://visor.grafcan.es/visorweb/
http://visor.grafcan.es/visorweb/

130 Bibliography

[46] P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. An efficient

multi-resolution framework for high quality interactive rendering of massive

point clouds using multi-way kd-trees. The Visual Computer, 29(1):69–83,

2013.

[47] M. Gross and H. Pfister. Point-Based Graphics. Morgan Kaufmann Publishers

Inc., 2007.

[48] J. Han, H. E, G. Le, and J. Du. Survey on nosql database. In 2011 6th Interna-

tional Conference on Pervasive Computing and Applications, pages 363–366,

Oct 2011.

[49] H. Hasegawa, H. P. Sato, and J. Iwahashi. Continuous caldera changes in

miyakejima volcano after 2001. Bulletin of Geospatial Information Authority

of Japan, 54:60–64, 2007.

[50] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U.

Khan. The rise of big data on cloud computing: Review and open research

issues. Information Systems, 47:98 – 115, 2015.

[51] B. Höfle and N. Pfeifer. Correction of laser scanning intensity data: Data and

model-driven approaches. ISPRS Journal of Photogrammetry and Remote

Sensing, 62(6):415 – 433, 2007.

[52] D. S. Howard Butler, Christopher Schmidt and J. Livni. Spatial reference.

http://spatialreference.org/. Accessed on 02/27/2019.

[53] H. Hu, Y. Wen, T. S. Chua, and X. Li. Toward scalable systems for big data

analytics: A technology tutorial. IEEE Access, 2:652–687, 2014.

[54] Instituto Geográfico Nacional. Plan Nacional de Ortofotograf́ıa Aérea

(PNOA). http://pnoa.ign.es/presentacion. Accessed on 02/20/2019.

[55] Instituto Geográfico Nacional. PNOA, download center. http:

//centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.

do?codFamilia=LIDAR. Accessed on 02/19/2019.

[56] M. Isenburg. Laszip: lossless compression of LiDAR data. http://lastools.

org/download/laszip.pdf. Accessed on 06/11/2019.

http://spatialreference.org/
http://pnoa.ign.es/presentacion
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR
http://lastools.org/download/laszip.pdf
http://lastools.org/download/laszip.pdf

Bibliography 131

[57] G. Kereszturi, J. Procter, S. Cronin, K. Nemeth, M. Bebbington, and

J. Lindsya. LiDAR based quantification of lava flow susceptibility in the City

of Auckland (New Zealand). Remote Sensing of Environment, 125:198–213,

2012.

[58] C. Koca and U. Güdükbay. A hybrid representation for modeling, interac-

tive editing, and real-time visualization of terrains with volumetric features.

International Journal of Geographical Information Science, 28(9):1821–1847,

2014.

[59] B. Kovač and B. Žalik. Visualization of LiDAR datasets using point-based

rendering technique. Computers and Geosciences, 36(11):1443–1450, 2010.

[60] M. Kuder and B. Žalik. Web-based LiDAR visualization with point-based ren-

dering. In 2011 Seventh International Conference on Signal-Image Technology

and Internet-Based Systems (SITIS), pages 38–45, 2011.

[61] F. Lafarge and C. Mallet. Creating large-scale city models from 3D point

clouds: A robust approach with hybrid representation. International Journal

of Computer Vision, 99(1):69–85, 2012.

[62] J. C. Landy, A. S. Komarov, and D. G. Barber. Numerical and Experimental

Evaluation of Terrestrial LiDAR for Parameterizing Centimeter-Scale Sea Ice

Surface Roughness. IEEE Transactions on Geoscience and Remote Sensing,

53(9):4887–4898, 2015.

[63] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S. Winter, A. Coltekin, C. Pettit,

B. Jiang, J. Haworth, A. Stein, and T. Cheng. Geospatial big data handling

theory and methods: A review and research challenges. ISPRS Journal of

Photogrammetry and Remote Sensing, 115:119 – 133, 2016.

[64] LiDAR Online. LiDAR Online web tools. http://www.lidar-online.com/.

Accessed on 02/20/2019.

[65] S. Lin, H. Chen, and F. Hu. A workload-driven approach to dynamic data

balancing in MongoDB. In 2015 IEEE International Conference on Smart

City/SocialCom/SustainCom (SmartCity), pages 786–791, Dec 2015.

http://www.lidar-online.com/

132 Bibliography

[66] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and W. Jie.

Remote sensing big data computing: Challenges and opportunities. Future

Generation Computer Systems, 51:47 – 60, 2015.

[67] Marek9134. Lidar-i lend. https://commons.wikimedia.org/wiki/

File:LiDAR-i_lend.gif. Colour, new labels and text by David

Deibe, https://creativecommons.org/licenses/by-sa/3.0/legalcode. Accessed

on 02/19/2019.

[68] O. Martinez Rubi, S. Verhoeven, M. van Meersbergen, M. Schütz, P. Oost-

erom, R. Goncalves, and T. Tijssen. Taming the beast: Free and open-source

massive point cloud web visualization. In Capturing Reality, November 2015.

[69] MongoDB, Inc. Mongodb. http://www.mongodb.com/. Accessed on

01/22/2019.

