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Resumen de la Tesis

Introducción

El desarrollo de aplicaciones eficientes para las máquinas paralelas disponibles
en la actualidad es una tarea complicada que exige un gran conocimiento de las
caracteŕısticas de la máquina por parte del programador. Una aproximación
que permite simplificar esta tarea consiste en proporcionar al programador una
tecnoloǵıa de compilación capaz de generar automáticamente código paralelo
a partir de un código fuente diseñado para ser ejecutado de manera secuencial
en un único procesador.

El proceso de paralelización automática de un código secuencial consta de
dos etapas bien diferenciadas: detección de las partes del código que se pueden
ejecutar en paralelo, y generación de código paralelo que no altere la semántica
del código secuencial. En esta tesis se aborda principalmente el problema de
detección en el ámbito de los códigos irregulares.

Las técnicas actuales de detección de paralelismo están basadas en el
análisis de las dependencias que existen entre las sentencias del programa.
Estas técnicas son efectivas en el ámbito de los códigos regulares debido a que,
en este tipo de códigos, las expresiones de los ı́ndices de las referencias a arrays
a menudo se pueden expresar como funciones lineales o afines de los ı́ndices de
los bucles en que aparecen. Sin embargo, los códigos irregulares son todav́ıa
un reto debido a que dichas expresiones contienen referencias a arrays cuyo
valor, en general, no se puede determinar en tiempo de compilación. Esta
caracteŕıstica hace que el compilador no pueda obtener información precisa
acerca de las dependencias del programa.

Este trabajo de investigación ha dado lugar a varias publicaciones en el
campo de la detección automática de paralelismo [4, 7]. Los conocimientos que
han permitido llevarlo a cabo fueron adquiridos a través del estudio detallado
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del código fuente de un conjunto de aplicaciones irregulares. Como resultado
de estos estudios han surgido una serie de publicaciones en el ámbito de la
generación automática de código paralelo, siendo los más relevantes [5, 6, 8].

Metodoloǵıa Utilizada

En esta tesis presentamos una técnica de detección de paralelismo a nivel
de bucle orientada, principalmente, al análisis de códigos irregulares. La
metodoloǵıa utilizada consta de dos partes bien diferenciadas. La primera
parte consiste en la construcción de un entorno de compilación capaz de ex-
traer del código fuente la información relativa a los tipos de cálculos (en ade-
lante llamados kernels) que se realizan durante la ejecución de un bucle. En la
segunda parte se analiza la información recabada por el entorno de compilación
con el fin de identificar aquellos bucles que es posible ejecutar en paralelo. Los
detalles acerca de cada una de estas partes se describen a continuación.

La detección automática de paralelismo requiere tener un conocimiento
preciso acerca del flujo de valores que se producirá entre las variables de un
programa durante la ejecución del mismo. El entorno de compilación pro-
puesto está basado en la representación Gated Single Assignment (GSA) de
los programas, la cual permite analizar sintácticamente el flujo de valores. La
construcción del entorno consta de los siguientes pasos:

1. Traducción del código fuente del programa a la forma GSA.

2. Reconocimiento de los kernels básicos que se calculan durante la eje-
cución del bucle.

El objetivo que se persigue en esta fase es descomponer el cuerpo del bu-
cle en un conjunto de kernels más sencillos e identificar las dependencias
que existen entre ellos. El procedimiento empleado es el siguiente:

(a) Búsqueda de las componentes fuertemente conexas (SCCs) que con-
tiene el grafo de dependencias de la representación GSA.

(b) Reconocimiento del kernel básico asociado a cada SCC. Esta tarea
se lleva a cabo mediante un algoritmo de clasificación de SCCs que
analiza de forma exhaustiva todas las operaciones que se realizan en
las sentencias de la SCC. Este algoritmo permite reconocer una gran
variedad de kernels básicos, como por ejemplo, formas complejas
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de variables de inducción, operaciones de reducción con variables
escalares y array (incluidas operaciones de tipo mı́nimo/máximo),
asignaciones irregulares o reducciones irregulares.

(c) Clasificación de las dependencias entre SCCs. La búsqueda de las
dependencias se realiza durante la ejecución del algoritmo de clasi-
ficación de SCCs aprovechando el análisis exhaustivo de todas las
expresiones que componen el cuerpo del bucle. En esta fase se dis-
tinguen varios tipos de dependencias con el fin de identificar las más
relevantes desde el punto de vista del reconocimiento de kernels más
complejos que los representados mediante SCCs.

Toda la información obtenida durante la ejecución de las fases (b) y
(c) se representa en una estructura de datos que denominamos grafo de
SCCs, la cual se utilizará como soporte para las etapas posteriores de
construcción del entorno de compilación.

3. Reconocimiento del conjunto de kernels que se calculan en el bucle.

En general, los cálculos que se realizan en un bucle se pueden represen-
tar bien como kernels básicos bien como kernels más complejos que son
el resultado de combinar varios kernels básicos. Para la realización de
esta tarea hemos diseñado un algoritmo que está basado en el análisis
del grafo de SCCs. Algunos ejemplos de nuevos tipos de cálculos re-
conocidos mediante este algoritmo son mı́nimo/máximo con posición o
consecutively written array.

Una vez finalizada la construcción del entorno de compilación, el compi-
lador dispone de información acerca del conjunto de kernels que se calculan
durante la ejecución de un bucle. En la literatura se han propuesto una gran
variedad de métodos que permiten transformar el código secuencial de algunos
tipos de kernels irregulares en un código paralelo equivalente. La idea básica
de nuestra técnica de detección automática de paralelismo consiste en utilizar
la información proporcionada por el entorno para determinar cuales de dichas
transformaciones se pueden aplicar en cada caso. Nótese que con esta aproxi-
mación el compilador utiliza las transformaciones de código como soporte para
asegurar que, en tiempo de ejecución, las dependencias propias de cada kernel
se respetan y, de esta manera, se preserva la semántica del código secuencial.
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Conclusiones

En esta tesis se han abordado, principalmente, dos temas relacionados con el
análisis automático de los programas orientado a la extracción de paralelismo
del código fuente. Por una parte, hemos propuesto una técnica de compilación
que permite reconocer una gran variedad de kernels mediante el análisis de
anidamientos de bucles que contienen computación de tipo regular e irregu-
lar. Por otra parte, hemos descrito la manera de utilizar nuestro esquema de
reconocimiento como un entorno de compilación que hace posible la detección
automática de paralelismo en códigos irregulares.

Las principales aportaciones de la tesis se pueden resumir en los siguientes
puntos:

• Hemos propuesto un algoritmo de clasificación de SCCs basado en la
forma GSA de los programas que permite reconocer una gran variedad
de kernels básicos tanto de computación regular como irregular.

• Hemos propuesto un algoritmo de clasificación del grafo de SCCs de
un bucle. Este algoritmo está orientado al reconocimiento del conjunto
de kernels que se calculan durante la ejecución del bucle. Estos kernels
pueden consistir tanto en kernels básicos como en kernels más complejos.

• Hemos demostrado que los algoritmos descritos en los apartados ante-
riores pueden ser utilizados como potentes herramientas de recopilación
de información que proporcionan al compilador el soporte necesario para
la implementación de otras técnicas de compilación. En particular,
hemos descrito como aplicar este entorno de compilación en el ámbito
de la detección automática de paralelismo en bucles irregulares. Las
principales caracteŕısticas de nuestra técnica de detección son:

– Detección, en tiempo de compilación, de kernels de computación
irregular que son paralelizables con la ayuda de soporte en tiempo
de ejecución para preservar las dependencias del bucle. El soporte
lo proporcionan las técnicas de transformación de código orientadas
a la paralelización de bucles con computación irregular.

– Detección de paralelismo en un amplio abanico de kernels de carac-
teŕısticas muy dispares, incluso en bucles que contienen estructuras
de control complejas.
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• Hemos comparado la efectividad de nuestro método de detección con
el compilador paralelizador Polaris. Hemos presentado resultados ex-
perimentales que demuestran que nuestro método es capaz de extraer
paralelismo en bucles irregulares en los que Polaris no tiene éxito.
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p:d,E Contextual class of an expression e. The
abbreviation [e] is also used.

[stm] Class of a statement stm.
[SCC(x1...n)] Class of a component SCC(x1...n).
Te Transfer function of an expression e.
Tstm Transfer function of a statement stm.
SCC(x1...n) $ doh SCC contained in the doh.
SCC(x1...n) " doh SCC exclusively contained in the doh.



Chapter 1

Introduction

One of the major reasons for the widespread acceptance of computers, both
in academia and industry, is the existence of powerful tools that contribute
to improve the productivity of frequent tedious tasks. The design and imple-
mentation of computer applications is greatly influenced by the programming
language used by the software developer. High-level languages provide bet-
ter support for human understanding and, thus, ease the programming task
and increase the productivity of software developers. However, the executable
programs generated from these languages are not usually as efficient as ex-
pected. In an effort to improve the quality of executable code, programmers
have learnt how to optimize code to get more performance out of individual
processors and memory hierarchy. On the other hand, advances in computing
power have come with architectural innovations that make the machine more
difficult to program. As a result, programmers that develop applications for
todays parallel systems have also learned to explicitly manage the increasing
complexity of memory hierarchies and the mechanisms for interprocessor com-
munication.

It is not a recent observation that compiler technology plays an impor-
tant role in the generation of executable code that is efficiently targeted for
present parallel machines. If compilers could provide efficient language im-
plementations for architectural innovations, programmers would not have to
worry about the characteristics of the underlying architecture. There are two
major approaches for the development of parallel applications, both of them
with strong arguments in their favor: using parallel programming languages,

1
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and transforming sequential programs into a parallel counterpart. This thesis
focuses on the latter approach; it concentrates on the development of compiler
support for automatically transforming sequential code to take advantage of
parallelism. It should be noted that starting from a sequential language has
very practical advantages. The most important one is that existing sequential
software could be re-targeted for todays parallel computers with a minimum of
programming effort. Moreover, many users in science and engineering who are
not expert programmers could continue to use the conventional programming
language they are used to working with. It would be the job of the compiler
to adapt the code to perform well on the underlying parallel machine.

Research on the topic of this thesis has established the foundations for
the implementation of several compilers with automatic parallelization capa-
bilities. Well-known parallelizing compilers available today, both in industry
(HP [23], SGI [43]) and academia (Polaris [11], SUIF [21]), rest on different
compiler technologies that are based on a common concept: the concept of
dependence analysis. The reason for this is that dependences capture a fun-
damental property of the algorithm coded in a program: the flow of values
during the execution of the program. Parallelizing compilers uncover implicit
parallelism in sequential programs by running dependence tests that determine
whether the code can be executed in parallel preserving the sequential seman-
tic [2, 9, 31, 51]. It should be noted that dependence analysis provides support
for uncovering implicit parallelism, but also specifies how the execution of the
program may be reordered.

Gathering information about the flow of values during the execution of a
program is a critical task that the compiler has to accomplish prior to the exe-
cution of dependence tests. In the literature, methods for constructing data
structures that represent this information precisely have been proposed [1, 51].
In the last decade, however, an intermediate program representation called
Static Single Assignment (SSA) [14] that exhibits this information syntacti-
cally has become quite popular. The key idea is to rename the variables in
a program according to a specific naming discipline which assures that left-
hand sides of assignment statements are pairwise disjoint. As a consequence,
each use of a variable is reached by one definition at most. This is a pro-
perty that was shown to be useful for simplifying the analysis of the code of
a program. Other intermediate representations that extend the capabilities of
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SSA [12, 29, 46] have been successfully used in the scope of program analysis.
SSA-based representations are used in modern parallelizing (e.g. Polaris [11])
and optimizing (e.g. GNU GCC [17]) compilers.

An important challenge for current parallelizing compilers is the analysis
of programs that contain subscripted subscripts. The information provided by
SSA is insufficient because the flow of values is captured for scalar variables
only. Some extensions of SSA that handle array references have been proposed
to address the analysis of codes of these characteristics. Array Static Single
Assignment (Array SSA) [27] has been applied as a concrete form of parallel
code generation that supports the automatic parallelization of programs [27],
and to conditional constant propagation of scalar and array references [28]. On
the other hand, Gated Single Assignment (GSA) [46] was applied to automatic
privatization of variables, which was shown to be very important for improving
the accuracy of dependence tests.

Current compiler technology has been successful in the parallelization of
programs that contain regular computations. The reason for this is that, in
regular codes, the subscript expressions of array references can often be rewrit-
ten as linear or affine functions of the index variables of the enclosing loops.
However, irregular codes are still a challenge due to the presence of subscripted
subscript expressions whose value cannot be determined at compile-time, and
that make it impossible for the compiler to analyze dependences precisely.
The automatic parallelization of irregular codes has been addressed by deve-
loping ad-hoc techniques that deal with specific computational kernels with
well-defined characteristics [27, 35].

The main contributions of this thesis are:

1. A new compiler framework where loop nests are represented in an inter-
mediate form that enables the recognition of the computational kernels
calculated during the execution of the loop nest. The framework is cons-
tructed on top of the GSA form of the program.

2. The description of how the information provided by our framework en-
hances the efficacy of current compiler technology in the scope of auto-
matic detection of parallelism in irregular applications.

The results of this research work in the field of automatic detection of
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parallelism have been published in [4, 7]. The background that allowed the
development of this compiler framework was obtained by studying a set of
sparse/irregular codes in detail. As a result of these studies, some research
works in the scope of parallel code generation were also presented. The most
relevant publications are [5, 6, 8].

Overview of the Contents

This thesis is organized into five chapters whose contents are summarized in
the following paragraphs.

Chapter 2, Automatic Detection of Parallelism, is intended to give the
reader a clear description of the goals and the basic ideas behind the material
presented in this thesis. The chapter begins with a review of the different
approaches that can be found in the literature in the scope of automatic de-
tection of parallelism. The discussion emphasizes the limitations of current
techniques for the analysis of irregular applications. In an early stage of the
work, a suite of irregular codes was analyzed by hand. As a result, it was
found that a set of basic computations appear in the majority of the loop
nests. The differences between loop nests come from the different ways these
basic computations are combined. In this chapter, the set of basic computa-
tions considered in the thesis is described. Finally, we present the motivations
and the key ideas that led us to develop the compiler framework.

Chapters 3 and 4 cover two algorithms that are the core of our compiler
framework. The explanation of the internals of the algorithms is illustrated
with some example codes extracted from our irregular benchmark suite. Ex-
perimental results that show the effectiveness of the algorithms are presented
at the end of each chapter.

Chapter 3, Recognition of Basic Computational Kernels, presents an algo-
rithm that identifies the set of basic computations that appear in the source
code of a loop nest, and determines how these basic computations are com-
bined in the loop. As a result of the execution of this algorithm, the source
code of the loop nest is represented as a graph that summarizes a wide set of
information that will be useful for the subsequent stages of the compiler frame-
work. The theoretical foundations of the algorithm are well-established. In
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particular, the basic computations are identified by searching the strongly con-
nected components that compose the dependence graph of the GSA program
form. The type of computations, and how they are combined, is determined
through a classification scheme that is applied to the set of components.

Chapter 4, Recognition of Loop-Level Computational Kernels, presents an
algorithm that recognizes the type of computations performed in a loop as
a whole. This goal is accomplished through the analysis of the graph that
represents how the basic computations are combined in the loop. A detailed
description of the recognition of the computations performed in some loop
nests extracted from our benchmark suite is presented. The codes are repre-
sentative examples of loop patterns that appear very frequently in irregular
applications. The chapter covers simple loops that are detected with current
compiler technology, as well as coarser-grain loop nests that are not covered.

Chapter 5, Generation of Parallel Code, describes how our framework pro-
vides the compiler with efficient support for the transformation of a sequential
code into a parallel counterpart. The approach is illustrated with the exam-
ple codes studied in Chapter 4. The chapter finishes with a comparison of
our approach against the technology implemented in the Polaris parallelizing
compiler, which is capable of analyzing irregular applications.





Chapter 2

Automatic Detection of
Parallelism

The parallelization of a sequential program basically consists of changing the
execution order specified by the programmer so that the same results are
computed using a set of processors. Parallelizing compilers are faced with two
major challenges. The most important is finding the minimal set of constraints
that the parallel program has to fulfill for the semantics of the sequential code
to be preserved. The other is finding a correct reordering of the execution
of the program so that good performance can be obtained from the target
parallel machine.