[70] D. Mongus and B. Z̆alik. Efficient method for lossless LiDAR data compres-

sion. International Journal of Remote Sensing, 32(9):2507–2518, 2011.

[71] A. Munshi, D. Ginsburg, and D. Shreiner. OpenGL ES 2.0 Programming

Guide. Addison-Wesley, 2008.

[72] Neo4j, Inc. Neo4j graph platform – the leader in graph databases. https:

//neo4j.com/. (Accessed on 06/13/2019).

[73] Node.js Foundation. Express - node.js web application framework. http:

//expressjs.com/. Accessed on 02/20/2019.

[74] OpenTopography. CA13, PG&E Diablo Canyon Power Plant (DCPP): San

Simeon, CA Central Coast. http://opentopo.sdsc.edu/datasetMetadata?

otCollectionID=OT.032013.26910.2. Accessed on 02/20/2019.

[75] OpenTopography. Pg&e diablo canyon power plant (dcpp): Los osos, ca cen-

tral coast. http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.

022013.26910.3. Accessed on 02/19/2019.

[76] OpenTopography. Sunset crater volcano national monument, az.

http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.

022015.26912.1. Accessed on 02/19/2019.

https://commons.wikimedia.org/wiki/File:LiDAR-i_lend.gif
https://commons.wikimedia.org/wiki/File:LiDAR-i_lend.gif
http://www.mongodb.com/
https://neo4j.com/
https://neo4j.com/
http://expressjs.com/
http://expressjs.com/
http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.032013.26910.2
http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.032013.26910.2
http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.022013.26910.3
http://opentopo.sdsc.edu/lidarDataset?opentopoID=OTLAS.022013.26910.3
http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.022015.26912.1
http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.022015.26912.1

Bibliography 133

[77] E. Paredes, M. Bóo, M. Amor, J. Bruguera, and J. Döllner. Extended hybrid

meshing algorithm for multiresolution terrain models. International Journal

of Geographical Information Science, 26(5):771–793, May 2011.

[78] T. Parisi. WebGL: Up and Running. O’Reilly Media, Inc., 1st edition, 2012.

[79] P. Passalacqua, P. Tarolli, and E. Foufoula-Georgiou. Testing space-scale

methodologies for automatic geomorphic feature extraction from LiDAR in

a complex mountainous landscape. Water Resources Research, 46(11):1–17,

2010.

[80] H. Persson, J. Wallerman, H. Olsson, and J. E. Fransson. Estimating forest

biomass and height using optical stereo satellite data and a dtm from laser

scanning data. Canadian Journal of Remote Sensing, 39(3):251–262, 2013.

[81] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacob-

sen, and S. Mankovskii. Solving big data challenges for enterprise application

performance management. Proc. VLDB Endow., 5(12):1724–1735, Aug. 2012.

[82] V. C. Recarey, D. M. Barrós, and D. A. A. Prado. Optimización de los

parámteros del algoritmo de filtrado LiDAR2MDTPlus, para la obtención de

Modelos Digitales del Terreno con LiDAR. Bachelor’s Thesis. Higher Polytech-

nic Engineering School, University of Santiago de Compostela (USC), Septem-

ber 2014.

[83] Redis Labs. Redis. http://redis.io/. Accessed on 01/22/2019.

[84] R. Richter, S. Discher, and J. Döllner. 3D Geoinformation Science: The

Selected Papers of the 3D GeoInfo 2014, chapter Out-of-Core Visualization of

Classified 3D Point Clouds, pages 227–242. Springer International Publishing,

2015.

[85] A. Rizaldi, C. Persello, C. Gevaert, and S. Oude Elberink. Fully Convolutional

Networks for Ground Classification from LiDAR Point Clouds, pages 231–

238. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. International Society for Photogrammetry and Remote

Sensing (ISPRS), 6 2018.

http://redis.io/

134 Bibliography

[86] Robot Operating System. Megatree - ros wiki. http://wiki.ros.org/

megatree. Accessed on 02/19/2019.

[87] M. B. Rodŕıguez, E. Gobbetti, F. Marton, and A. Tinti. Coarse-grained mul-

tiresolution structures for mobile exploration of gigantic surface models. In

SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Ap-

plications, SA ’13, pages 1–6. ACM, 2013.

[88] J. J. Roering, B. H. Mackey, J. A. Marshall, K. E. Sweeney, N. I. Deligne,

A. M. Booth, A. L. Handwerger, and C. Cerovski-Darriau. You are HERE:

Connecting the dots with airborne LiDAR for geomorphic fieldwork. Geomor-

phology, 200:172–183, 2013.

[89] A. H. Sallenger Jr., W. Krabill, J. Brock, R. Swift, M. Jansen, S. Manizade,

B. Richmond, M. Hampton, and D. Eslinger. Airborne laser study quantifies

El Niño-induced coastal change. Eos, Transactions, American Geophysical

Union, 80(8):89–92, 1999.

[90] M. Schuetz. Potree. http://potree.org/. Accessed on 02/20/2019.

[91] U. F. Service. Fusion/ldv lidar analysis and visualization software. http:

//forsys.cfr.washington.edu/fusion/fusion_overview.html. Accessed

on 01/22/2019.

[92] solid IT. Db-engines ranking - popularity ranking of database management

systems. http://db-engines.com/en/ranking. Accessed on 01/22/2019.

[93] P. Tarolli. High-resolution topography for understanding earth surface pro-

cesses: Opportunities and challenges. Geomorphology, 216:295–312, 2014.

[94] P. Tarolli and D. G. Tarboton. A new method for determination of Most

Likely Initiation Points and the evaluation of Digital Terrain Model scale in

terrain stability mapping. Hydrology and Earth System Sciences Discussions,

3(2):395–425, Apr. 2006.

[95] The Apache Software Foundation. Apache cassandra. http://cassandra.

apache.org/. Accessed on 01/22/2019.

http://wiki.ros.org/megatree
http://wiki.ros.org/megatree
http://potree.org/
http://forsys.cfr.washington.edu/fusion/fusion_overview.html
http://forsys.cfr.washington.edu/fusion/fusion_overview.html
http://db-engines.com/en/ranking
http://cassandra.apache.org/
http://cassandra.apache.org/

Bibliography 135

[96] The Apache Software Foundation. Apache hadoop 3.0.0 - hdfs architec-

ture. http://hadoop.apache.org\/docs/r3.0.0/hadoop-project-dist/

hadoop-hdfs/HdfsDesign.html. Accessed on 01/22/2019.

[97] The Apache Software Foundation. Apache hbase home. http://hbase.

apache.org/. Accessed on 06/13/2019.

[98] The Apache Software Foundation. The apache http server project. http:

//httpd.apache.org/. Accessed on 02/20/2019.

[99] The Apache Software Foundation. Apache jmeter - apache jmeterTM. https:

//jmeter.apache.org/. Accessed on 02/20/2019.

[100] The Apache Software Foundation. Apache sparkTM - unified analytics engine

for big data. http://spark.apache.org/. Accessed on 01/22/2019.

[101] The Apache Software Foundation. Welcome to apache giraph! http:

//giraph.apache.org/. Accessed on 06/13/2019.

[102] The Apache Software Foundation. Apache flink: Stateful computations over

data streams. https://flink.apache.org/, 2019. Accessed on 03/11/2019.

[103] The Apache Software Foundation. Apache hadoop. http://hadoop.apache.

org/, 2019. Accessed on 03/11/2019.

[104] The Apache Software Foundation. Apache storm. http://storm.apache.

org/, 2019. Accessed on 03/11/2019.

[105] The Khronos Group Inc. OpenGL Shading Language. https://www.khronos.

org/registry/OpenGL/index_gl.php#apispecs. Accessed on 02/20/2019.

[106] The Khronos Group Inc. WebGL. https://www.khronos.org/webgl. Ac-

cessed on 02/20/2019.

[107] Uday Verma. Plas.io. http://plas.io/. Accessed on 02/20/2019.

[108] Universidade de Santiago de Compostela (USC). Laboratorio do terri-

torio (Laborate). http://laborate.usc.es/index.html. Accessed on

01/22/2019.

http://hadoop.apache.org\/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org\/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hbase.apache.org/
http://hbase.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
http://spark.apache.org/
http://giraph.apache.org/
http://giraph.apache.org/
https://flink.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://storm.apache.org/
http://storm.apache.org/
https://www.khronos.org/registry/OpenGL/index_gl.php#apispecs
https://www.khronos.org/registry/OpenGL/index_gl.php#apispecs
https://www.khronos.org/webgl
http://plas.io/
http://laborate.usc.es/index.html

136 Bibliography

[109] University of Twente. Isprs test sites. https://www.itc.nl/isprs/wgIII-3/

filtertest/downloadsites. Accessed on 04/27/2019.

[110] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Touriño. Per-

formance evaluation of big data frameworks for large-scale data analytics. In

2016 IEEE International Conference on Big Data (Big Data), pages 424–431,

Dec 2016.

[111] G. Ventura, G. Vilardo, C.Terranova, and E. B. Sessa. Tracking and evo-

lution of complex active landslides by multi-temporal airborne LiDAR data:

the Montaguto landslide (Southern Italy). Remote Sensing of Environment,

115(12):3237–3248, 2011.

[112] L. Wang, Y. Ma, J. Yan, V. Chang, and A. Y. Zomaya. pipscloud: High

performance cloud computing for remote sensing big data management and

processing. Future Generation Computer Systems, 78:353 – 368, 2018.

[113] W. Y. Yan, A. Shaker, and N. El-Ashmawy. Urban land cover classifica-

tion using airborne lidar data: A review. Remote Sensing of Environment,

158(Supplement C):295 – 310, 2015.

[114] B. Yang, W. Shi, and Q. Li. An integrated TIN and grid method for con-

structing multi-resolution digital terrain models. International Journal of Ge-

ographical Information Science, 19(10):1019–1038, Nov. 2005.

[115] C. Yang, M. Yu, F. Hu, Y. Jiang, and Y. Li. Utilizing cloud computing to

address big geospatial data challenges. Computers, Environment and Urban

Systems, 61:120 – 128, 2017.

[116] S. Yuan, S. Zhu, D. Li, W. Luo, Z. Yu, L. Yuan, and D. Hildenbrand. Feature

preserving multiresolution subdivision and simplification of point clouds: A

conformal geometric algebra approach. Mathematical Methods in the Applied

Sciences, 0(0), 2017.