Constraints are traditionally represented as dependences between state-
ments of the program. Dependences capture an important strategy for pre-
serving correctness in imperative languages: they preserve the relative order
of load and store operations for each memory location in the program (they do
not preserve the relative order of reads to the same location, but this cannot
affect a program’s meaning). Dependences are a passive guide for uncovering
implicit parallelism, but also specify how the execution of a program may be
reordered. In Section 2.1, a review of the state of the art on automatic de-
tection of parallelism in sequential codes is presented. The discussion focuses
on remarking the limitations of current compiler technology for the analysis
of irregular applications.

The framework we propose addresses the recognition of the kernels that are
computed during the execution of a loop. We apply the term computational

7
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kernel to a set of statements from the loop body whose execution provides
useful values for other parts of the program. In an early stage of this work,
we studied in detail a set of real codes that contain a great deal of irregular
computations. We observed that, in general, loop nests perform complex
computations that are a combination of simpler ones. In Section 2.2, we
describe a collection of kernels that covers the majority of the cases found in
our benchmark suite.

The chapter finishes with a general overview of the structure of our com-
piler framework. The key ideas that motivated its design are also presented.

2.1 State of the Art

Parallelizing compilers are based on data dependence analysis techniques that
enable the detection of the parallelism that is implicit in sequential programs.
Data dependence analysis [51] determines whether two statement instances
must execute in the order specified in the sequential program to guarantee
correct results. The problem for scalar variables has been studied extensively
and can be solved with data flow analysis [1]. In real applications, the com-
piler is faced with the analysis of loop nests that touch different array entries
in different loop iterations, very often with the added complexity introduced
by if-endif constructs that define complex control flows. The data dependence
analysis problem for arrays is equivalent to integer programming, and thus a
general solution to the problem would have exponential time complexity [34].
In most cases, this problem is simplified by focusing only on the subscript
expressions that can be described as linear or affine functions of the index
variables of the enclosing loops. Several polynomial-time data dependence
tests can be found in the literature: the Banerjee test [9], the I-Test [30, 36]
or the VI-Test [37]. The experimental results in [37] show that the VI-Test
improves the accuracy of the original I-Test and, in many cases, it performs as
well as the Omega test at much less computational cost. The Omega Test [38]
is a general purpose integer constraint satisfaction algorithm that can accu-
rately handle complex loop regions and even provide exact data dependence
information. It is more accurate than the other tests, but at a higher com-
putational cost. In fact, it has a worst case exponential time complexity.
The accuracy of these tests is limited due to non-linear constraints, which are
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frequently found in scientific benchmarks.

Programs are not typically written with dependence testing in mind. Pro-
grammers tend to write code that exploits specific characteristics that are
only implemented in certain versions of languages and compilers. Further-
more, there are many programming practices that have been developed to
overcome weaknesses in compiler optimization strategies, but whose result is
often code that defeats the best dependence analyzer. To address problems
of this sort, a number of code transformations can be applied prior to depen-
dence testing with the goal of making testing more accurate. The accuracy
is improved because, as a side effect of these transformations, subscript ex-
pressions are usually rewritten as linear or affine functions of the loop index
variables, which can be handled by dependence tests. Transformations, such
as loop normalization, induction variable substitution, constant propagation,
dead code elimination and privatization are some examples of techniques that
were found to be effective for this purpose. There is a voluminous literature
on this issue [13, 25, 40, 47, 49, 50, 51].

Dependence testing in the presence of induction variables was found to be
critical for the automatic parallelization of sequential codes. In classical depen-
dence analysis, induction variable occurrences are substituted for closed form
expressions in order to remove the loop-carried dependences introduced by
these variables. Different approaches have been proposed for the computation
of closed form expressions. Pottenger and Eigenmann [35] use idiom recogni-
tion to detect simple induction variable forms. Mathematical approaches based
on solving systems of equations were also proposed [56]. In real applications,
more complex forms are computed. Gerlek et al. [18] propose a sophisticated
classification scheme that is based on the analysis of the dependence graph
of the SSA form [14]. Complex induction variables are detected by analyzing
the characteristics of the statements associated with the strongly connected
components of that graph. In the literature, this problem is addressed from a
different perspective by Wolfe [50] and by Wu et al. [52, 53]. The basic idea
consists of analyzing how the induction variable changes during the execution
of a loop. The study focusses on determining whether the induction variable
is (strictly) increasing or (strictly) decreasing. This information is later used
in dependence tests that discard the existence of loop-carried dependences in
the references to array variables.
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Suganuma et al. [44] present a technique that can detect reduction cons-
tructs in general complex loops. As in [18], the approach is based on the
analysis of the strongly connected components of a dependence graph. How-
ever, the graph is constructed from the source code of the program. Thus, it
does not take advantage of the information about the flow of values provided
by SSA-based program representations.

Current parallelizing compilers, which are mainly based on data depen-
dence analysis, cannot detect all the parallelism available in sequential pro-
grams. Sometimes this is because the necessary information for dependence
tests to be successful cannot be gathered at compile-time. However, many
times, the reason is that the data flow analysis techniques and the dependence
tests used by the compiler are not sufficiently sophisticated. The limitations
of classical dependence tests are specially relevant for irregular codes because
of the presence of subscripted subscript expressions. In general, the value of
subscripted subscripts cannot be determined at compile-time because of limi-
tations of current technology, but, more frequently, because they depend on
the input data of the program. Subscripted subscripts are handled as un-
known symbolic quantities that introduce non-linearities in the equations that
describe the subscript expressions. Pottenger and Eigenmann [35] address
this problem using a strategy that combines idiom recognition and depen-
dence analysis. The method is applied to the detection of irregular reduction
computations, as well as to induction variables. First, potentially parallel
loops are identified by searching for statements of the loop body that fulfill
the characteristics of irregular reductions. Next, dependence analysis is used
to discard the existence of dependences that preclude the parallelization of
the loop. Finally, a parallelizing transformation specially designed for irre-
gular reductions is applied [20, 22, 32] whenever possible. This approach was
implemented in the Polaris parallelizing compiler. It should be noted that it is
not necessary to know at compile-time the value of the subscripted expressions
that characterize irregular reduction computations. The implicit parallelism
is uncovered at compile-time, but dependences are handled at run-time by the
parallel code that is generated. Furthermore, the efficiency of the parallel code
depends on the run-time value of subscripted subscripts; in the worst case, no
parallelism would be available.

The dependence tests described so far perform compile-time analysis. Thus,
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they are conservative when the necessary information cannot be extracted
from the source code. At run-time, much more parallelism could be uncovered
because all program information is available. Rauchwerger and Padua [39]
presented a general purpose technique that detects loop-carried data depen-
dences during the execution of a loop. The compiler generates code that
speculatively executes a loop in a fully parallel manner (DOALL loop) and
that determines at run-time whether the loop was, in fact, fully parallel. If
the subsequent test finds that the loop was not fully parallel, then it will be
re-executed sequentially.

Automatic program comprehension allows a compiler to address the au-
tomatic parallelization of sequential codes from a different point of view.
Keßler [26] proposes a speculative program comprehension and parallelization
method suitable for sparse matrix codes. The code is analyzed with the aim
of recognizing syntactical variations of a set of sparse computational kernels
that are frequently used in full-scale applications, for instance, operations with
sparse vectors and matrices. The recognition is performed by taking into ac-
count the semantics of the program. For this reason, program comprehension
enables aggressive code transformations such as local algorithm replacement
using available parallel algorithms and machine-specific library routines. The
information could also be used as a guide for applying optimizing transforma-
tions tuned for each sparse kernel specifically.

2.2 Collection of Computational Kernels

Research on parallelizing compilers usually addresses the recognition and the
transformation of computational kernels with well-known characteristics [5, 6,
18, 33, 35, 44]. A set of kernels that are important for the analysis of full-scale
sparse/irregular applications is presented in [32]. The focus of this section is
the description of a collection of computational kernels that cover a wide range
of the regular/irregular kernels found in our benchmark suite, the SparsKit-II
library [41], which contains a collection of costly routines for the manipulation
of sparse matrices. We do not intend to define a comprehensive taxonomy,
but to familiarize the reader with concepts and terms that will be used in this
thesis.

The first sections focus on kernels whose result is stored in a scalar variable
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of the program. Some well-known examples are induction variables and scalar
reduction operations. It should be noted that the computations associated
with these scalar kernels usually involve operations with array variables, which
may even contain subscripted index expressions. On the other hand, a set of
kernels whose result is stored in array variables are also introduced. Typical
examples are reduction and recurrence operations with arrays. We will refer
to these computations as array kernels.

2.2.1 Induction Variables

In the literature [18, 35, 56], the term induction variable is usually used for
representing the type of scalar, integer-valued variables that are updated in
all the iterations of a loop, and for whom a well-defined closed form expres-
sion can be calculated. We will use this term in a more general sense. If the
variable is updated in every loop iteration, we will call it a non-conditional
induction variable. In real programs, however, the variable is usually condi-
tionally updated during the execution of the loop. In this case, we will call it
a conditional induction variable.

This work focuses on conditional and non-conditional basic linear induction
variables, where a scalar, integer-valued variable is defined in terms of itself and
some combination of integer-valued loop-invariant expressions; occurrences of
other induction variables are not allowed. Although compiler technology can
handle more complex situations [18], basic linear induction variables represent
about 85% of the cases found in our benchmark suite. From now on, the
term induction variable will be used in this restricted sense. The loop shown
in Fig. 2.1(a) is a fragment of a routine that computes a permutation of the
rows of a sparse matrix stored in compressed row storage (CRS) format [10].
The inner loop dok (in this notation the loop index variable is shown as a
subscript) contains a non-conditional induction variable ko. A conditional
induction variable, i, is shown in Fig. 2.5, which presents a synthetic code that
will be used in Section 2.3 for providing a general overview of the compiler
framework.

In loop nests, induction variables are often incremented in inner loops and
set to an arbitrary value at the beginning of every iteration of an outer loop.
We call these kernels reinitialized (non-)conditional induction variable. For the
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DO ii = 1, nrow
ko = iao(perm(ii))
DO k = ia(ii), ia(ii + 1) − 1

jao(ko) = ja(k)
IF (values) THEN

ao(ko) = a(k)
END IF
ko = ko + 1

END DO
END DO

(a) Code fragment from a routine
that performs a permutation of the
rows of a sparse matrix in CRS
format (SparsKit-II, module unary,
routine rperm). The input matrix is
a, ja, ia, and the output matrix is
ao, jao, iao. The loop nest doii con-
tains a reinitialized non-conditional
induction variable ko. Furthermore,
the inner loop dok calculates a non-
conditional consecutively written ar-
ray, jao, and a conditional consecu-
tively written array, ao.

DO h = 1, n
t = 0
DO k = ia(h), ia(h + 1) − 1

t = t + a(k) ∗ x(ja(k))
END DO
y(h) = t

END DO

(b) Multiplication of a sparse
matrix in CRS format by
a vector (SparsKit-II, module
matvec, routine amux). There
is a reinitialized non-conditional
scalar reduction t in doh.

Figure 2.1: Example codes from the SparsKit-II library.

sake of brevity, we will use the notation (non-)conditional to refer to both the
conditional and the non-conditional versions of a kernel. An example of this
computational kernel is ko in the scope of the outer loop doii in Fig. 2.1(a).
Note that, at run-time, ko is set to the value of the subscripted expression
iao(perm(ii)), where iao and perm are loop-invariant arrays.

2.2.2 Scalar Reduction Operations

A reduction is an operation that computes a result from a set of source arrays
by reducing the number of dimensions on the basis of an associative operator.
If the result is a scalar variable, we call it scalar reduction operation. If it is
an array variable, we call it array reduction operation. Well-known examples
are the sum (product) of the entries of an array, the dot product of two arrays
and the minimum (maximum) value of an array. These computations are
usually implemented as loops. Although the detection and parallelization of
these code fragments is generally well-covered in the literature [2, 44], in this
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section we briefly define some types of reductions that will be studied later in
this thesis.

A scalar reduction is a scalar variable that is defined in terms of itself and a
combination of loop-invariant expressions and/or loop-variant subscripted ex-
pressions. The scalar variable may be either integer-valued or floating-point-
valued. Like induction variables, (non-)conditional scalar reductions and reini-
tialized (non-)conditional scalar reductions can be found in real programs. The
code presented in Fig. 2.1(b) multiplies a vector and a sparse matrix stored in
CRS format. In the inner loop dok, the variable t is a non-conditional scalar
reduction that computes the inner product of the row number h and vector x.
As the figure shows, the computations may involve subscripted subscripts of
several indirection levels. In the context of the outer loop, doh, t is a reinitia-
lized non-conditional scalar reduction because it is set to zero at the beginning
of each iteration.

Another interesting scalar reduction operation is the computation of the
minimum (or the maximum) value of a set of values. It is usually implemented
as a loop that, in each iteration, compares the value of the reduction variable
with an element of the set. The code fragment shown in Fig. 2.2(a) calculates
the length minlen of the smallest row of a sparse matrix stored in CRS format,
ia being the array of pointers to the beginning of the rows. The set of values
is determined by the set of expressions {ia(h + 1) − ia(h) : h = 2...nrow},
nrow being the number of rows of the matrix. Programmers often need to
determine the position of the minimum (or the maximum) value within the
set. In Fig. 2.2(a), the variable irow stores the position of the minimum,
which, in this case, represents the number of the smallest row. We call this
kernel scalar minimum with location. It should be noted that array minimum
(maximum) operations whose result is an array variable, also appear in real
codes. An example is the computation of the minimum with location of each
row of a matrix, which will be described in Section 4.4.2.

2.2.3 Linked-List Traversal

A distinguishing characteristic of induction variables is that there is an ex-
pression that allows the computation of the next value of the variable starting
from its current value. In real codes, arbitrary lists of values that do not have
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minlen = ia(2) − ia(1)
irow = 1
DO h = 2, nrow

len = ia(h + 1) − ia(h)
IF (len < minlen) THEN

minlen = len
irow = h

END IF
END DO

(a) Computation of the length
of the smallest row and the
row number of a sparse matrix
in CRS format (SparsKit-II,
module unary, routine rperm).
The loop doh contains a min-
imum with location kernel.
The reduction variable con-
sists of the pair minlen and
irow.

i = 1
DO h = 1, n

/* Other kernels */
. . . i . . .
i = f(i)

END DO

(b) Synthetic code
that computes a non-
conditional linked-list
traversal kernel, i.

flag = true
DO h = 1, n

IF (flag.AND.(. . .)) THEN
flag = false
/* Other kernels */
. . .

END IF
/* Other kernels */
. . .

END DO

(c) Synthetic code that con-
tains a scalar find-and-set ker-
nel, flag.

DO h = 1, n
IF (diag(h) "= 0) THEN

diag(h) = 1/diag(h)
ELSE

diag(h) = 1
END IF

END DO

(d) Code fragment from a
routine that scales the rows
of a sparse matrix (SparsKit-
II, module unary, routine
dscaldg). The array of scale
factors diag is computed by
executing an array find-and-
set kernel.

Figure 2.2: Example codes from the SparsKit-II library (cont.).
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such an expression are often used. We call this kind of computation linked-
list traversal. A linked-list traversal is a variable that is defined in terms of
itself, and the variable is a part of the subscript expression of an array refe-
rence. Other types of operators can only appear in the subscript expression
of the first array reference. The synthetic loop of Fig. 2.2(b) shows a scalar
variable i that is associated with a non-conditional linked-list traversal. It
is supposed that i is used in other computations within the loop nest (repre-
sented as . . . i . . . in the figure). Conditional and reinitialized (non-)conditional
linked-list traversals can also be found in programs.

2.2.4 Masked Operations

Masked operations are computational kernels that modify the value of a varia-
ble if it fulfills some properties. A typical example is shown in Fig. 2.2(c),
where the loop body contains a set of statements that are executed only in
the first loop iteration. This mechanism is usually implemented by means of
a scalar variable that can only take two different values. In the example, the
scalar flag is set to the logical value true before the execution of the loop. In
the first iteration, the value of flag is changed so that the condition of the
if-endif construct is evaluated to false in subsequent iterations. Note that
flag is not used in any other calculations within the loop body. We call this
kernel scalar find-and-set.

Another typical example consists of changing the value of a set of array
entries that fulfill a certain condition. The loop doh presented in Fig. 2.2(d)
was extracted from a routine that multiplies each row of a sparse matrix by a
scaling factor. The scaling factors are stored in the array variable diag. We
call this kernel array find-and-set.