[117] J. Zhang. Multi-source remote sensing data fusion: status and trends. Inter-

national Journal of Image and Data Fusion, 1(1):5–24, 2010.

[118] K. Zhang, S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, and C. Zhang. A

progressive morphological filter for removing nonground measurements from

https://www.itc.nl/isprs/wgIII-3/filtertest/downloadsites
https://www.itc.nl/isprs/wgIII-3/filtertest/downloadsites

Bibliography 137

airborne lidar data. IEEE Transactions on Geoscience and Remote Sensing,

41(4):872–882, April 2003.

[119] X. Zhou, W. Li, and S. T. Arundel. A spatio-contextual probabilistic model for

extracting linear features in hilly terrains from high-resolution dem data. In-

ternational Journal of Geographical Information Science, 33(4):666–686, 2019.

Apéndice A

Resumo Estendido en Galego

Na actualidade, a tecnolox́ıa LiDAR (Light Detection And Ranging) constitúe

unha das fontes de información xeográfica máis importantes e valiosas debido á súa

capacidade para proporcionar datos xeográficos en forma de nubes de puntos cun

alto nivel de detalle. Mediante este tipo de información, a tecnolox́ıa LiDAR trouxo

grandes beneficios para unha extensa variedade de campos cient́ıficos e profesionais,

como a enxeñaŕıa agroforestal, a arqueolox́ıa, a robótica ou os veh́ıculos autónomos,

entre moitos outros.

Algunhas das nubes de maior detalle e mais calidade poden estar formadas por

varios miles de millóns de puntos, tendo á súa vez cada punto asociadas diversas

propiedades tales como as coordenadas (x, y, z), a cor RGB ou o tempo GPS no

momento da súa obtención. As grandes coleccións que reúnen un gran número destas

nubes de puntos masivas normalmente superan o terabyte, ou incluso o petabyte, de

espazo en disco, o que provoca que a tecnolox́ıa LiDAR sexa considerada coma un

reto formidable á hora de desenvolver aplicacións eficientes para xestionar tales vo-

lumes de información. En contextos profesionais ou cient́ıficos nos que existen altas

taxas de recollida de datos, o uso de sistemas altamente escalables para almacenar,

distribúır e procesar todolos datos de recente adquisición convértese nun requisito

indispensable. Ademais, os usuarios altamente especializados tenden a demandar

altos niveis de rendemento e eficiencia nas súas máquinas cliente, non só en solu-

cións de escritorio de alta gama, senón tamén en tabletas, portátiles ou mesmo en

teléfonos intelixentes. Dende o punto de vista da capacidade hardware, case calque-

139

140 Apéndice A. Resumo Estendido en Galego

ra tipo de recurso; ben sexa a potencia de computación do procesador (CPU), a

potencia da tarxeta gráfica (GPU), a velocidade de rede ou a memoria principal,

resulta insuficiente á hora de xestionar os grandes volumes de datos LiDAR, facendo

indispensable o uso de algoritmos e sistemas de software altamente eficientes.

Aśı, o obxectivo desta tese consistiu en propoñer unha serie de novos enfoques,

algoritmos e sistemas para mellorar ou aportar novidosas solucións nunha ampla

gama de procesos relacionadas co uso de datos LiDAR de tipo aéreo (ALS). Como

a tecnolox́ıa LiDAR destaca por ser un marco de coñecemento que abarca un gran

número de dimensións, dende o almacenamento, a distribución, o acceso simultáneo

a datos, a visualización ou procesamento, en primeiro lugar decidiuse establecer

unha xerarqúıa baseada na magnitude dos problemas a resolver, que no campo

LiDAR estaŕıan directamente relacionada co tamaño e o número de puntos das nubes

xestionadas. Logo da creación da comentada xerarqúıa, establecéronse unha serie de

obxectivos globais en cada nivel da mesma. Tódalas propostas e contribucións de

cada nivel foron explotadas nos seguintes, axudando a constrúır aśı, paso a paso, un

sistema completo e multi-funcional para traballar e xestionar datos masivos LiDAR.

A xerarqúıa que foi establecida consta de tres niveis: grandes nubes de puntos

(centos de millóns de puntos), nubes de puntos masivas (miles de millón de puntos)

e grandes coleccións de nubes masivas. No primeiro destes niveis, a investigación

da tese centrouse na visualización mediante resolución completa e no procesamento

de datos no lado cliente, tendo como obxectivos principais a flexibilidade, os flu-

xos de traballo adecuados, a creación de ferramentas de medición adaptadas para

campos profesionais espećıficos e optimizacións para o maximizado de rendemento

(rendemento en termos de imaxes por segundo e carga rápida de datos), algunhas

das cales foron presentadas nun traballo fin de carreira anterior1. No segundo nivel,

a investigación centrouse na visualización multi-resolución e out-of-core, tratando

de optimizar o uso de recursos computacionais para sistemas de visualización en

tempo real baseados en patróns de tipo cliente-servidor. Finalmente, no terceiro

nivel, a investigación centrouse en superar as restricións dunha única máquina a

través de enfoques de tipo big data, ofrecendo solucións en dúas etapas ben dife-

renciadas; por unha parte, solucións para o almacenamento distribúıdo, tratando

de maximizar a capacidade de almacenamento, latencia e rendemento de sistemas

1Link permanente ao TFC: http://kmelot.biblioteca.udc.es/record=b1514673 S1*gag

141

back-end para dar soporte a aplicacións LiDAR de tipo web. Na segunda etapa,

desenvolvéronse solucións para a computación distribúıda, maximizando a capaci-

dade de computación, latencia e rendemento de diversos procesos xeo-espaciais de

alta complexidade deseñados para facer uso de grandes volumes de datos LiDAR.