2.2.5 Array Operations

An array operation is a kernel whose result is stored in an array variable.
In previous sections several types of array operations were introduced: array
minimum (maximum), array minimum (maximum) with location and array
find-and-set. They were described in those sections because of their similarities
with the corresponding scalar kernels. Next, other important array operations
are described.
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Array operations are usually implemented as loops that perform scalar
operations on the array elements. Several types can be distinguished on the
basis of the characteristics of the scalar operations. Let a(s) = e be a statement
that assigns the value of expression e to the s-th entry of the array variable
a. We say that it is an array assignment if there is not any occurrence of
variable a in e. If a(s) = e is executed in every loop iteration, then it is a
non-conditional array assignment. If it is conditionally computed during loop
execution, the kernel is called conditional array assignment. Different types of
array assignments will be distinguished by the properties of the index s. For
instance, an irregular assignment [6] is a kernel that basically consists of array
assignments whose index is a subscripted expression. The loop doj shown in
Fig. 2.3(a) was extracted from a routine that performs a permutation (defined
by the vector perm) of a sparse matrix in CRS format (a, ia, ja). The array of
pointers iao is computed by executing a non-conditional irregular assignment.
Note that i + 1 is a subscripted expression because the scalar variable i takes
the value of a different array entry, i = perm(j), in each doj iteration.

In a similar manner, we say that a(s) = e is a (non-)conditional array
reduction if there is only one occurrence a(s) of variable a in e. Note that
the left-hand side expression and the occurrence have the same subscript ex-
pression s. The loop nest doi presented in Fig. 2.3(b) calculates a conditional
irregular reduction [20], which is a kernel where the index expression, j + 1, is
subscripted. Note that, in the example, j introduces two levels of indirection
due to the fact that the index expression of ja is the index variable of the inner
loop dok. Furthermore, at run-time, several reduction assignment statements
are executed in each doi iteration.

The last case is a (non-)conditional array recurrence, where there are a
set of occurrences a(s1), ..., a(sm) of variable a in e. Note that s, s1, ..., sm are
different expressions, in general. The loop doj shown in Fig. 2.3(c) computes
a (non-)conditional array recurrence, iao .

An interesting kernel is the consecutively written array [32], which consists
of writing consecutive array entries in consecutive locations. Unlike the ker-
nels described so far, this one is implemented as a combination of an induction
variable of step one that defines the array entries to be written during loop
execution, and an array assignment whose left-hand side subscript expression
is a linear function of the induction variable. The loop nest doii for the permu-
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DO j = 1, nrow
i = perm(j)
iao(i + 1) = ia(j + 1) − ia(j)

END DO

(a) Loop extracted from
SparsKit-II, module unary,
routine rperm, which contains an
array assignment operation (see
Fig. 2.1(a) for a description of the
routine). Loop doj determines
the lengths of the rows of the
permuted matrix. The results
of the non-conditional irregular
assignment kernel are stored in
the array iao.

DO i = 1, nrow
DO k = ia(i), ia(i + 1) − 1

j = ja(k)
IF (j "= i) THEN

iwk(j + 1) = iwk(j + 1) + 1
END IF

END DO
END DO

(b) Loop nest extracted from a rou-
tine that changes the storage format of
a sparse matrix (SparsKit-II, module
formats, routine ssrcsr) A conditional
irregular reduction iwk is computed in
doi.

iao(1) = 1
DO j = 1, nrow

iao(j + 1) = iao(j + 1) + iao(j)
END DO

(c) Code extracted from SparsKit-
II, module unary, routine rperm
(see Fig. 2.1(a) for a description of
the routine). The array of point-
ers of the permuted matrix iao
is computed by executing a non-
conditional array recurrence kernel.

Figure 2.3: Example codes from the SparsKit-II library (cont.).
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tation of the rows of a sparse matrix (see Fig. 2.1(a)) contains such a type of
computations. The inner loop dok copies one row of the input matrix (a, ja,
ia) into the arrays ao and jao of the output sparse matrix. This task is carried
out by using the non-conditional linear induction variable ko as the subscript
expression for the definition of ao and jao. We call these kernels conditional
consecutively written array and non-conditional consecutively written array,
respectively. In the scope of the outer loop doii, a consecutive subarray of ao

and jao is modified in each iteration.

2.3 Framework Overview

Data dependence analysis is the fundamental technology that is used by paral-
lelizing compilers for uncovering implicit parallelism in sequential codes. De-
pendence tests are methods that determine whether two references to the same
variable in a given set of loops might access the same memory location. These
methods usually assume a number of properties for loops. Thus, the compiler
needs to gather information regarding which loops meet these requirements.
Furthermore, as discussed in Section 2.1, the accuracy of dependence tests
depends on the ability of the compiler to rewrite the original code in order to
make subscript expressions amenable to dependence testing. This approach
was found to be effective for the analysis of regular codes. However, as will be
shown next, it is not the case for irregular codes. Consider the irregular reduc-
tion of Fig. 2.3(b). Dependence tests should try to determine if there are two
loop iterations where the subscript expression j + 1 takes the same value. If a
test is successful, the loop cannot be executed in parallel. In general, the value
of j cannot be determined at compile-time because the value of arrays ja and
ia is not known until run-time. As a result, the tests will fail. There are two
main reasons for the unsuccessful tests. On the one hand, the limitations of
the information-gathering techniques used in today’s parallelizing compilers.
On the other hand, the fact that the value of the subscript expression usually
depends on program inputs that are known at run-time only.

The automatic parallelization of irregular computations can be addressed
at compile-time if the compiler is provided with support for handling depen-
dences at run-time. The key idea consists of generating parallel code that
uses run-time information to assure that dependences are not broken during
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the execution of the loop. This run-time support rids the compiler of ha-
ving to determine whether the subscript expression may or may not introduce
loop-carried dependences. Thus, its job is limited to recognizing the irregular
computational kernel and running dependence tests to discard the existence
of other dependences that preclude the parallel execution. Finally, if testing
is successful, an appropriate parallelizing transformation can be applied. The
parallelization of loops that contain irregular reduction computations is ad-
dressed in [35] using this approach. It uses source code pattern-matching to
detect the irregular reduction kernel. A similar approach could be used for
parallelizing loops with irregular assignments [6] or with DOACROSS compu-
tations [33]. However, it would be necessary to develop a specific method for
the detection of each kernel type.

Detection techniques that rest on the analysis of the source code have
two major drawbacks: dependence on the source code quality and difficulty
in analyzing complex control constructs. Gerlek, Stoltz and Wolfe [18] pro-
posed a sophisticated classification scheme that recognizes complex induction
variables even in loops that have a complicated control flow. It is based on
the translation of the source code into Static Single Assignment form (com-
monly abbreviated SSA) [14], which is a program representation that provides
the compiler with valuable information about the use of variables during the
execution of a program. A major limitation of this method is that it can
only handle expressions that contain references to integer-valued scalar varia-
bles. Our key idea is to generalize the classification scheme of [18] so that
both integer-valued and floating-point-valued scalar and array variables can
be handled. As will be explained later, the relevance of this generalized scheme
comes from the fact that it is the basis for the construction and the design of
the detection technique proposed in this thesis.

In the rest of the chapter, we will show how our scheme enables the recog-
nition of the scalar and array kernels that are computed during the execution
of a loop nest. Furthermore, the information gathered by this classification
method will be used as a compiler framework that supports the automatic
detection and parallelization of sequential codes. This organization is shown
in the block diagram depicted in Fig. 2.4. The chain of solid boxes shows
the intermediate program representations used by the compiler during the
process of transformation of the source code of the loop body into parallel
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Figure 2.4: Block diagram of the automatic detection technique.

code. The compiler framework construction and the automatic paralleliza-
tion process (dashed rectangular boxes) are decomposed into a set of stages
that are represented as dashed ovals. In the following sections, the different
stages are described using as a guide the consecutively written array kernel
(see Section 2.2.5) presented in Fig. 2.5(a).

2.3.1 Translation into GSA form

Flow of values of program variables is a fundamental property of the algorithm
coded in a program. In order to detect the computational kernels computed
in a loop nest, the compiler needs to find precise information about the value
and the use of variables at various points in the program. For instance, for
the induction variable i of Fig. 2.5(a) to be recognized, the compiler must be
able to determine that, in every loop iteration, i is assigned its value in the
previous iteration plus a constant value 1. The first loop iteration is the only
exception to this general rule. In that case, i is computed by adding 1 to the
value of i before the loop, i.e. 1. Classical data flow analysis can be used
to compute the reaching definitions at each use of the variable [2]. However,
in [18] a different approach is used. SSA is an intermediate representation
that has two key properties: (1) every use of any variable in the program has
exactly one reaching definition; (2) at points where control flow joins, a special
operation φ is inserted to merge the definitions of the variable that reach the
point along different control flow paths. The SSA form of our example, the
consecutively written array kernel, is shown in Fig. 2.5(b). Special operations
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φ were inserted following the loop header and the if-endif construct. The first
one, i2 = φ(i1, i4), merges the value at the end of the previous iteration, i4, and
the value before the loop execution starts, i1. The second one, i4 = φ(i3, i2),
merges the reaching definition from the beginning of the loop iteration, i2,
and the reaching definition corresponding to the conditionally executed scalar
statement i3 = i2 + 1.

The information captured by SSA is not sufficient for the analysis of ex-
pressions that contain array references (see the statement a(i2) = tmp2 + 2
in Fig. 2.5(b)). Several extensions of SSA that provide reaching definition
information for array variables have been proposed [46, 29]. As will be shown
in Section 3.1, the Gated Single Assignment form (GSA) [46] is the most ap-
propriate representation for being the basis of our compiler framework. It
should be observed in Fig. 2.5(c) that φ operations in GSA are inserted at
the loop header and after the if-endif construct, both for the scalar i and the
array a. Unlike SSA, the array statement a(i2) = tmp2 + 2 is replaced with
an additional φ operation a2 = φ(a1, i2, tmp2 + 2) that merges the value of
the array before the statement, a1 = φ(a0, a3), and the new value that results
from modifying the entry i2 of the array. In the next section, we explain how
the compiler can take advantage of this information in order to recognize the
kernels computed in the loop doh.

2.3.2 Recognition of Basic Computational Kernels

Program representations like SSA or GSA provide the compiler with very use-
ful information about the use of variables at run-time. Gerlek, Stoltz and
Wolfe [18] do not use the reaching definition information contained in SSA di-
rectly. With this information, they build a graph of factored use-def chains [51]
where each use of a variable is represented by a single use-def chain that allows
the compiler to locate the unique reaching definition straightforwardly. This
graph is usually called SSA graph in the literature. From now on, we will
use that term. The key observation for the detection of induction variables is
that the flow of values associated with this kernel during loop execution co-
rresponds to a strongly connected component in the SSA graph. We will refer
to these computations as basic kernels. The strongly connected components
(SCCs) of a graph are the maximal cycles of the graph, that is, the cycles
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i = 1
DO h = 1, n

IF (c(h)) THEN
tmp = f(h)
a(i) = tmp + 2
i = i + 1

END IF
END DO

(a) Source code.

i1 = 1
DO h1 = 1, n, 1

i2 = φ(i1, i4)
tmp1 = φ(tmp0, tmp3)
IF (c(h1)) THEN

tmp2 = f(h1)
a(i2) = tmp2 + 2
i3 = i2 + 1

END IF
i4 = φ(i3, i2)
tmp3 = φ(tmp2, tmp1)

END DO

(b) SSA form.

i1 = 1
DO h1 = 1, n, 1

i2 = φ(i1, i4)
a1 = φ(a0, a3)
tmp1 = φ(tmp0, tmp3)
IF (c(h1)) THEN

tmp2 = f(h1)
a2 = φ(a1, i2, tmp2 + 2)
i3 = i2 + 1

END IF
i4 = φ(c(h1), i3, i2)
a3 = φ(c(h1), a2, a1)
tmp3 = φ(c(h1), tmp2, tmp1)

END DO

(c) GSA form.

i1

i2

i3

i4

a(i2) = tmp2 + 2

tmp1

tmp2

tmp3

(d) SSA graph.

i1

i2

i3

i4

a1

a2

a3

tmp2

tmp1

tmp3

(e) GSA graph.

Figure 2.5: SSA and GSA representations of a generic consecutively writ-
ten array computational kernel.
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that are not proper subsets of any other cycle [51, Chapter 3]. Let us look at
the SSA graph in Fig. 2.5(d). The scalar assignment statements, which define
unique scalar variables, are represented by nodes whose label is the left-hand
side of the statement. For array statements, the whole statement is used as
a label. The edges denote the use-def chains between statements. The com-
putations corresponding to the loop index have been omitted for the sake of
clarity. The statements i2 = φ(i1, i4), i3 = i2 + 1 and i4 = φ(c(h1), i3, i2)
form a SCC in the SSA graph. This is due to the cyclic nature of loops,
which makes loop-carried dependences associated with i appear during loop
execution. Regarding GSA (see the GSA graph of Fig. 2.5(e)), it should be
noted that there is a SCC related to i. But, and what is more interesting, the
statements a1 = φ(a0, a3), a2 = φ(a1, i2, tmp2 + 2) and a3 = φ(c(h1), a2, a1)
form another SCC that captures the loop-carried dependences that arise from
the computation of the array a.

An important contribution of this thesis is the proposal of a classification
scheme that enables the recognition of the scalar and array computational
kernels associated with SCCs in the GSA graph. As in [18], the method
basically consists of looking for occurrences of a variable in the expressions
that compose the statements of a SCC. The key difference is that the method
must be able to identify occurrences of both scalar and array variables. During
loop execution, i is incremented by a constant value 1 in those iterations where
the condition c(h) is fulfilled. In the SCC, there is one occurrence of i in the
source code expression i+1. As the expression is a sum operator that adds the
constant value 1 to i, the SCC is classified as a conditional induction variable of
step 1. A similar analysis of the SCC related to the array a will conclude that
there is no occurrence of the array reference a(i) in the source code expression
tmp. Thus, the compiler can classify the computations associated with array
a as a conditional array assignment operation (see Section 2.2.5).

This stage of the compiler framework construction extracts valuable in-
formation from the source code of a loop body. This information will be
represented in a graph whose nodes are the basic computational kernels and
whose edges are the relationships among these kernels. This graph, which
will be referred to as SCC graph, is the basis for the recognition of the ker-
nels computed in a loop. It should be noted that the relationships, which are
represented as use-def chains between SCCs, can be identified during the clas-
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sification of the SCCs because it basically consists of finding occurrences of the
variables associated with other SCCs. The details about the implementation
of the SCC classification algorithm will be presented in Chapter 3.

2.3.3 Recognition of Loop-Level Computational Kernels

The goal of our compiler framework is to recognize the type of computations
performed during the execution of a loop nest. Once the basic kernels have
been identified, it is necessary to analyze their relationships in order to know
how they are combined within the loop body. This analysis enables the recog-
nition of more complex kernels. Consider the GSA graph of Fig. 2.5(e), which
contains a use-def chain from a2 = φ(a1, i2, tmp2 + 2) to i2 = φ(i1, i4) due to
the use of i in the left-hand side subscript of the array assignment statement.
In the SCC graph, this relationship is represented as a use-def chain from the
SCC of a to the SCC of i. The use-def chain provides the compiler with an
appropriate scenario for the recognition of the conditional consecutively writ-
ten array kernel of the example. Note that, in order to be successful, some
additional checks are needed. On the one hand, the subscript expression i of
the array assignment operation, a, consists of an occurrence of the conditional
induction variable of step 1, i.e. i. This information is available in the SCC
graph. On the other hand, it is necessary to assure that every time an array
entry is written, the induction variable is updated. This condition is fulfilled
if both a and i are computed at the same point of the program. This task
can be accomplish through the analysis of the control flow graph (CFG) of the
program. A detailed explanation of the detection of complex computational
kernels will be presented in Chapter 4.

2.3.4 Generation of Parallel Code

Finally, a parallelizing compiler generates parallel code for the computational
kernels that have been recognized. In order to take advantage of available
research results on parallelizing transformations for regular and irregular com-
putations, the compiler can use a repository of the transformations that can
be applied to each kernel type (see Fig. 2.4). In the example of Fig. 2.5,
the computations of the loop doh were recognized as a conditional consecu-
tively written array kernel. Its characteristics assure that each loop iteration
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actually executed writes an array entry that is not touched in any other itera-
tion. With this information the compiler can conclude that, by applying an
appropriate code transformation, the loop can be executed in parallel safely.
The generation of parallel code stage will be explained in Chapter 5.

The compiler framework proposed in this thesis is a powerful information-
gathering tool whose application is not restricted to the scope of automatic
parallelization of sequential codes. Other possible applications of the frame-
work will be outlined at the end of this work.