Algunhas medidas e procesos xeo-espaciais empregados no campo LiDAR están

destinados a operar en sub-rexións espećıficas dentro de nubes de puntos de exten-

sión moito mais ampla. Adicionalmente, desaparece a necesidade de empregar certas

densidades de punto unha vez alcanzado un determinado número de puntos por me-

tro cadrado, xa que non se conseguen melloras adicionais nin tampouco aumenta

a calidade dos resultados dos xeo-procesos máis alá da devandita densidade. Un

exemplo disto pódese atopar en [51]. En contextos coma este, o número de puntos

manexados, áında que pode chegar a ser moi elevado (centos de millóns de puntos),

está lonxe dos miles de millóns manexados noutros contextos de traballo ou casos de

uso. Debido a esta diferenza, tomouse a decisión de seguir dous enfoques diferentes

para cada un dos contextos. Aśı, para lograr alcanzar os obxectivos da xerarqúıa

presentada anteriormente, a investigación desta tese evolucionou durante catro eta-

pas diferentes seguindo unha metodolox́ıa incremental. Durante unha etapa inicial,

desenvolvéronse melloras e contribucións para os contextos reducidos (enmarcados

fóra da definición de big data). Tras esta etapa inicial, afrontáronse problemas de

cada vez maior complexidade en contextos cada vez máis esixentes ata chegar a

marcos de traballo puramente big data durante as últimas etapas da tese.

Na primeira etapa desta tese (Caṕıtulo 2), toda a investigación centrouse na

visualización de nubes de puntos de gran tamaño mediante resolución completa e

no procesamento no lado cliente. Establecéronse aqúı catro obxectivos principais:

flexibilidade, un fluxo de traballo adecuado, a creación de ferramentas de medición

adaptadas a campos cient́ıficos e profesionais concretos, e optimizacións para maxi-

mizar o rendemento (rendemento en termos de imaxes por segundo e carga rápida

de datos). Todas as investigacións e contribucións foron inclúıdas e probadas nunha

aplicación de visualización especialmente deseñada para tal propósito.

WebGL [78, 106] foi a interface de programación de aplicacións gráficas (API)

elixida para traballar, xa que esta permite a produción de potentes solucións de

visualización de tipo web. Un enfoque baseado na web permite que as aplicacións

non estean vinculadas a ningún sistema operativo (SO) ou dispositivo en particu-

142 Apéndice A. Resumo Estendido en Galego

lar, concedendo acceso instantáneo a calquera usuario, desde calquera lugar, con só

executar un navegador web compatible con WebGL. A nosa proposta foi concibida

coma un enfoque orientado ao servizo; polo tanto, a aplicación e os datos seŕıan al-

macenados nun servidor remoto e recuperados polos clientes segundo fose necesario,

aumentando áında máis a mobilidade e flexibilidade da solución de visualización.

En determinados contextos de traballo, nubes de puntos de grandes dimensións

están destinadas a ser exploradas ou procesadas só mediante sub-rexións espećıficas

das mesmas. O uso da totalidade destas nubes implica, de maneira habitual, un

mal aproveitamento de recursos hardware o ter que destinar parte dos mesmos ao

procesamento de conxuntos de puntos situados fóra das devanditas sub-rexións.

Tendo isto en conta, deseñáronse consultas de datos baseadas en restricións espaciais

mediante técnicas de hashing espacial xunto coa definición de rexións de interese

(ROI) sobre as nubes de puntos.

Mediante JavaScript (JS) [38] e WebGL, incorporáronse ferramentas de medición

xeo-espacial para máquinas cliente que permiten realizar os cálculos directamente

sobre as imaxes das nubes de puntos, proporcionando aśı funcionalidades de gran

utilidade en comparación coas opcións dispoñibles noutras solucións de visualización,

sendo inclúıdas ferramentas espećıficas como a medida da superficie de fachadas

ou outras ferramentas moito máis complexas como os volumes de base irregular,

contorno poligonal e superficie proxectada.

Como se comentou anteriormente, a investigación nesta primeira etapa da te-

se centrouse na visualización en resolución completa co obxectivo de maximizar a

precisión das ferramentas de medida e a fidelidade das imaxes durante inspeccións

visuais en tempo real. Nun enfoque coma este, o rendemento convértese nun ele-

mento cŕıtico e prioritario durante o proceso de creación de software. Debido a isto,

deseñáronse varias estratexias de optimización intentando maximizar o rendemento

do proceso de renderizado aśı como tamén o proceso de adquisición e carga de datos

remotos.

A diferenza da maioŕıa de propostas analizadas, o sistema de visualización web

presentado neste caṕıtulo mostra unha alta estabilidade e rendemento, logrando

unha interacción en tempo real, manexando cerca de 103 millóns de puntos e ata 281

millóns cun nivel de interacción aceptable. Ademais, as súas ferramentas de medición

143

xeo-espacial constitúen unha das vantaxes principais respecto ás outras propostas.

Toda a investigación desta etapa publicouse en [34] e en [35] e foi rexistrada en [33].

Na segunda etapa da tese (Caṕıtulo 3), exploráronse novas direccións no uso de

técnicas multi-resolución e out-of-core. Como resultado, deseñouse unha nova estra-

texia de visualización baseada en dous elementos principais: un método de organiza-

ción de puntos sen redundancia de información denominado Hierarchically Layered

Tiles (HLT), e unha estrutura de datos de tipo árbore denominada Tile Grid Parti-

tion Tree (TGPT). Estas eficientes estruturas de datos deseñáronse co obxectivo de

evitar a redundancia de datos habitualmente asociada aos sistemas multi-resolución

e á creación e xestión de múltiples niveis de detalle (LOD). Os fundamentos prin-

cipais detrás destas estruturas foron a reorganización e almacenamento de puntos

en celas capeadas, de tal xeito que ningún punto fose repetido entre capas. Cada

unha destas capas actúa coma unha peza de crebacabezas, combinándose entre si

segundo sexa necesario para calcular e crear os diferentes niveis de detalle en tempo

de execución.

Por motivos de análise, as novas estruturas inclúıronse nunha nova iteración da

aplicación de visualización presentada na primeira etapa da tese, reorientando o seu

deseño cara á visualización eficiente en tempo real de nubes de puntos masivas a

través dun enfoque multi-resolución e out-of-core. O primeiro software de visuali-

zación foi capaz de representar de xeito eficiente nubes de resolución completa e

sub-rexións das mesmas utilizando entre 50 e 100 millóns de puntos. A iteración

presentada nesta etapa non ten como obxectivo substitúır a anterior, senón expan-

dir as súas funcionalidades, inclúındo a capacidade de explorar de xeito eficiente

conxuntos de datos masivos que conteñen miles de millóns de puntos.

Como resultado de non ter que almacenar ningún nivel de resolución pre-computado

nin de ter sobrecargas derivadas da redundancia de datos, os requisitos de almace-

namento no lado servidor redućıronse de maneira notable. Nun sistema de tipo

cliente-servidor, os altos niveis de tráfico e acceso concorrente poden causar gran-

des conxestións na rede. Evitar a redundancia de datos ten ademais un impacto

beneficioso na cantidade total de bytes que teñen que ser movidos pola rede, xa que

cantidades moito menores de puntos son enviadas dende os servidores ata os clientes.

Respecto dos requirimentos de almacenamento no lado cliente, o mesmo princi-

144 Apéndice A. Resumo Estendido en Galego

pio que no lado servidor apĺıcase aqúı, xa que a ausencia de redundancia de datos

minimiza os datos que son almacenados na caché do navegador. Os datos recupera-

dos dende o servidor almacénanse no disco do cliente para acelerar o uso posterior

dos mesmos. A manipulación de grandes volumes de datos pode causar problemas

de almacenamento moito peores que os atopados no lado servidor debido ás meno-

res capacidades de almacenamento da maioŕıa das máquinas cliente, especialmente

ordenadores portátiles ou dispositivos de man.

Para copiar os puntos na memoria principal (RAM) durante a execución do

proceso de representación de puntos no lado cliente foi utilizada unha idéntica orga-

nización de datos en capas sen redundancia de información. Os diferentes niveis de

detalle son calculados ou descartados en tempo real segundo sexa necesario, evitan-

do a necesidade de almacenar datos innecesarios na memoria RAM. Estes niveis son

recalculados cada vez que a cámara na escena 3D detecta un cambio considerable

no punto de vista (POV). Este enfoque achega grandes beneficios para os sistemas

de gama media e baixa, tabletas ou portátiles con cantidades moderadas de memo-

ria RAM. Todos os niveis de detalle calculados son enviados ata un único búfer de

tamaño fixo na GPU, utilizando como base para o seu cálculo un número ĺımite de

puntos definido polo usuario (PB). A diferenza doutras técnicas de representación,

esta proposta mantén o uso de memoria de v́ıdeo (VRAM) constante ao longo do

proceso de representación de puntos.

Tralas investigacións e análises realizados durante esta etapa da tese, demos-

trouse como mediante técnicas multi-resolución out-of-core sen redundancia de in-

formación é posible dar soporte de alta eficiencia ao renderizado de nubes de puntos

en aplicacións web. A través dunha reorganización e almacenamento de puntos moi

espećıfica, logrouse evitar a creación de elementos estáticos e pre-computados innece-

sarios, elementos que normalmente son requiridos noutros enfoques multi-resolución.