Chapter 3

Recognition of Basic
Computational Kernels

In general, the computations performed in the body of a loop can be decom-
posed into a set of basic computational kernels that are combined in a specific
manner. In this chapter, we present a method for the recognition of both the
basic kernels computed in a loop nest, and the relationships that exist between
those kernels. The work by Gerlek, Stoltz and Wolfe [18] describes the theo-
retical foundations that are the basis of our technique. The method proposed
in that work addresses the recognition of integer-valued scalar computational
kernels even in the presence of complex control constructs. A well-known
example of such kernels are non-conditional and conditional induction varia-
bles. The method consists of a classification scheme that proceeds as follows.
First, the loop body is translated into SSA form. Next, a partitioning of the
scalar statements of the loop body is computed. This task is accomplished by
searching the strongly connected components (SCCs) that appear in the SSA
graph, which is the graph of factored use-def chains corresponding to the SSA
form. The core of the method consists of the classification of the statements of
each SCC. The classification scheme provides the compiler with information
about the type of scalar, integer-valued computational kernel that is calcu-
lated in each SCC. Furthermore, whenever possible, a closed form expression
for the corresponding kernel is determined.

We present a new classification scheme that recognizes the kernels com-
puted in the statements of the SCCs that arise in the GSA graph, i.e. the

27
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graph that represents the factored use-def chains of the GSA form. The scheme
in [18] can only handle expressions that involve scalar integer-valued variables.
Thus, expressions with array references, which appear very often in real ap-
plications, are outside the scope of that technique. The new algorithm is a
generalization that supports not only integer-valued scalar expressions, but
also floating-point-valued expressions and references to array variables. In
particular, the array references with subscripted subscript expressions that
characterize irregular codes can also be analyzed. This extension could seem
to be of little significance. However, the spectrum of computational kernels
that can be detected by the compiler is extended, at least, to the collection
of basic kernels described in Section 2.2, namely, induction variables (basic li-
near and more complex induction variables), scalar reduction operations (sum,
product, minimum, maximum, etc.), linked-list traversals, masked operations
with scalars and arrays, and both regular and irregular array operations. It
should be noted that the recognition of the reinitialized scalar kernels (induc-
tion variables, scalar reductions and linked-lists) cannot be accomplished with
the classification scheme presented in this chapter because the SCCs do not
contain enough information. That problem will be addressed in the following
chapter.

A detailed block diagram of this stage of the compiler framework cons-
truction, Recognition of basic computational kernels, is depicted in Fig. 3.1.
Starting from the GSA form, the SCCs of the GSA graph are classified. As
will be shown later, the classification process performs an exhaustive traver-
sal of the expressions that compose the statements of the SCC. During this
process, the use-def chains between SCCs will be identified. Finally, the use-
def chains will be classified in a subsequent phase. The information gathered
during the analysis of the code is represented in a structure called SCC graph,
which is the basis of the last stage of the framework, Recognition of Loop-Level
Computational Kernels (see Chapter 4).

The rest of the chapter is organized as follows. The gated single assignment
program form is described in Section 3.1. Basic definitions and notations that
are needed to explain the algorithms for the construction of the framework
are introduced in Section 3.2. The key ideas behind the decomposition of
the loop body into SCCs are described in Section 3.3. A taxonomy of SCC
classes is formally defined in Section 3.4. The algorithms for the classification
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Figure 3.1: Recognition of basic computational kernels (detail of the com-
piler framework depicted in Fig. 2.4).

of the SCCs and the use-def chains between SCCs are described in detail
in Section 3.5. In order to help the reader to understand the algorithms
precisely, a unique example code will be used as a guide for the explanations. A
detailed description of the SCC classification algorithm applied to this example
is presented in Section 3.6. The chapter finishes with the presentation of
experimental results in Section 3.7.

3.1 Gated Single Assignment Form

Flow of values of program variables is a fundamental property of the algo-
rithm coded in a program. Flow of values was traditionally studied by means
of methods that analyze the source code of a program in order to compute
the set of variables that are used in each statement, as well as the points of
the program where the values of those variables are defined (Reaching Defi-
nition Analysis [1]). In the last decade, a different approach has been suc-
cessfully adopted for implementing code transformations in a more efficient
manner. It basically consists of translating the source code into an inter-
mediate program form where reaching definition information is represented
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syntactically. This task is accomplished by inserting a set of special opera-
tors (called φ generically) in the points of the program where the control flow
merges and by renaming the variables of the program so that they are assigned
unique names in the definition statements. This approach was shown to be
effective, as demonstrated by the large number of code transformation and
optimization techniques that were implemented on top of these intermediate
representations. Some examples are constant propagation [49], global value
numbering [3, 40], partial redundancy elimination [13], strength reduction [25],
register promotion [42], detection of scalar computational kernels [18] , auto-
matic parallelization of programs [27, 50], conditional constant propagation of
scalar and array references [28], and privatization of variables [45].

The most popular intermediate form is Static Single Assignment (SSA) [14],
which captures reaching definition information at the statement-wise level.
This means that the unique statement that defines the value of a variable at
compile-time, may have several run-time instances that write successive values
to the same variable (e.g. a statement included in a loop body). An exten-
sion of SSA that captures control flow information, Predicated Static Single
Assignment (PSSA) [12], was also proposed. However, both SSA and PSSA
have a major limitation for the analysis of real applications: they only repre-
sent reaching definition information for scalar variables.

In order to solve the problem described above, several extensions that
handle array variables have been proposed. Knobe and Sarkar [27, 29] present
two formulations of Array SSA: Partial Array SSA (PA-SSA), used in static
analysis of programs (i.e. at compile-time), and Full Array SSA (FA-SSA),
used in dynamic analysis of programs (i.e. at run-time). PA-SSA captures
data-flow information at the statement-wise level. Thus, arrays are managed
as a unique entity, like scalars in SSA. FA-SSA is a run-time implementation
of PA-SSA that transforms the special operators inserted in the code into code
that is executed at run-time. This mechanism enables the analysis of different
instances of array assignment statements separately, and thus it enables to
perform precise analysis of array subscript expressions. Another extension
called Gated Single Assignment (GSA) was used by Tu and Padua [46] to
address automatic privatization of array variables. Unlike FA-SSA, the special
operators are not translated into run-time code in the GSA form. Actually,
GSA and PA-SSA are very similar representations that support static program
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analysis. A key difference is that GSA captures the information associated
with the conditional expressions of the conditional statements of a program.

The technique presented in this thesis addresses the recognition of loop-
level computational kernels at compile-time. For this purpose, both GSA
and PA-SSA can be used. However, we have chosen GSA because it presents
several advantages. First, GSA represents control flow information. Thus,
during the execution of the SCC classification algorithm, control information
is immediately available in the statements of the SCCs. In PA-SSA, further
analysis of the source code is needed. Consider the conditional consecutively
written array computations shown in Fig. 3.2(a). Focus on the corresponding
GSA and PA-SSA forms (Figs. 3.2(b) and 3.2(d), respectively), where the
generic φ operators have been replaced with more specific operators in the GSA
form (these special operators will be described in Section 3.1.1). In GSA form,
the special operator in statement a3 = γ(c(h1), a2, a1) captures the conditional
expression c(h1) of the if-endif construct; the statement a4 = φ(a3, a1) in
PA-SSA does not. Second, array assignment statements are represented in
GSA using only one statement (a2 = α(a1, i2, tmp2 + 2) in Fig. 3.2(b)), while
two statements are used in PA-SSA (a2(i2) = tmp2 + 2 and a3 = φ(a2, a1)
in Fig. 3.2(d)). This compact representation has important implications from
the viewpoint of the construction of our framework. On the one hand, the
statements associated with array definitions in GSA belong to a unique SCC
in the GSA graph (see the set of nodes a1, a2, a3 in Fig. 3.2(c)), which simplifies
the SCC classification algorithm. Note that two SCCs appear in PA-SSA form:
one composed of the φ-statements (a1, a3, a4 in Fig. 3.2(e)), and the other one
composed of the array statement (a2 in Fig. 3.2(e)). On the other hand, the
translation of real codes into PA-SSA form could lead to code explosion.

3.1.1 Special Operators in GSA Form

The translation of a source code into GSA form involves carrying out two main
tasks: (1) placement of the φ special operators at the confluence nodes of the
control flow graph, and (2) renaming of variables so that the left-hand sides of
the assignment statements define distinct variables. An efficient construction
method for GSA is proposed in [46]. From the viewpoint of program analysis,
it is interesting to be able to distinguish the generic φ operators by the point
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i = 1
DO h = 1, n

IF (c(h)) THEN
tmp = f(h)
a(i) = tmp + 2
i = i + 1

END IF
END DO

(a) Source code.

i1 = 1
DO h1 = 1, n, 1

i2 = µ(i1, i4)
a1 = µ(a0, a3)
tmp1 = µ(tmp0, tmp3)
IF (c(h1)) THEN

tmp2 = f(h1)
a2 = α(a1, i2, tmp2 + 2)
i3 = i2 + 1

END IF
i4 = γ(c(h1), i3, i2)
a3 = γ(c(h1), a2, a1)
tmp3 = γ(c(h1), tmp2, tmp1)

END DO

(b) GSA form.
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(c) GSA graph.

i1 = 1
DO h1 = 1, n, 1

i2 = φ(i1, i4)
a1 = φ(a0, a4)
tmp1 = φ(tmp0, tmp3)
IF (c(h1)) THEN

tmp2 = f(h1)
a2(i2) = tmp2 + 2
a3 = φ(a2, a1)
i3 = i2 + 1

END IF
i4 = φ(i3, i2)
a4 = φ(a3, a1)
tmp3 = φ(tmp2, tmp1)

END DO

(d) PA-SSA form.
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tmp1
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(e) PA-SSA graph.

Figure 3.2: GSA and PA-SSA representations of the generic consecutively
written array kernel shown in Fig. 2.5.
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of the program where the new statements are inserted. The following types of
φ’s are considered:

µ(xout, xin), which appears at loop headers and selects the initial xout and
loop-carried xin values of a variable.

γ(c, xin, xout), which is located at the confluence node associated with a branch
and captures the condition c for each definition to reach the confluence
node: xin if c is true; xout, if c is false.

α(aprev, s, rhs), whose semantics is that the element s of an array variable a

receives the value rhs while the other elements take the values of the
previous definition of the array, denoted as aprev.

Several syntaxes are possible. However, the really important thing is the
semantics. Without loss of generality, the algorithms presented later in Sec-
tion 3.5 are based on the syntax described above. From now on, we will refer
to the statements of the source code of the loop body explicitly as source code
statements. The term statement will be used for the assignment statements
of the GSA form. The statements that contain µ, γ and α operators will
be referred to as µ-statements, γ-statements and α-statements, respectively.
Note that we do not need to talk about conditional statements in GSA form
because control information is implicitly represented in the γ operator.

3.1.2 Useful Properties of GSA for the Analysis of Codes

The success of intermediate program representations such as SSA or GSA
comes from the fact that they have some properties that are very useful for
the analysis of codes. Our technique for automatic detection of parallelism
takes advantage of a set of properties that are described in this section.

An immediate consequence of the placement of φ special operators and
the renaming of variables is that anti-dependences and output-dependences on
scalar variables are removed from the code. Regarding array variables, these
dependences related to memory reuse are removed for the array as a whole,
not at the array element level. Furthermore, reaching definition information is
immediately available for scalar and for array variables (not for array entries).
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An important characteristic of GSA form is that it supplies syntactical
support for analyzing at compile-time whether or not two expressions take
the same value during the execution of a program. The following definition
introduces this concept.

Definition 3.1. Let e1 and e2 be two expressions in the GSA form. We say
that e1 and e2 are GSA-equivalent expressions, e1

GSA≡ e2, if e1 and e2

always take the same value during the execution of the program.

In the source code, a unique variable name is used along all the execution
paths. The name of the variable does not contain any information about the
point of the program where the value of an occurrence is computed. Thus, a
compiler has to use data flow analysis techniques for determining if two diffe-
rent occurrences of a variable will take the same value at run-time. In contrast,
in GSA form different definitions of the same variable are assigned different
names, so reaching definition information (at the statement-wise level) is repre-
sented syntactically. Next, we present a theorem that, using such information,
provides a sufficient condition for two expressions to be GSA-equivalent.

Theorem 3.1. Let e1 and e2 be two expressions in GSA form. If e1 and e2

are syntactically identical (e1 = e2), then both expressions take the same value

during the execution of the program, i.e. they are GSA-equivalent (e1
GSA≡ e2).

Proof. The key observation is that different occurrences of a scalar variable are
assigned the same name in GSA form if they are located between two conse-
cutive scalar assignment statements executed between consecutive confluence
nodes of the control flow graph. As there is not any intermediate definition
or confluence node, the scalar variable keeps its value unchanged during the
execution of that fragment of the program. As a result, all the occurrences will
take the same value at run-time. Regarding array variables, the occurrences
of an array are assigned the same name under the same conditions stated
above, the difference being that it is the array as a whole that keeps its value
unchanged. Consequently, two array references will take the same value if
their subscript expressions are syntactically identical.

For the proof to be completed, the general case of an arbitrary operator
must be considered. In that case, if e1 and e2 are syntactically identical,
then they compute the same operation with the same arguments evaluated in
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the same order. The arguments may be scalar variables, array references or
other arbitrary operators. As the arguments are syntactically identical, the
expressions e1 and e2 will take the same value at run-time.

Two observations should be noted regarding Theorem 3.1. On the one
hand, the run-time value of the expressions is not known; we can only assure
that they will take the same value during the execution of the program. On
the other hand, two expressions that are syntactically different in GSA form
can take the same value at run-time.

The following lemma, which is an immediate consequence of Theorem 3.1,
establishes a sufficient condition for two DO loops of a program in GSA form
to have the same iteration space.

Lemma 3.1. Let doh and doh′ be two DO loops that appear in the GSA form
of a program. Let inith, limith and steph be the init, limit and step expressions
that define iteration space of doh. Let inith′, limith′ and steph′ be the init, limit
and step expressions that define iteration space of doh′. If these expressions
are pairwise syntactically identical (i.e. inith = inith′, limith = limith′ and
steph = steph′), then the iteration spaces of doh and doh′ are equal.

3.2 Basic Definitions and Notations

In this section, we introduce definitions and notations that will be used through-
out this chapter for describing the construction of our compiler framework.
Let SCC(x1...n) denote a strongly connected component composed of n nodes
of the GSA graph of a program. The nodes are associated with the set of
statements that define the variables xk (k = 1, . . . , n).

The following five definitions are used as criteria for the taxonomy of SCCs
presented later in Section 3.4.

Definition 3.2. Let SCC(x1...n) be a strongly connected component. The
component is trivial if it consists of exactly one node of the GSA use-def
chain graph (n = 1). Otherwise, the component is non-trivial (n > 1).

Definition 3.3. Let SCC(x1...n) be a non-trivial strongly connected compo-
nent. Let c1, . . . , cm be the set of conditional expressions associated with the



36 Chapter 3. Recognition of Basic Computational Kernels

γ-statements of the SCC. The component is structural if there is not any oc-
currence of x1, . . . , xn in c1, . . . , cm. Otherwise, the component is semantic.

Definition 3.4. The cardinality of a component, |SCC(x1...n)|, is defined
as the number of different variables of the source code that are associated with
x1, . . . , xn.

Definition 3.5. Let SCC(x1...n) be a strongly connected component of car-
dinality zero or one. The component is scalar if x1, . . . , xn are different
definitions of a unique scalar variable x of the source code. Otherwise, the
component is array.

Definition 3.6. Let SCC(x1...n) be a strongly connected component. The com-
ponent is conditional if it contains at least one γ-statement, i.e., if at least
one assignment statement is enclosed within an if-endif construct. Otherwise,
it is non-conditional.

The notation SCC(x1...n) will be used for referring to components in a
generic manner. However, giving a detailed description of the compiler frame-
work will usually require the specification of some characteristics of the com-
ponents. The notations SCCS

C(x1...n) and SCCA
C (x1...n) will denote a scalar

and an array component of cardinality C, respectively.

This thesis focuses on the analysis of SCCs with cardinality zero or one be-
cause they represent approsimately 88% of the SCCs found in our benchmark
suite (see Section 3.7 for more details). The classification of SCCs with higher
cardinality, and the computational kernels that they represent, is a research
topic left for future study. The following lemma, which is an immediate con-
sequence of Def. 3.4, presents an important relationship between the variables
of the SCCs in GSA form and the corresponding variables in the source code.

Lemma 3.2. Let SCC(x1...n) be a component with cardinality zero or one.
The variables xk (k = 1, . . . , n) are different definitions of a unique variable
x of the source code.

The consequences of this lemma will be analyzed in Section 3.5. It basically
simplifies the design of the SCC classification algorithm.
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The goal of the algorithm described in this chapter is the recognition of
the basic computational kernels that are calculated in a loop nest. As will
be shown in Section 3.5, we propose a classification scheme that is able to
recognize the type of kernel computed in an expression e, a statement x = rhs

and a strongly connected component SCC(x1...n). We use the concept of class
for representing the different types of kernels. The notations [e], [x = rhs]
and [SCC(x1...n)] will be used for the class of an expression, a statement and
a component, respectively.

The taxonomy of SCCs that will be presented in Section 3.4 shows the
different classes of SCCs that may appear in a GSA graph. The class of a
scalar component [SCCS

C(x1...n)] is represented as a pair, c1/c2, that indi-
cates the conditionality, c1, and the type of scalar kernel, c2 (see, e.g., linear
induction variable, linked-list traversal, etc. in Section 2.2). An example
is non-cond/lin, which denotes a non-conditional linear induction variable.
The class of an array component [SCCA

C (x1...n)] is represented by a triplet,
c1/c2/c3, composed of the conditionality c1, the type of array operation c2 (see,
e.g., assignments, reductions and recurrences in Section 2.2.5), and the type
of scalar kernel, c3, computed by the index expression of the array reference
that appears in the left-hand side of the statements of the component. An
example is cond/reduc/subs, which denotes a conditional irregular reduction.

Our compiler framework is based on the representation of loop nests as
SCC graphs that show the relationships (i.e. the dependences) that exist
between the basic kernels computed in the SCCs of the GSA graph. In the
following definitions we extend the concept of dependence between statements
to the concept of dependence between SCCs, which will be used in Section 3.5.

Definition 3.7. Let stm1 and stm2 be two statements included in the compo-
nents SCC(x1...n) and SCC(y1...m), respectively. We say that there is a direct

use-def chain between the components, SCC(x1...n) → SCC(y1...m), if there
is a direct use-def chain between stm1 and stm2, i.e., if the left-hand side or
the right-hand side expressions of stm1 contain at least one occurrence of the
variable defined in stm2.

The concept defined above can be generalized to the concept of indirect
use-def chain between two strongly connected components, which will be
denoted as SCC(x1...n) +→ SCC(y1...m).
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Definition 3.8. A component SCC(x1...n) is independent if it is not the
source of any use-def chain.

Definition 3.9. Two components SCC(x1...n) and SCC(y1...m) are mutually

dependent iff SCC(x1...n) +→ SCC(y1...m) and SCC(y1...m) +→ SCC(x1...n).

At this point we can define the SCC graph, which is the output of the
classification algorithm described in Section 3.5, as well as the input of the
loop classification scheme presented in Chapter 4. First, we define several
classes of use-def chains. The goal of these classes is to highlight relevant
dependences from the viewpoint of the last stage of the compiler framework
construction, Recognition of Loop-Level Computational Kernels in Fig. 3.1.
The details can be consulted in Chapter 4.

Definition 3.10. Let SCC(x1...n) → SCC(y1...m) be a use-def chain between
two SCCs of cardinality zero or one. Let e be an expression within a statement
of SCC(x1...n) that contains an occurrence yk of the variables y1, . . . , ym of the
target component SCC(y1...m). We say that SCC(x1...n) → SCC(y1...m) is a
control use-def chain if e is the conditional expression of a γ-statement of
SCC(x1...n). If e is the left-hand side or the right-hand side expression of a
source code assignment statement associated with SCC(x1...n), then other two
types of chains are distinguished. We say that SCC(x1...n) → SCC(y1...m) is
a structural use-def chain if one of the following properties is fulfilled:

1. SCC(x1...n) and SCC(y1...m) are scalar strongly connected components
whose variables x1, . . . , xn, y1, . . . , ym are different definitions of a unique
scalar variable in the source code.

2. SCC(x1...n) is an array component of class c1/c2/c3, SCC(y1...m) is a
scalar component of class c4/c5, e consists of a reference to the array
variable associated with SCC(x1...n), and the classes c3 and c5 are equal.

Otherwise, SCC(x1...n) → SCC(y1...m) is a non-structural use-def chain.

Definition 3.11. Given a program in GSA form, we define the SCC graph

as the directed graph whose nodes are the SCCs that appear in the GSA graph,
and whose edges are the control, structural and non-structural use-def chains
between pairs of SCCs.
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The GSA form captures the flow of values in a program by inserting special
µ, γ and α operators in the code. Some special types of SCCs are defined on
the basis of the special operators they contain.

Definition 3.12. A component SCC(x1...n) is wrap-around if it is only
composed of µ-statements. Otherwise, it is non-wrap-around.

Definition 3.13. A strongly connected component SCC(x1...n) is virtual

if it contains a combination of µ and γ-statements only, with at least one
γ-statement.

3.3 Strongly Connected Components in GSA
Graphs

The first stage of the construction of the SCC graph is the identification and
classification of the SCCs that appear in GSA graph of the loop body. Several
methods for searching SCCs in graphs have been proposed in the literature.
The classical Tarjan algorithm [51] or more recent searching methods [16,
24] can be used for this purpose. Gerlek, Stoltz and Wolfe [18] proposed a
classification scheme where any given SCC will first demand the classification
of any SCC it requires for its own classification. The Tarjan algorithm supports
this demand-driven classification scheme naturally because, in that algorithm,
a SCC is not found until all the descendent SCCs in the graph have been
found. This characteristic enables to perform the SCC search and the SCC
classification in one step only.

The SCCs are intended to represent the basic computational kernels that
are calculated during the execution of the loop. In order to achieve this goal,
we will build the SCCs by ignoring the control use-def chains of the GSA
graph. Let us study the effects of this decision with the code fragment shown
in Fig. 3.3. Control use-def chains are highlighted by depicting them as dotted
edges in the GSA graph of Fig. 3.3. If the control use-def chains introduced by
the conditional expression max2 < a(i2) are ignored, the loop body contains
two components SCC(i2...4) and SCC(max2,4) that represent a conditional
induction variable and a maximum scalar reduction, respectively. However, if
those dependences are considered, the two computational kernels are captured
by a unique component SCC(i2...4,max2,4). Unlike the latter approach, the
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max = a(1)
i = 1
DO h = 1, n

IF (max < a(i)) THEN
max = a(i)
i = i + 1

END IF
END DO

(a) Source code.

max1 = a(1)
i1 = 1
DO h1 = 1, n, 1

i2 = µ(i1, i4)
max2 = µ(max1, max4)
IF (max2 < a(i2)) THEN

max3 = a(i2)
i3 = i2 + 1

END IF
i4 = γ(max2 < a(i2), i3, i2)
max4 = γ(max2 < a(i2), max3, max2)

END DO

(b) GSA form.

max2

max3

max4

max1i1

i2

i3

i4

(c) GSA graph.

Figure 3.3: Effect of searching SCCs in GSA graphs with information
about control use-def chains.

first enables the separation of the basic kernels. The information about the
flow of values that is provided by the control use-def chains is determinant for
the recognition of the kernels computed in a loop. Thus, although it is not
considered for the analysis of the SCCs, it will be taken into account during the
execution of the SCC graph classification algorithm presented in Chapter 4.

As stated above, the conditional consecutively written array computations
analyzed in Section 2.3 will be used to illustrate the construction of our com-
piler framework, as well as its application to the automatic parallelization of
sequential codes. The source code and the corresponding GSA form and GSA
graph were presented in Fig. 3.2. In particular, focus on the induction variable
i, which is represented by the definitions i1, i2, i3 and i4 in the GSA form.
Starting at the µ that defines i2, the external definition i1 determines the value
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at the beginning of the first loop iteration. On subsequent iterations, the value
is that of the internal definition i4 at the statement i4 = γ(c(h1), i3, i2). The
γ operator represents that, if the condition c(h1) is true in the loop iteration
h1, then i4 takes the value i3 defined in the body of the if-endif construct.
Otherwise, it takes the value i2 defined at the µ-statement at the beginning of
the iteration. The right-hand side of the statement i3 = i2 +1 also fetches the
value i2 assigned by the µ operator. The flow of values during the execution
of the loop is represented in the GSA use-def chain graph of Fig. 3.2(c). A di-
rected edge denotes a use-def chain between two statements of the GSA form.
The labels of the nodes represent the left-hand side of the statements. The
flow of values described above for the induction variable i defines two cycles
that we denote as < i2, i4 > and < i2, i3, i4 >. The key observation is that
there is a component SCCS

1 (i2...4) associated with the induction variable i, as
i is defined in terms of itself in the loop body.

A similar scenario arises for the computation of array a. The key obser-
vation here is that there is not any occurrence of a in the right-hand side
of the source code statement a(i) = tmp + 2. In GSA form, however, the
corresponding statement a2 = α(a1, i2, tmp2 + 2) contains one occurrence of
a. The reason for this is that the α operator represents the definition of the
element a2(i2) in terms of the previous value of the whole array. In this case,
the value a1 that was assigned by the µ operator inserted at the beginning of
the loop body. Apart from the occurrence inserted by the α operator, array
reductions and array recurrences also contain at least one occurrence in the
right-hand side expression. This discussion leads to the important conclusion
that every array assignment statement is contained in one SCC in GSA form.
In our example code, the flow of values for array a is represented by two cycles
< a1, a3 > and < a1, a2, a3 >. The maximal cycle is a strongly connected
component SCCA

1 (a1...3).

On the other hand, the loop body contains a scalar variable tmp that
is not defined in terms of itself. In GSA form, there is a trivial component
SCCS

1 (tmp2) (see Def. 3.2) associated with tmp2 = f(h1). The important fact
here is that tmp is assigned a value in the loop iterations where the condition
c(h1) is true. This data flow is represented in GSA form by inserting two
new statements tmp1 = µ(tmp0, tmp3) and tmp3 = γ(c(h1), tmp2, tmp1) that
define a non-trivial virtual component SCCS

0 (tmp1,3) (see Defs. 3.2 and 3.13).
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Note that the cardinality (Def. 3.4) is zero because the two statements of the
SCC were inserted in the code during the translation of the program into GSA
form.

As shown above, induction variables are represented by non-trivial SCCs.
The index of the DO-loop doh1 computes a non-conditional induction variable.
However, the special syntax of the DO-loop headers causes this induction
variable to be represented by a trivial component SCCS

1 (h1). For the sake of
clarity, this information was omitted from the GSA graph of Fig. 3.2(c).

3.4 Taxonomy of GSA Strongly Connected
Components

The class of a SCC represents the type of basic computational kernel that is
calculated in the statements of the component. The analysis of the characte-
ristics of the statements allows several classes of SCCs to be distinguished. The
class of a SCC will represent the type of kernel associated with the component
(the set of kernels considered in this work was described in Section 2.2). In
this section, a taxonomy of the classes of SCCs that may appear in the GSA
graph is presented. Notations for the classes of scalar SCCs and array SCCs
were defined in Section 3.2.

The taxonomy is defined using five properties of the strongly connected
components: trivial/non-trivial (Def. 3.2), structural/semantic (Def. 3.3), car-
dinality (Def. 3.4), scalar/array (Def. 3.5) and conditionality (Def. 3.6). A
graphical depiction is shown in Fig. 3.4. It should be noted that the classifi-
cation of SCCs with cardinality greater than one is outside the scope of this
thesis because they represent a small percentage of the classes of SCCs that ap-
pear in our benchmark suite. Furthermore, the expressions within statements
are supposed to be simplified algebraically. If the left-hand side variable of
the statement is a scalar, after simplification the right-hand side expression
will contain at most one occurrence of the variable. Some exceptions to this
rule are described in [18], but the codes included in our benchmark suite do
not contain such exceptional cases. For array statements, the same will occur
except if there is, at least, one subscript expression of a right-hand side array
reference that does not match the subscript expression of the left-hand side.
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Figure 3.4: Taxonomy of strongly connected components in GSA graphs.
Abbreviations of SCC classes are written in italic font within
braces. Classes that contain the word unknown represent com-
putations that do not fulfill the properties of the other SCCs.
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3.4.1 Trivial SCCs

Trivial components, SCC(x), consist of only one node that is associated with
a scalar assignment statement x = rhs, where x is a scalar variable and rhs

is an expression that does not contain any occurrence of x. Variable x is
not defined in terms of itself, otherwise the component would be composed
of at least two nodes. The class of trivial SCCs will not be decomposed into
subclasses according to the criteria used in the taxonomy of Fig. 3.4. The
following lemmas are immediate consequences of the definition of a trivial
SCC (see Def. 3.2).

Lemma 3.3. The cardinality of a trivial SCC is always one. The only excep-
tions are virtual and wrap-around SCCs, whose cardinality is zero.

Lemma 3.4. Trivial SCCs are structural and scalar.

The first trivial class shown in the taxonomy is none, which does not
represent any type of kernel. It will be used in the SCC classification algorithm
(see Section 3.5) as the initial value of all the classes. The last class unknown,
captures those trivial SCCs whose computational kernel cannot be successfully
classified. Several trivial classes are distinguished by the characteristics of the
right-hand side expression rhs:

• invariant: Let {x1, . . . , xn} be the set of scalar/array variables that are
referenced in rhs. The component is invariant if ∀xk (k = 1, . . . , n), xk

is loop-invariant, i.e. it is not defined within the loop body.

• linear: Let {x1, . . . , xn} be the set of variables that are referenced in
rhs. The SCC is linear if (1) ∃xk (k ∈ {1, . . . , n}), where xk is a linear
induction variable (see induction variables in Section 2.2.1) defined in
another SCC within the loop body, and (2) ∀xj (j ∈ {1, . . . , n}, k )= j),
xj is loop-invariant.

• reduction: The component is reduction if the set of variables {x1, . . . , xn}
contains at least one occurrence of a scalar reduction variable (see scalar
reduction operations in Section 2.2.2). The remaining occurrences may
be either linear induction variables or loop-invariant variables.
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The trivial classes defined above are associated with some sequences defined
in [18]. However, expressions involving array references are not considered in
that work. In order to cope with such expressions, we define a new class of
trivial component:

• subscripted: The component is subscripted if the expression rhs fulfills
the same properties as linear trivial SCCs, the difference being that
at least one xj is an occurrence of an array variable whose subscript
expression is loop-variant, i.e., its value changes in each loop iteration.

The generic implementation of the consecutively written array kernel shown
in Fig. 3.2(a) contains a scalar temporary variable tmp that is represented
as a trivial component SCCS

1 (tmp2) of class subscripted in the GSA graph
of Fig. 3.2(c), the subscript h1 being the loop-variant expression. The source
code of the gather operation presented in Fig. 3.5 contains two scalar variables
l and m that were inserted for illustrative purposes only. They are represented
as SCCS

1 (l2) and SCCS
1 (m2) of class invariant and linear, respectively. In the

example, some trivial SCCs of cardinality zero also appear, namely, SCCS
0 (l2),

SCCS
0 (m2) and SCCS

0 (j2).

3.4.2 Non-trivial SCCs

Non-trivial components consist of at least two nodes of the GSA graph. As
a consequence, non-trivial SCCs may contain µ-statements, γ-statements,
α-statements or scalar assignment statements, but they always have at least
one µ-statement.

i. Structural SCCs

Two criteria will be used for further classification of structural SCCs (see the
taxonomy of Fig. 3.4): cardinality (Def. 3.4) and scalar/array (Def. 3.5).

Cardinality zero. This class of structural SCC consists of a combination
of µ and γ-statements only. It arises when a scalar variable is defined in a
point of the loop body such that there is at least one confluence node between
that point and the loop entry. Two typical scenarios are the definition of a
scalar variable in the body of an if-endif construct, and in the body of an inner
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k = 1
DO h = 1, n

l = b(2)
m = h
j = f(h)
IF (j "= 0) THEN

a(k) = b(j)
k = k + 1

END IF
END DO

(a) Source code.

k1 = 1
DO h1 = 1, n

k2 = µ(k1, k4)
j1 = µ(j0, j2)
m1 = µ(m0, m2)
l1 = µ(l0, l2)
a1 = µ(a0, a3)
l2 = b(2)
m2 = h1

j2 = f(h1)
IF (j2 "= 0) THEN

a2(k2) = α(a1, b(j2))
k3 = k2 + 1

END IF
k4 = γ(j2 "= 0, k3, k2)
a3 = γ(j2 "= 0, a2, a1)

END DO

(b) GSA form.

k1

k2

k3

k4

l1

l2

a1

a2

a3

j2

j1

m2

m1

(c) GSA graph.