Grazas a esta proposta, en función das caracteŕısticas das nubes de puntos e os dis-

tintos niveis de detalles creados, é posible chegar a conseguir unha notable redución

dos requisitos de almacenamento no servidor e do tráfico da rede. Estas optimi-

zacións poden considerarse logros especialmente significativos en contextos onde

grandes cantidades de datos LiDAR están sendo constantemente recollidos, o que

supón un importante custo de recursos económicos e técnicos. Como se demostrou,

no lado cliente, o consumo de memoria é notablemente baixo, o que permite cargar e

145

renderizar en tempo real nubes masivas de puntos, de ata 28 mil millóns de puntos,

incluso en dispositivos móbiles, onde a capacidade de memoria é moi limitada, aśı

como tamén nos navegadores web con restricións de memoria moi exixentes, como

Google Chrome. Tódalas propostas desta etapa da tese foron analizadas e compara-

das utilizando unha das solucións de visualización LiDAR máis coñecidas e mellor

valoradas, obtendo as nosas propostas resultados superiores en termos de rende-

mento en comparación coa citada solución. Todas as investigacións deste caṕıtulo

publicáronse en [32] e rexistráronse en [28].

Na terceira etapa deste traballo (Caṕıtulo 4), analizouse como as aplicacións que

utilizan de maneira intensiva grandes coleccións de datos masivos LiDAR, en parti-

cular as aplicacións baseadas na web e centradas na representación en tempo real,

podeŕıan beneficiarse da adopción de tecnolox́ıas de almacenamento big data. Adicio-

nalmente, preséntase un estudo sobre as vantaxes e os inconvenientes que podeŕıan

determinar a elección da opción máis adecuada entre as dispoñibles actualmente en

función dos requisitos e caracteŕısticas de cada caso de uso.

Realizáronse varias análises e comparacións empregando catro das tecnolox́ıas

de almacenamento big data máis utilizadas e maduras. Mediante estes análises, de-

mostrouse como as tecnolox́ıas big data poden ser empregadas como back-end para

dar soporte a aplicacións LiDAR de tipo web sen ningún inconveniente ou pena-

lización no rendemento nin na experiencia do usuario, ao tempo que se obtiveron

todas as vantaxes habituais asociadas a este tipo de solucións, como a fiabilidade, a

dispoñibilidade e a escalabilidade. De cara ao futuro, calquera sistema que adopte

este tipo de tecnolox́ıa de almacenamento xa estaŕıa preparado para incorporar ou-

tras tecnolox́ıas de computación distribúıda, como Spark, Flink ou Storm. Todas as

investigacións deste caṕıtulo publicáronse en [29].

Na cuarta e última fase da tese (Caṕıtulo 5), mediante un enfoque de tipo big

data, deseñouse un sistema completo para a computación distribuida de procesos

xeo-espaciais de gran complexidade para extensas coleccións de datos LiDAR. O

sistema está destinado a apoiar a execución de calquera tipo de proceso xeo-espacial;

non obstante, como caso inicial de estudo, a investigación centrouse só na obtención

rápida de modelos dixitais do terreo a partir de nubes masivas.

Tralos análises e conclusións presentados no caṕıtulo anterior, a distribución de

146 Apéndice A. Resumo Estendido en Galego

datos realizouse mediante Cassandra [95], por outra parte, debido á súa versatili-

dade, compatibilidade de código fonte e deseño orientado a procesamento batch, a

distribución de tarefas de cómputo foi realizada mediante Spark [100]. Grazas a este

enfoque, foi posible reducir considerablemente o tempo necesario para procesar ex-

tensións moi grandes de nubes de puntos de tipo aéreo en comparación con outros

enfoques dunha única máquina. Outra contribución importante presentada nesta

etapa foi unha estratexia automatizada de corrección de erros de clasificación. Dita

estratexia permitiunos corrixir os erros de clasificación comunmente atopados nos

ĺımites das zonas adxacentes procesadas de xeito independente polo algoritmo de

filtrado, mellorando aśı a calidade dos modelos dixitais de terreo obtidos posterior-

mente ao tempo que se minimizou a intervención dos usuarios.

O sistema de computación distribúıdo presentado neste caṕıtulo permitiunos me-

llorar enormemente o rendemento do algoritmo de filtrado [22], que foi especialmente

deseñado para obter rasters de puntos terreo para a posterior xeración de modelos

dixitais do terreo. Ademais da excelente capacidade de computación observada me-

diante o traballo conxunto de Cassandra e Spark, o seu deseño altamente progra-

mable ofrece a oportunidade de mellorar e ampliar áında máis a funcionalidade dos

procesos xeo-espaciais mediante a fácil inclusión de novas etapas computacionais,

como a fase de corrección de erros anteriormente descrita. Os resultados de rende-

mento obtidos amosan como a nosa proposta foi capaz de reducir o tempo utilizado

para procesar 28 mil millóns de puntos nunha única máquina, dende 28,57 horas ata

soamente 3,41 horas corrixindo os erros das zonas ĺımite, e dende 13,32 horas ata

1,56 sen utilizar a corrección de erros, o que supón unha aceleración de 8, 4× para

sistemas con 16 nodos (ver Figura 5.9 do Caṕıtulo 5). Os centros GIS, as institucións

gobernamentais ou calquera outro grupo encargado de xestionar grandes volumes

de datos LiDAR, podeŕıa obtener un gran beneficio mediante a proposta presentada

neste caṕıtulo e, coa cantidade adecuada de recursos computacionais, todo o proce-

so de obtención de modelos dixitais de terreo podeŕıa aproximarse a tempo real. A

investigación presentada neste caṕıtulo foi enviada para a súa publicación a [31].