Figure 3.5: Gather operation of an array with irregular access pattern.

loop within a loop nest. The consecutively written array of Fig. 3.2(a) con-
tains a scalar variable that corresponds to the first scenario described above.
Consequently, a structural component SCCS

0 (tmp1,3) arises in the GSA graph.

Cardinality one. This class represents the computations associated with one
variable of the original source code that is defined in terms of itself. The SCC
contains at least one µ-statement. Structural SCCs with cardinality one are
divided into scalar SCCs and array SCCs.

Some scalar sequences associated with scalar structural SCCs are presented
in [18]: linear induction variables, and a set of monotonic sequences. The
example code shown in Fig. 3.2(a) contains a conditional linear induction
variable (see Section 2.2.1) that is represented by a structural component
SCCS

1 (i2...4) of class conditional/linear. In order to cope with array references,
we define two additional classes:

• (non-)conditional/reduction (see Section 2.2.2): The operations within
the component contain at least one loop-variant array reference. An
example code is the computation of the sum/product of the elements of
an array.

• (non-)conditional/list (see Section 2.2.3): No arithmetic operator is al-
lowed within the component. Only array references whose subscript ex-
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pressions consist of one occurrence of the variable defined in the SCC are
allowed. An example code is the traversal of a linked list implemented
by means of an array, i.e., i = next(i) within the loop body.

Regarding array structural SCCs, several subclasses are also distinguished.
This class of SCCs enables the recognition of a set of array operations described
in Section 2.2.5. Let a(s) = rhs be an array assignment statement where the
s− th element of the array a is assigned the value of expression rhs. Different
classes are distinguished according to the number of occurrences of the left-
hand side array reference, a(s), that appear in rhs:

• (non-)conditional/assignment/[s], if there are zero occurrences.

• (non-)conditional/reduction/[s], if there is one occurrence matching a(s).

• (non-)conditional/recurrence/[s], if the expression rhs contains a set of
occurrences {a(s1), . . . , a(sr)} such that ∃sk k ∈ {1, . . . , r} / sk )= s.

The occurrences cannot appear in the subscript expression of any array refe-
rence. The class [s] denotes the class of the left-hand side subscript expression
s, which is determined by checking the same properties as the right-hand side
expressions associated with trivial components (see Section 3.4.1). Note that
in the taxonomy of Fig. 3.4 the trivial classes none and reduction are not
shown as possible values for [s]. In the first case, this is because none will
be used in the SCC classification algorithm (see Section 3.5) just as an initial
value before running the algorithm. The class reduction was excluded because
there is not any case in our benchmark suite. In fact, it is not a common
programming practice to use reduction variables to reference the entries of an
array. The computations of array a in Fig. 3.2(a) are captured as an array
structural component SCCA

1 (a1...3) of class cond/assig/lin.

ii. Semantic SCCs

Semantic SCCs are associated with kernels where the current value of a varia-
ble is tested in an if-endif conditional statement before computing the next
value of the variable. Semantic SCCs are conditional because they always
contain at least one γ-statement. Like structural SCCs, semantic SCCs are
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classified according to their cardinality (Def. 3.4). The detection of some
kernels associated with semantic SCCs (e.g. minimum (maximum) reduction
operations) was also addressed in [44].

Cardinality zero. Like cardinality-0 structural SCCs, these components
appear in loop bodies where a scalar variable v is defined inside an if-endif
construct. Let c represent the condition defined by the γ-statements of the
SCC. Several subclasses are distinguished according to the properties of c:

• Scalar minimum and scalar maximum (see Section 2.2.2): The condition
c matches v < e, v ≤ e, e > v or e ≥ v for minimum. It matches
e < v, e ≤ v, v > e or v ≥ e for maximum. A representative source code
pattern is the computation of the minimum value of an n-dimensional
array (see SCCS

0 (m3,5) in the innermost loop doh2 of Fig. 3.6).

• Scalar find-and-set (see Section 2.2.4): The conditional expression c

matches (v == e).AND.e′, where e and e′ are expressions that do not
contain occurrences of v. Furthermore, variable v must be set to a value
different to e before starting the execution of the loop.

As shown in Section 2.2, the recognition of the kernels maximum, minimum
and find-and-set requires the checking of some properties, both in a conditional
expression and in a scalar assignment statement. Within the scope of these
components, only the information about the condition is available. Thus, the
SCC classification scheme can only detect components that are candidates
to be classified as scalar-minimum (maximum) and scalar-find-and-set. As
will be shown in Chapter 4, all the information will be available during the
execution of the SCC graph classification scheme.

Cardinality one. These semantic components appear in loop bodies where
an array variable is defined inside an if-endif construct. Consequently, they
contain at least one α-statement. Three classes are distinguished: array-
maximum, array-minimum and array-find-and-set. These classes verify the
same conditions as scalar-maximum, scalar-minimum and scalar-find-and-set,
respectively, the difference being that an array reference is involved, not a
scalar variable. In this case, the assignment statement belongs to the SCC.
Thus, the necessary information is available and the computational kernel is
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m = a(f(1))
l = f(1)
DO row = n1, n2

DO h = begin(row), end(row)
IF (a(f(h)) < m) THEN

m = a(f(h))
l = f(h)

END IF
END DO

END DO

(a) Source code.

m1 = a(f(1))
l1 = f(1)
DO row1 = n1, n2

l2 = µ(l1, l3)
m2 = µ(m1, m3)
h1 = µ(h0, h2)
DO h2 = begin(row1), end(row1)

l3 = µ(l2, l5)
m3 = µ(m2, m5)
IF (a(f(h2)) < m3) THEN

m4 = a(f(h2))
l4 = f(h2)

END IF
l5 = γ(a(f(h2)) < m3, l4, l3)
m5 = γ(a(f(h2)) < m3, m4, m3)

END DO
END DO

(b) GSA form.

l1

l2

l3

l4

m1

m2

m3

m4

m5l5

(c) GSA graph.

Figure 3.6: Computation of the minimum value of the rows of a sparse
matrix.

detected in the SCC classification algorithm. A simple example of array-find-
and-set is SCCA

1 (a1...3) in the masked operation shown in Fig. 3.7.

3.5 Strongly Connected Component Classification
Algorithm

The basis of our compiler framework is the representation of the source code
of the loop nests as SCC use-def chain graphs. The information needed for the
construction of the SCC graph (see Def. 3.11) is retrieved from the source code
during the execution of the SCC classification algorithm. The explanation of
this algorithm is the main topic of our work [7].

The main steps of the algorithm, which is the first stage of the construc-
tion of our framework (see Fig. 3.1), are described in Section 3.5.1. It basically
consists of performing an exhaustive analysis of the statements and the expres-
sions that compose the loop body. The algorithms for the classification of the
statements and the expressions of the GSA form are presented in Sections 3.5.2
and 3.5.3, respectively.
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DO h = 1, n
IF (a(f(h)) "= 0) THEN

a(f(h)) = 0
END IF

END DO

(a) Source code.

DO h1 = 1, n
a1 = µ(a0, a3)
IF (a1(f(h1)) "= 0) THEN

a2(f(h1)) = α(a1, 0)
END IF
a3 = γ(a1(f(h1)) "= 0, a2, a1)

END DO

(b) GSA form.

a1

a2

a3

(c) GSA graph.

Figure 3.7: Source code for computing a masked operation.

3.5.1 Algorithm Overview

The set of strongly connected components that represent a loop nest are
classified using a non-deadlocking demand-driven algorithm that proceeds as
follows. For each non-classified component, SCC(x1...n), the component is
pushed onto a stack of SCCs and its classification procedure is started:

1. If SCC(x1...n) is independent (see Def. 3.8), then it will be success-
fully classified by the algorithms that will be presented in Sections 3.5.2
and 3.5.3. Once [SCC(x1...n)] has been determined, SCC(x1...n) is
popped from the stack, and the classification process of the SCC lo-
cated on top of the stack continues at the same point where it had been
deferred.

2. If SCC(x1...n) is not independent, then it is the source of a set of use-
def chains. During the analysis of the statements of SCC(x1...n), every
occurrence of a variable defined in another component SCC(y1...m) is
found. For each occurrence, a use-def chain SCC(x1...n) → SCC(y1...m)
is set, the classification process of SCC(x1...n) is deferred, and the clas-
sification of SCC(y1...m) is started. Once all the occurrences have been
processed, the classification of SCC(x1...n) will be successfully com-
pleted. The final stage of the algorithm is the classification of the use-
def chains whose source is SCC(x1...n). According to Def. 3.10, the
class of both the source and target components is needed. Thus, use-def
chains cannot be classified until [SCC(x1...n)] has been determined. It
should be noted that GSA enables finding control use-def chains while
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processing the statements of a component because the γ operator cap-
tures the conditional expressions of if-endif constructs. As explained in
Section 3.1, this is an advantage of the GSA form with respect to the
PA-SSA representation, which does not supply such information.

The algorithm described above reaches a deadlock state when mutually
dependent SCCs (see Def. 3.9) exist in the loop body, i.e., when the SCC
graph contains cycles (an example loop was presented in Section 3.3). Such
situations are detected by using the stack of SCCs as follows. If a use-def chain
SCC(x1...n) → SCC(y1...m) is found, the contents of the stack are checked
before starting the classification of SCC(y1...m). If SCC(y1...m) is already in
the stack, it means that an indirect use-def chain SCC(y1...m) +→ SCC(x1...n)
exists. Consequently, SCC(x1...n) and SCC(y1...m) are mutually dependent.

The taxonomy of SCCs presented in Section 3.4 defines the properties
of each SCC class. The class of both structural and semantic components,
[SCC(x1...n)], is computed as follows:

1. If the component is trivial, SCC(x1), then [SCC(x1)] = [x1 = e1].

2. If it is non-trivial, [SCC(x1...n)]=[x1 = µ(x0, xn)], where x1 = µ(x0, xn)
is the statement corresponding to the outermost loop of the loop nest.

Finally, if the SCC is semantic, the algorithm determines the appropriate
subclass by checking the properties of the corresponding conditional expres-
sions. It should be noted that, as described above, the problem of calculating
[SCC(x1...n)] is reduced to determine the class of a statement of the GSA
representation. During the classification process, the statements of a SCC are
classified on demand. In order to assure that each statement is processed only
once, a stack of statements is used.

The SCC classification algorithm is demand-driven because if references
to variables defined in statements of other SCCs exist, then such SCCs are
classified first. As will be shown later in this section, this demand-driven
mechanism is supported by a contextual classification scheme that may com-
pute different classes for a given expression. Consider the loops presented
in Fig. 3.8. Let us focus on the expression f(i) to illustrate why contextual
classification is needed. In Fig. 3.8(a), a linked-list traversal computational
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kernel is computed using the scalar variable i. The right-hand side of state-
ment i = f(i) is the expression f(i), which just consists of a reference to an
array variable f whose subscript expression i is the variable used to compute
the linked-list traversal. According to the definition of a linked-list traversal,
[f(i)] and [i = f(i)] should be assigned the class non-conditional/list (see the
taxonomy of Fig. 3.4). The loop of Fig. 3.8(b) calculates a scalar reduction
using the variable r, f(i) being an operand of the sum operator that appears in
r = r+f(i). In this case, [f(i)] should be assigned the class subscripted, which
represents loop-variant expressions. On the other hand, [r = r + f(i)] should
be set to non-conditional/reduction because a loop-variant value is summed
in each loop iteration. Note that if f and i were loop-invariant variables, the
scalar r would be a linear induction variable. As a result, [f(i)] would be
invariant, and [r = r + f(i)] would be non-conditional/linear.

In the rest of this chapter, the notation [e]eref

p:l,E will be used to represent the
contextual class of an expression e. The parameters that define the context are:
eref , the reference expression; l, the level of e within E, e being a subexpression
of another expression E; and p, which indicates if E is a subexpression of the
left-hand side of a statement (#), the right-hand side of a statement ($), or
the conditional expression of a γ-statement (denoted as ?). The concept level
of an expression is related to the representation of expressions as trees (see [51,
Chapter 3]). In this thesis, we will assume that the level of the root node is
0. We will also consider that the level of the subexpression e within E is the
level of the root node of e in the tree that represents E.

We are describing a demand-driven classification scheme, whose main cha-
racteristic is that the classification of an expression requires its operands to
be classified first. Thus, the class of an expression is calculated by means of
a transfer function (denoted as T ) that combines the classes of the operands.
The concept of transfer function is also applied to statements, where the
operands are the left-hand side and the right-hand side expressions. The
transfer function corresponding to an expression e or a statement stm will be
denoted as Te or Tstm, respectively. The main complexity of the algorithms
presented in the following sections is the definition of appropriate transfer
functions that enable the recognition of the collection of computational ker-
nels described in Section 2.2.
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DO h = 1, fsize

. . .
i = f(i)

END DO

(a) Source code
of a loop that con-
tains a linked-list
computational
kernel.

DO h = 1, fsize

. . .
i = h + 1
r = r + f(i)

END DO

(b) Loops where
a scalar reduction
operation is com-
puted.

Figure 3.8: Example codes to illustrate why expressions have to be ana-
lyzed with a contextual classification scheme.

3.5.2 Classification of GSA Statements

Let SCC(x1...n) and xj = rhsj be, respectively, a SCC of cardinality zero
or one and a GSA statement of the component. The class of a statement is
determined by applying a transfer function that takes into account the classes
of the left-hand side and right-hand side expressions, xj and rhsj. The transfer
functions for the different types of GSA statements are defined as follows. The
first function copes with the special syntax of the statements associated with
loop headers:

TDO-stm : [do v = einit, elimit, estep] =






unk if [einit]v :1,einit
=unk or

[elimit]v :1,elimit
=unk or

[estep]v :1,estep
=unk

subs if [einit]v :1,einit
=subs or

[elimit]v :1,elimit
=subs or

[estep]v :1,estep
=subs

lin otherwise

(3.1)

The index variable computes a linear induction variable except if at least one
of the init, limit and step expressions contains array references (class subs), or
if it cannot be successfully classified (class unk).

The transfer functions of the µ and γ-statements are rather simple. The
statement inherits the class of the right-hand side expression, i.e. that of the
GSA operator that captures the flow of values in loop headers and if-endif
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constructs.

Tµ-stm : [x = µ(xout, xin)] = [µ(xout, xin)]x :0,µ(xout,xin) (3.2)

Tγ-stm : [x = γ(c, xin, xout)] = [γ(c, xin, xout)]x :0,γ(c,xin,xout) (3.3)

The key idea behind the classification of scalar/array assignment state-
ments is to scan the right-hand side expression looking for subexpressions
that match a scalar/array reference. This reference expression is the left-hand
side of the statement in the source code. This task is accomplished in the
contextual classification algorithm that is applied to expressions. For this rea-
son, the transfer functions of the scalar and array assignment statements are
defined in a simple manner:

Tscalar-stm : [v = rhs] = [rhs]v :0,rhs (3.4)

Tα-stm : [a = α(aprev, s, rhs)] = [α(aprev, s, rhs)]a(s)
:0,α(aprev,s,rhs)(3.5)

The transfer functions presented above (Eqs. (3.1) to (3.5)) reduce the
classification of a statement to determining the contextual class of the right-
hand side expression. In the following section the contextual classification of
expressions is described in detail.

3.5.3 Contextual Classification of Expressions

Let SCC(x1...n) be a component of cardinality zero or one. Let xj = rhsj

be a statement of SCC(x1...n). Let e be a generic expression, represented
as ⊕(e1, . . . , er), which is a subexpression at level l of another expression E,
which may be either xj, rhsj or the arguments of a GSA operator. The
contextual class of the expression, [e]eref

p:l,E, is determined by performing a post-
order traversal of e, which is naturally supported by the demand-driven GSA
form. First, the classes of the operands [ei]

eref

p:(l+1),E (i = 1, . . . , r) are computed.
Finally, a transfer function T⊕ combines [ei]

eref

p:(l+1),E (∀i) to derive [e]eref

p:l,E. Note
that the parameters eref , p and E are preserved across the post-order traversal,
while the level l increases as the traversal advances.

In the rest of this section, we propose a set of transfer functions that
enable the classification of expressions. Different types of expressions are con-
sidered: loop-invariant expressions, identifiers of scalar/array variables, array
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references, arithmetical and logical expressions, and special GSA expressions.
The transfer functions presented in this work have been adjusted to classify
the expressions that appear in our benchmark suite. However, although some
changes may be needed, these functions are expected to enable the recognition
of the set of kernels considered in this work in other real codes.

Loop-invariant Expressions

A loop-invariant expression, K, includes constants and references to variables
that are not modified in the body of a loop. The transfer function TK for the
classification of K is:

TK : [K]eref

p:l,E =






inv if eref ≡ v is scalar
assig/[s]a(s)

:1,a(s) if eref ≡ a(s) is array, l = 0
inv if eref ≡ a(s) is array, l > 0

(3.6)

where the symbol “≡” means that the left-hand side and the right-hand side
expressions match.

In Section 3.2, we introduced notations for the classes of scalar and array
SCCs. Scalar and array classes were denoted by tuples whose first component
represents the conditionality of the SCC. For the sake of clarity, this informa-
tion was removed from the classes shown in TK . However, no information was
lost because TK does not modify the first component of the tuple. In fact, it
is only modified in the transfer function of the γ special operator, Tγ , which
will be presented later in this section. This notation will also be used in the
description of the remaining functions.

Identifiers of Scalar/Array Variables

The transfer function, Ty, of the identifier of a scalar/array variable, y, pro-
ceeds as follows. First, the SCC where the value of y is defined is searched in
the set of SCCs of the loop. Next, several cases are distinguished:

1. There is not any SCC where y is defined. Thus, y is a loop-invariant
variable, and is classified by applying the transfer function of Eq. (3.6).

2. The definition statement of y and the statement that contains the occur-
rence of y are included in the same component SCC(x1...n). According
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to Lemma 3.2, the identifier y matches xk (k ∈ {1, . . . , n}) because
|SCC(x1...n)| is zero or one. Let xk = rhsk and xj = rhsj (j )= k) be
the statements where the variable is defined and referenced, respectively.
Let stackstm be the stack of statements whose classification process has
been deferred. The class is determined as follows:

Ty : [xk]
eref

p:l,E =






[xk = rhsk] if xk )∈ stackstm

lin if xk ∈ stackstm,
and xk = rhsk is a µ-statement,
and xk is a scalar variable,
and xj = rhsj is a scalar or α-statement

none if xk ∈ stackstm,
and xk = rhsk is a µ-statement,
and xk is a scalar variable,
and xj = rhsj is a µ or γ-statement

none if xk ∈ stackstm,
and xk = rhsk is a µ-statement,
and xk is an array variable

unk otherwise
(3.7)

In the first entry of the transfer function, the classification process of
the definition statement xk = rhsk is launched because xk = rhsk is
a statement of SCC(x1...n) that has not been visited yet. The second
entry also deserves to be commented because it copes with the detec-
tion of occurrences of eref in the statement whose classification process
is in progress, i.e., xj = rhsj. When the occurrence xk corresponds to
a scalar variable defined in a µ-statement of SCC(x1...n), it means that
there will be a loop-carried dependence during the execution of the loop.
This information enables the recognition of computational kernels such
as induction variables or scalar reduction operations. In fact, the occur-
rence xk is assigned a candidate class lin, which will be adjusted later
by the transfer functions of the other types of expressions, for example,
arithmetical expressions.

3. The variable is defined in a different component SCC(y1...m). Let yk = rhsk

(k ∈ {1, . . . ,m}) be the definition statement of the variable in SCC(y1...m).
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Let xj = rhsj (j ∈ {1, . . . , n}) be the statement with the occurrence of
the variable in SCC(x1...n). Let stackscc be the stack of SCCs whose
classification process has been deferred. The transfer function proceeds
as described next. First, the class [SCC(y1...m)] is computed by running
the SCC classification algorithm. When this algorithm finishes, [yk]

eref

p:l,E

is calculated as follows. First, we show the cases where the occurrence
cannot be successfully classified:

Ty : [yk]
eref

p:l,E =






unk if SCC(y1...m)∈ stackscc

unk if SCC(y1...m))∈ stackscc,
and xj = rhsj is a scalar or α statement,
and [SCC(y1...m)]=unk

(3.8)
The classification is successful under the following conditions:

Ty : [yk]
eref

p:l,E =






none if xj = rhsj is a µ or γ statement
[SCC(y1...m)] if xj = rhsj is a scalar or α statement,

and [SCC(y1...m)] )=unk,
and SCC(y1...m) is scalar, l = 0,
and SCC(x1...n) is scalar

assig/none if xj = rhsj is a scalar or α statement,
and [SCC(y1...m)] )=unk,
and SCC(y1...m) is scalar, l = 0,
and SCC(x1...n) is array

[SCC(y1...m)] if xj = rhsj is a scalar, α or γ statement,
and [SCC(y1...m)] )=unk,
and SCC(y1...m) is scalar, l > 0

subs if xj = rhsj is a scalar or α statement,
and [SCC(y1...m)] )=unk,
and SCC(y1...m) is array,
and SCC(x1...n) is scalar

[SCC(y1...m)] if xj = rhsj is a scalar or α statement,
and [SCC(y1...m)] )=unk,
and SCC(y1...m) is array,
and SCC(x1...n) is array

(3.9)
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It should be noted that the condition SCC(y1...m))∈ stackscc is fulfilled in
all cases. Finally, a use-def chain SCC(x1...n) → SCC(y1...m) is defined
in the SCC graph. A label that gathers useful information is attached to
the use-def chains in the graph. The label is calculated in the following
manner:

label =






E′ if p =?
lhs index : E′ if p =#, subscript-level> 0
rhs index : E′ if p =$, subscript-level> 0
rhs : E′ if p =$, subscript-level= 0

(3.10)

where E′ is the scalar/array reference of minimum level within E that
contains the occurrence yk. The term subscript-level represents the in-
direction level of yk within E, i.e., the number of array references that
there are in the path from the root node of E until the node of yk.

Finally, we want to remark the fact that, as shown above, the demand-
driven mechanisms used to classify SCCs and statements are properly launched
in this transfer function as the occurrences of the different variables are found
during the analysis.

Array References

The contextual classification of expressions, [e]eref

p:l,E, basically searches for oc-
currences of eref in e. Occurrences of scalar variables are recognized by the
transfer function of the identifier of a variable. In contrast, occurrences of
array references are analyzed in the transfer function, Ta(sa), presented next.
Let x(sx) and a(sa) represent the reference and the target expressions eref

and e, respectively. Several cases are distinguished. First, assume that a and
x represent different occurrences of the same array variable of the source code:

Ta(sa) : [x(sa)]
x(sx)
p:l,E =






reduc/[sa]
x(sx)

:1,E if sa
GSA≡ sx

recur/[sa]
x(sx)

:1,E if sa

GSA
)≡ sx, [sa]

x(sx)
p:(l+1),E=[sx]x(sx)

:1,E

recur/unk if sa

GSA
)≡ sx, [sa]

x(sx)
p:(l+1),E )=[sx]x(sx)

:1,E

(3.11)
If the index expressions sa and sx are GSA-equivalent, i.e. their value coincides
during the execution of the loop (see Def. 3.1), then we can conclude that the
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statement under classification computes an array reduction operation (first
entry of Eq. (3.11)). Otherwise, the statement computes an array recurrence
operation (second and third entries). In general, GSA equivalence will be
proved by checking if sa and sx are syntactically identical (see Theroem 3.1).

Second, assume that the identifier of the array reference, a, and that of
eref , x, do not represent the same array variable of the source code:

Ta(sa) : [a(sa)]
x(sx)
p:l,E =






unk if [sa]
x(sx)
p:(l+1),E=unk

assig/[sx]x(sx)
:1,x(sx) if [sa]

x(sx)
p:(l+1),E=none/-, l = 0

inv if [sa]
x(sx)
p:(l+1),E=none/-, l > 0,

and [a]x(sx)
p:l,E =[sa]

x(sx)
p:(l+1),E=inv

subs if [sa]
x(sx)
p:(l+1),E=none/-, l > 0,

and otherwise
unk if [sa]

x(sx)
p:(l+1),E=reduc/-

unk if [sa]
x(sx)
p:(l+1),E=recur/-

(3.12)
The symbol “−” represents any trivial class. The last two entries of Eq. (3.12)
handle those array references that appear in subscript expressions. As men-
tioned in Section 3.4.2, these cases are not allowed in the statements that
compose the non-trivial structural array SCCs. Thus, the array reference is
classified as unk.

Finally, the transfer function is rather different if the reference expression,
eref , is a scalar variable y:

Ta(sa) : [a(sa)]yp:l,E =






unk if [sa]yp:(l+1),E=unk
inv if [a]yp:l,E=[sa]yp:(l+1),E=inv
list if [a]yp:l,E=inv and [sa]yp:(l+1),E=list
subs otherwise

(3.13)

Note that the second entry of the transfer function enables the recognition
of loop-invariant array references, and that the third entry copes with the
detection of the linked-list traversal computational kernel.
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Arithmetical and Logical Expressions

The class of an expression depends not only on the number of occurrences
of eref , but also on the type of operations that are performed on those oc-
currences. The analysis of associative operators is specially important, as
they enable the recognition of reduction and recurrence computations, both
for scalar and array variables. The sum operator, +, is the associative ope-
rator most commonly used in this kind of computation. In general, the
sum is a r-ary operator +(e1, . . . , er). However, for the sake of simplicity,
we define this transfer function, T+, on the basis of the binary + operator
as follows. First, the class of the sum expression, [+(e1, . . . , er)]

x(sx)
p:l,+(e1,...,er),

is set to an initial value. Next, for each operand ei (i ∈ {1, . . . , r}), the
class of the operand is computed, [ei]

x(sx)
p:(l+1),+(e1,...,er), and then combined with

[+(e1, . . . , er)]
x(sx)
p:l,+(e1,...,er) by means of the transfer function of the binary +

operator. The partial and final results of T+ are stored in the class of the sum
expression [+(e1, . . . , er)]

x(sx)
p:l,+(e1,...,er).

The transfer function for the binary sum distinguishes two main situa-
tions: eref is a scalar variable and eref is an array reference. Table 3.1 re-
presents the behavior in the first case. The first column shows the value of
[+(e1, . . . , er)]

x(sx)
p:l,+(e1,...,er). The other columns show the class of the operand

[ei]
x(sx)
p:(l+1),+(e1,...,er) (head of the table) and the result of the transfer function

(entries one to six). Possible values are some trivial classes of the taxonomy
presented in Section 3.4: none (none), invariant (inv), linear (lin), reduction
(red), subscripted (subs) and unknown (unk). The value none is used to ini-
tialize both [+(e1, . . . , er)]

x(sx)
p:l,+(e1,...,er) and [ei]

x(sx)
p:(l+1),+(e1,...,er). The entries of

the table that contain two classes show, in parenthese, additional conditions
that are checked in the transfer function (l is the parameter level of the context
of an expression).

When eref is an array fetch x(sx), the transfer function is defined in a quite
different manner. For the sake of clarity, let c+

1 and c+
2 denote the elements of

the tuple that represents the class of the sum operator [T+]. Similar notations
are used for the class of the i-th operand [ei]

x(sx)
p:(l+1),+(e1,...,er) (cei

1 and cei
2 ), and

for the class, [sx]x(sx)
:1,x(sx), of the left-hand index expression, sx, of the array

statement that is being classified (csx
1 and csx

2 ). Note that the latter expression
is the index of the reference expression eref . The most relevant cases of the
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T+ none inv lin red subs unk

none none inv lin red subs unk
inv inv inv lin red subs unk
lin lin lin lin subs(l = 1) red(l = 0) unk

red(l )= 1) subs(l )= 0)
red red red subs(l = 1) red red unk

red(l )= 1)
subs subs subs red(l = 0) red subs unk

subs(l )= 0)
unk unk unk unk unk unk unk

Table 3.1: Transfer function T+ for binary sum arithmetical expressions
when the reference expression eref is a scalar variable.

transfer function are shown in the equation below:

T+ : [+(e1, . . . , er)]
x(sx)

:l,+(e1,...,er) =






assig/csx
2 if c+

1 =none, cei
1 =none, l = 0

cei
1 /cei

2 if c+
1 =none, cei

1 )=none, l = 0
assig/csx

2 if c+
1 =assig, cei

1 =none, l = 0
cei
1 /cei

2 if c+
1 =assig, cei

1 )=none, l = 0
recur/cei

2 if c+
1 =reduc, cei

1 =recur, l = 0
reduc/c+

2 if c+
1 =reduc, cei

1 )=recur, l = 0
recur/c+

2 if c+
1 =recur, l = 0

(3.14)
The condition l = 0 captures the fact that the right-hand side of the state-
ment consists of a sum expression. The cases presented above enable the
recognition of the different types of array operations (assignments, reductions
and recurrences). Note that whether an operand consists of an array reference
that defines a reduction/recurrence computation is not checked in this transfer
function, but in Ta(s).

Another important associative operator is the product operator, ∗. The
transfer function T∗ is very similar to T+. In fact, the relevant differences
arise when eref is a scalar variable. Its behavior is represented in Table 3.2.
Regarding other arithmetical operators, we have defined transfer functions
for division, unary minus and unary sum as they were needed to complete the
analysis of our benchmark suite. In the scope of this work, we assume that the
transfer functions for other operators (e.g. modulo, square root, etc.) classify
the target expression as unknown.
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T∗ none inv lin red subs unk

none none inv lin unk subs unk
inv inv inv unk unk subs unk
lin lin unk unk unk subs unk
red unk unk unk unk unk unk
subs subs subs subs unk subs unk
unk unk unk unk unk unk unk

Table 3.2: Transfer function T∗ for binary product arithmetical expressions
when the reference expression eref is a scalar variable.

Tlogical none inv lin red subs unk

none none inv subs subs subs unk
inv inv inv subs subs subs unk
lin subs subs subs subs subs unk
red subs subs subs subs subs unk
subs subs subs subs subs subs unk
unk unk unk unk unk unk unk

Table 3.3: Transfer functions T=, T "=, T<, T>, T≤, T≥, TNOT , TAND, TOR

for the binary logical expressions.

Finally, we describe the transfer function for the classification of logical
expressions briefly. Logical expression may be found in conditional expressions
associated with if-endif constructs and in assignment statements that set the
value of logical variables. For the analysis of our benchmark suite, we have
defined a common transfer function, Tlogical, for the relational operators (T=,
T"=, T<, T>, T≤, T≥), and for the logical operators (TNOT , TAND, TOR).
A tabular representation is shown in Table 3.3. If both the left-hand and
the right-hand subexpressions are invariant (i.e. true or false), the global
expression is also set to invariant. Otherwise, the logical expression is classified
as subscripted in order to represent that it can take arbitrary logical values
during the execution of the loop.

Special GSA Expressions

The transfer functions for the special GSA expressions mainly check that all
the statements of a component belong to the same class. The transfer function
Tµ checks that the classes of the variables defined outside (eout) and inside (ein)
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the loop body are the same; otherwise, the µ expression cannot be successfully
classified:

Tµ : [µ(eout, ein)]x :0,µ(eout,ein) =






[ein]x :1,ein
if [eout]x :1,eout

=none/none
or [eout]x :1,eout

=inv
[ein]x :1,ein

if [eout]x :1,eout
=[ein]x :1,ein

unk otherwise
(3.15)

The first entry of Eq. (3.15) defines two exceptions to the behavior described
above. The first condition copes with µ-statements associated with inner loops,
which are usually part of a wrap-around SCC with several µ-statements. The
second condition is associated with the header of the outermost loop, whose
eout is loop-invariant. In both cases, the class of ein is inherited by the µ

expression.

The transfer function Tγ has a distinguishing characteristic with respect to
the other functions: it modifies the first element of the tuple that denotes the
class of the expression. The first element, which captures the conditionality
of the SCC, is set to conditional in any case. The behavior of Tγ is described
by the equation presented below.

Tγ : [γ(c, ein, eout)]x :l,γ(c,ein,eout)
=

=






unk if [c]x :(l+1),c=unk
[ein]x :(l+1),ein

if [eout]x :(l+1),eout
=none/none

[eout]x :(l+1),eout
if [ein]x :(l+1),ein

=none/none
[ein]x :(l+1),ein

if [eout]x :(l+1),eout
=[ein]x :(l+1),ein

unk otherwise

(3.16)

The general rule, represented by the fourth entry, is applied to if-else-endif
constructs. Entries two and three classify γ-statements associated with if-
endif constructs. Due to the demand-driven nature of the algorithm, the class
of eout is set to the value none because eout is defined in a µ-statement whose
classification process is still in progress (see Eq. (3.7) of Ty).

The semantics of Tα is similar to the previous transfer functions. Let
α(xk, sx, rhsx) represent the α expression. For the sake of clarity, let cx

1 and
cx
2 denote the elements of the tuple that represents [xk]

x(sx)
:0,xk

. Similar notations
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are used for [sx]
x(sx)

:1,x(sx) (cs
1 and cs

2) and [rhsx]x(sx)
:0,rhsx

(crhs
1 and crhs

2 ).