Durante a realización da tese foi tamén deseñado un método de compresión sen

perda de infamación para dar soporte a moitas das principais estruturas, algoritmos e

sistemas descritos nela. Alcanzando uns ı́ndices de compresión de 0,1 (unha redución

do tamaño do ficheiro do 90 %), o método presentado supera a LASzip, o método

147

de compresión estándar utilizado sobre os ficheiros LAS. O uso dun formato propio

permitiunos asegurar o control total sobre os datos debido a que non foi necesario

restrinxirse ás caracteŕısticas e limitacións dun formato preexistente, e polo tanto,

os ficheiros de datos empregados puidéronse adaptarse libremente para maximizar

o rendemento dos elementos que os utilizan.

Todas as contribucións presentadas nesta tese serán integradas no mesmo sis-

tema, BETi (Big data for the Exploration of Terrain Infomation) ofrecendo un-

ha completa solución multi-funcional para a distribución de datos, replicación, dis-

poñibilidade e procesamento tanto de tipo cliente como servidor. O sistema posuirá

a capacidade de ofrecer acceso concorrente a unha colección moi ampla de nubes de

puntos masivos, inclúıda unha extensa libreŕıa de procesos xeo-espaciais impulsada

por un sistema de computación distribúıdo altamente escalable baixo un sistema

de colas. A visualización de conxuntos de datos públicos e privados concederase

a través de clientes baseados na web xunto con todas as ferramentas de medición

xeo-espaciais anteriormente descritas. Por último, debemos resaltar aqúı que par-

te da investigación presentada durante este traballo está a ser empregada noutra

tese desenvolvida no grupo de investigación Computer Graphics Systems do Hasso

Plattner Institute e no Grupo de Arquitectura de Computadores da Universidade da

Coruña. Moitos dos conceptos presentados no Caṕıtulo 3 relativos a estruturas de

datos eficientes e adaptativas xeradas en tempo de execución están a empregarse

para mellorar a calidade de resultados e o rendemento dos algoritmos de enriquece-

mento semántico para as nubes de puntos interiores.

	1 Introduction
	1.1 LiDAR technology
	1.1.1 Aerial LiDAR data
	1.1.2 File format
	1.1.3 LiDAR software

	1.2 GPUs and 3D rendering
	1.2.1 Point cloud visualization

	1.3 Cloud computing and big data
	1.3.1 Distributed storage for LiDAR data
	1.3.2 Distributed computing for LiDAR data

	2 Interactive full-resolution visualization and processing of large aerial LiDAR point clouds
	2.1 System structure
	2.2 Remote data querying
	2.3 Geospatial measurement tools
	2.4 Strategies for fast data loading
	2.4.1 Data cleaning and transformation
	2.4.2 Bulk data operations
	2.4.3 Data caching

	2.5 Strategies for high performance full-resolution rendering
	2.6 Results and comparison
	2.6.1 Functionality and workflow
	2.6.2 Performance in terms of FPS
	2.6.3 Data retrieval and data load times

	3 A multi-resolution, out-of-core approach for rendering massive aerial LiDAR point clouds
	3.1 Structure of ViLMA
	3.2 Multi-resolution, out-of-core data structures
	3.2.1 Hierarchically-Layered-Tiles (HLT)
	3.2.2 Tile Grid Partitioning Tree (TGPT)
	3.2.3 Multi-resolution, out-of-core Rendering Techniques

	3.3 Performance considerations
	3.3.1 Tile size
	3.3.2 Number of LPT
	3.3.3 Compressing the point layers

	3.4 Experimental results
	3.4.1 Memory consumption
	3.4.2 Wait times
	3.4.3 Interactive visualization
	3.4.4 Performance improvements when using an ROI
	3.4.5 Compression ratio
	3.4.6 Comparison against Potree

	4 Big data storage solutions for large collections of massive LiDAR point clouds
	4.1 Web-based LiDAR visualization: Migrating to a big data deployment
	4.2 Big data storage technologies: deployment analysis
	4.2.1 Testing cluster
	4.2.2 HDFS
	4.2.3 MongoDB
	4.2.4 Cassandra
	4.2.5 Redis

	4.3 Experimental results
	4.3.1 Performance in terms of latency
	4.3.2 Performance in terms of throughput
	4.3.3 Performance in terms of storage capacity

	5 Big data geospatial processing for large collections of massive LiDAR point clouds
	5.1 A scalable big data approach on geospatial processing
	5.1.1 Geospatial processing: fast DTM obtention
	5.1.2 Distributed storage: Cassandra
	5.1.3 Distributed computing: Spark

	5.2 Automated boundary error correction
	5.2.1 Creation of the correction patches
	5.2.2 Filtering of the LiDAR zones and error correction

	5.3 Result analysis
	5.3.1 Performance in terms of execution times
	5.3.2 Boundary error correction quality
	5.3.3 The importance of an adequate point cloud preprocessing
	5.3.4 Full point classification
	5.3.5 Point triangulation

	6 Conclusions and future work
	References
	A Resumo Estendido en Galego