Tα : [α(xk, sx, rhsx)]x(sx)
:0,α(xk,sx,rhsx) =






unk if cx
1 =none, cx

2 =none
and crhs

1 =none,
and crhs

2 =unk
crhs
1 /cs

2 if cx
1 =none, cx

2 =none
and crhs

2 =none
crhs
1 /crhs

2 if cx
1 =none, cx

2 =none
and crhs

2 = cs
2

crhs
1 /unk if cx

1 =none, cx
2 =none

and otherwise
crhs
1 /crhs

2 if cx
1 = crhs

1 , cx
2 = crhs

2

unk otherwise
(3.17)

In this section, we have presented transfer functions that enable the con-
textual classification of the expressions that appear in the loop bodies of
the routines included in our benchmark suite. Furthermore, we have ex-
plained how this contextual classification algorithm provides the support that
is necessary for the implementation of the demand-driven SCC classification
scheme. In order to clarify the structure of our scheme, pseudocodes of the
most relevant functions of the algorithms for the classification of SCCs, state-
ments and expressions are shown in Figs. 3.9, 3.10 and 3.11, respectively.
The implementation details about, for example, the stacks and the context
of an expression, have been omitted for the sake of clarity. The procedures
Classify use def chain() and Classify Semantic SCC() are not presented
either. In the following section, we will describe the way these algorithms all
work together.

3.6 Case Studies

In the previous section, we presented a set of algorithms that enable the re-
presentation of the body of a loop nest as a graph of SCCs and use-def chains
between SCCs. In this section, we will describe how these algorithms all
work together. Consider the consecutively written array kernel depicted in
Fig. 3.2(a). The GSA graph consists of five SCCs (see Fig. 3.2(c)). It contains
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ALGORITHM: Construct SCC graph()
INPUT: Set of SCCs
OUTPUT: SCC graph

PROCEDURE
FOREACH SCC(x1...n) DO

Classify SCC( SCC(x1...n) )
END FOREACH
FOREACH SCC(x1...n) → SCC(y1...m) DO

Classify use def chain( SCC(x1...n) → SCC(y1...m) )
END FOREACH

ENDPROCEDURE

ALGORITHM: Classify SCC()
INPUT: SCC(x1...n): Strongly connected component
OUTPUT: [SCC(x1...n)]: Class of the SCC

PROCEDURE
IF SCC(x1...n) has already been visited THEN

RETURN
END IF

IF SCC(x1...n) is trivial THEN
[SCC (x1)] = Classify GSA Statement( x1 = rhs )

ELSE
[SCC(x1...n)] = Classify GSA Statement( x1 = µ(x0, xn) )
IF SCC(x1...n) is semantic THEN

[SCC(x1...n)] = Classify Semantic SCC( SCC(x1...n) )
END IF

END IF
ENDPROCEDURE

Figure 3.9: Pseudocode of the SCC classification algorithm.
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ALGORITHM: Classify GSA Statement()
INPUT: stm: GSA statement
OUTPUT: [stm]: Class of the GSA statement

PROCEDURE
IF stm has already been visited THEN

return
END IF

SWITCH Type of GSA statement stm
CASE do v = einit, elimit, estep:

[einit] = Classify Expression(einit)
[elimit] = Classify Expression(elimit)
[estep] = Classify Expression(estep)
[stm] = TDO−stm([einit], [elimit], [estep])
BREAK

CASE x = µ(xout, xin):
[µ] = Classify Expression(µ(xout, xin))
[stm] = Tµ−stm([µ])
BREAK

CASE x = γ(c, xin, xout):
[γ] = Classify Expression(γ(c, xin, xout))
[stm] = Tγ−stm([γ])
BREAK

CASE a = α(aprev , s, rhs):
[α] = Classify Expression(α(aprev , s, rhs))
[stm] = Tα−stm([α])
BREAK

CASE v = rhs:
[rhs] = Classify Expression(rhs)
[stm] = Tscalar−stm([rhs])
BREAK

DEFAULT :
[stm] = unknown
BREAK

ENDSWITCH
ENDPROCEDURE

Figure 3.10: Pseudocode of the algorithm for the classification of the state-
ments of GSA form.
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ALGORITHM: Classify Expression()
INPUT: e: GSA expression
OUTPUT: [e]: Class of the GSA expression

PROCEDURE
SWITCH Type of GSA expressions e
CASE x:

[e] = Ty(x)
BREAK

CASE a(s):
[a] = Classify Expression(a)
[s] = Classify Expression(s)
[e] = Ta(s)([a], [s])
BREAK

CASE µ(xout, xin):
[x out] = Classify Expression(x out)
[x in] = Classify Expression(x in)
[e] = Tµ([x out], [x in])
BREAK

CASE α(a, s, rhs):
[a] = Classify Expression(a)
[s] = Classify Expression(s)
[rhs] = Classify Expression(rhs)
[e] = Tα([a], [s], [rhs])
BREAK

CASE γ(c, xin, xout):
[xin] = Classify Expression(xin)
[xout] = Classify Expression(xout)
[c] = Classify Expression(c)
[e] = Tγ([xin], [xout], [c])
BREAK

CASE +, ∗, /, =, "=, <, ≤, >, ≥, not, and, or:
[e] = none
FOREACH operand ei

[ei] = Classify Expression(ei)
[e] = Toperator([e], [ei])

END FOREACH
BREAK

CASE unary+, unary−:
[e1] = Classify Expression(e1)
[e] = Toperator([e1])
BREAK

CASE K:
[K] = TK(K)
BREAK

DEFAULT : /* Includes procedure/function calls */
[e] = unknown
BREAK

ENDSWITCH
ENDPROCEDURE

Figure 3.11: Pseudocode of the contextual algorithm for the classification
of expressions.
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two non-trivial SCCs, SCCS
1 (i2...4) and SCCA

1 (a1...3), that capture the condi-
tional induction variable i and the conditional array assignment operation a,
respectively. There are two trivial SCCs, SCCS

1 (h1) and SCCS
1 (tmp2), which

represent the loop index variable h1 (it is not depicted in the figure), and the
temporary variable tmp2. As tmp2 is computed inside the if-endif construct,
an additional virtual component, SCCS

0 (tmp1,3), appears in the GSA graph.
The SCC classification algorithm is demand-driven. Thus, the set of SCCs
can be classified in any order because the algorithm will analyze the compo-
nents as needed. Without loss of generality, let us assume that the SCCs are
processed in the following order: SCCS

1 (i2...4), SCCS
0 (tmp1,3), SCCA

1 (a1...3),
SCCS

1 (h1) and SCCS
1 (tmp2).

The class [SCCS
1 (i2...4)] is determined first. A tree representation of the

classification process is depicted in Fig. 3.12. The picture consists of two trees.
The tree on the left illustrates the decomposition of [SCCS

1 (i2...4)] into the
classification of the statements and the expressions that form the component.
The labels of the child nodes represent the classes that have to be determined
in order to compute the class shown in the label of the parent node. The solid
edges highlight this top-down process. The tree on the right shows the class
derived for each node of the left-hand side tree. The dashed edges depicted
in the first three levels are a reminder of this correspondence. The class of
each expression, statement or SCC is the result of applying the appropriate
transfer function to the classes associated with the child nodes. The dotted
edges remark this bottom-up process.

The execution of the SCC classification algorithm corresponds to the depth-
first traversal of the tree on the left-hand side. As stated in Section 3.5.1,
[SCCS

1 (i2...4)] is reduced to determining [i2 = µ(i1, i4)], where i2 = µ(i1, i4)
is associated with the outermost loop of the loop nest, i.e. doh1. The class
of a statement inherits the contextual class of its right-hand side expression,
[µ(i1, i4)]i :0,µ(i1,i4) . The class of an expression is computed by classifying

the arguments first. The first argument of the µ expression is the occur-
rence i1 corresponding to the initialization of the induction variable before
the execution of the loop doh. According to Eq. (3.6), [i1]i :1,µ(i1,i4)

is inv.
The second argument is an occurrence i4 of the value of i at the end of the
previous loop iteration. The definition statement belongs to SCCS

1 (i2...4),
so the demand-driven classification algorithm launches the computation of
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[i4 = γ(c(h1), i3, i2)] (see Eq. (3.7)). The classification process continues in a
similar manner. When the childs of a node have been classified, the transfer
function of the corresponding operator is applied. Thus, [c(h1)]i?:1,γ(c(h1),i3,i2)

is set to subs after the application of Ta(s) with the parameters inv and lin
(see Eq. (3.13)). At the end of the depth-first traversal [SCCS

1 (i2...4)] is set to
cond/lin.

The computation of [h1]i?:2,γ(c(h1),i3,i2)
deserves special mention, because it

launches the classification of a different component, SCCS
1 (h1) (see Eq. (3.9)).

As stated in the demand-driven algorithm described in Section 3.5.1, the clas-
sification process of SCCS

1 (i2...4) is deferred at this moment. As a conse-
quence, SCCS

1 (i2...4) is pushed onto the stack of SCCs and the classification
of SCCS

1 (h1) is started. The component SCCS
1 (h1) is independent because

the statement DO h1 = 1, n, 1 does not contain occurrences of the variables
associated with other components. Thus, the demand-driven classification
process is not launched again. The details of the computation of [SCCS

1 (h1)]
are depicted inside boxes in the trees of Fig. 3.12. Once [SCCS

1 (h1)] has been
determined to be lin, SCCS

1 (i2...4) is popped from the stack and its classifica-
tion process continues. At the end of the execution of the SCC classification
algorithm, the class cond/lin that represents the conditional linear induction
variable kernel has been derived.

When the classification of SCCS
1 (i2...4) finishes, two components of the

loop have been successfully derived: SCCS
1 (i2...4) and SCCS

1 (h1). The SCC
classification algorithm continues with the computation of [SCCS

0 (tmp1,3)].
The trees of Fig. 3.13 illustrate this process. Note that the demand-driven
mechanism launches [SCCS

1 (h1)] and [SCCS
1 (tmp2)]. In the first case, the

class [SCCS
1 (h1)] is not computed because it has already been determined. In

the second case, [SCCS
1 (tmp2)] is actually computed. Finally, only the class

[SCCA
1 (a1...3)] has to be calculated for the set of components of doh to be

processed. The corresponding trees are depicted in Fig. 3.14.

The information gathered from the source code during the execution of
the SCC classification algorithm is represented in the SCC graph of the loop
nest. The SCC graph of our case study, the consecutively written array ker-
nel of Fig. 3.2(a), is depicted in Fig. 3.15. The different types of SCCs are
represented by nodes with different shapes: rectangle (non-trivial structural
SCC), oval (trivial SCC), and shaded oval (trivial SCC that represent a loop
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Figure 3.14: Classification of the component SCCA
1 (a1...3) of the SCC

graph shown in Fig. 3.15.
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cond/none
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subs

lin

cond/lin

Non trivial structural SCC

Trivial SCC of an index variable

Trivial SCC

Structural use def chain

Non structural use def chain

Control use def chain

LEGEND OF THE SCC GRAPH

SCCS
0 (tmp1,3)
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1 (a1...3)
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1 (tmp2)

rhs : tmp2
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1 (h1)

rhs index : f(h1)

SCCS
1 (i2...4)

lhs index : a2(i2)

c(h1)c(h1)
c(h1)

Figure 3.15: SCC graph of the consecutively written array kernel shown
in Fig. 3.2(a).

index variable). The label of the node is the SCC, which provides informa-
tion about several properties of the SCCs: scalar/array, cardinality and set of
statements in the GSA form. Furthermore, the class of each SCC is printed
next to the corresponding node. The edges of the graph represent the use-def
chains between the SCCs. Solid, dashed and dotted lines are used for struc-
tural, non-structural and control use-def chains, respectively. The labels of the
edges are determined during the execution of the SCC classification algorithm
according to Eq. (3.10).

Let us analyze the construction of the SCC graph of our case study. As
shown in the block diagram of Fig. 3.1, the first step of the construction
is the execution of the SCC classification algorithm. After this stage, most
of the SCC graph has been constructed because the information about the
classes of the SCCs and the use-def chains between pairs of SCCs is avai-
lable. For the graph to be completed, the class of the use-def chains must
be determined. As explained below, this task is a straightforward applica-
tion of Def. 3.10. The loop contains three SCCs that include a γ-statement:
SCCS

1 (i2...4), SCCS
0 (tmp1,3) and SCCA

1 (a1...3). In all the cases, the con-
ditional expression is c(h1). Thus, the SCC graph contains three control
use-def chains whose target is the strongly connected component SCCS

1 (h1):
SCCS

1 (i2...4) ! SCCS
1 (h1), SCCS

0 (tmp1,3) ! SCCS
1 (h1) and the control chain

SCCA
1 (a1...3) ! SCCS

1 (h1). On the other hand, there are two structural
use-def chains. The chain SCCS

0 (tmp1,3) ⇒ SCCS
1 (tmp2) is structural be-

cause it captures a dependence between two scalar SCCs that are associated
with the same variable in the source code, namely, tmp. Furthermore, the
array and the scalar components SCCA

1 (a1...3) and SCCS
1 (i2...4) belong to
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the classes cond/assig/lin and cond/lin, respectively. As the class of the
index expression and that of the scalar variable coincide (lin), the use-def
chain SCCA

1 (a1...3) ⇒ SCCS
1 (i2...4) is classified as structural. Finally, the

SCC graph contains two non-structural chains SCCS
1 (tmp2) ! SCCS

1 (h1) and
SCCA

1 (a1...3) ! SCCS
1 (tmp2). In Chapter 4, we will describe how the infor-

mation included in the SCC graph can be used for the recognition of the
consecutively written array kernel computed in the loop of our case study.

3.7 Experimental Results

In this section we will analyze the efficacy of the SCC classification algorithm
presented in this chapter. We have implemented a prototype of the algorithm
using the infrastructure provided by the Polaris parallelizing compiler [11].
The characteristics of the prototype and the benchmark suite are described in
Section 3.7.1. Experimental results in terms of number of occurrences of each
SCC class are presented in Section 3.7.2. The relevance of each SCC class for
the analysis of SparsKit-II is also discussed. Finally, the cases where the SCC
classification algorithm fails are analyzed in Section 3.7.3.

3.7.1 Experimental Conditions

We have developed a C++ prototype that constructs our compiler framework
and takes a Fortran77 source code as input. For the first stage of the frame-
work (Fig. 2.4), a translator of Fortran77 code into GSA form provided by
Polaris was used. The subsequent stages are devoted to the recognition of
computational kernels. The implementation of these phases requires the ana-
lysis of the code from the viewpoint of, for example, the dependences between
statements and the control flow of the program. For this purpose, we have
used the support provided by the internal representation of Polaris [15]. The
prototype consists of approximately 30, 000 lines of C++ code (the routines
of Polaris were not accounted).

During the design and implementation of the prototype we have found
several bugs in the translator of source code into GSA form provided by Po-
laris. These bugs result in incorrect GSA representations, for example, in some
loop bodies that contain GOTO statements. As our framework is constructed
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on top of GSA, the prototype preprocesses the GSA form of the routines to
detect those loops that are not amenable for classification. We also use this
term to refer to loops that contain jump statements (e.g. goto, break) and
procedure/function calls.

Our benchmark suite is the SparsKit-II library [41], which consists of a set
of costly routines to perform operations with sparse matrices. The routines
are organized in four modules:

• matvec, that includes basic matrix-vector operations with different types
of sparse storage formats (matrix-vector products and triangular system
solvers).

• blassm, which supplies a basic linear algebra for sparse matrices. It
contains routines that compute different types of matrix-matrix products
and sums.

• unary, that provides unary operations with sparse matrices (e.g. ex-
tracting a submatrix from a sparse matrix, filter out elements of a ma-
trix according to their magnitude, or performing a mask operation with
matrices).

• formats, which is devoted to format conversion routines for different
types of sparse storages.

We have chosen this library because it includes parallelizable computational
kernels that are important for full-scale sparse/irregular applications. The
importance of a subset of these kernels was already pointed-out in [32]. A
description of the kernels considered in this thesis was presented in Section 2.2.
The programs in SparsKit-II are small, which enabled the completion of a
previous hand analysis in a reasonable time.

The main characteristics of the modules in terms of number of routines,
number of loop nests and number of loops actually analyzed are presented in
Table 3.4. In the latter case, we distinguish between loops that are amenable
for classification and those that are not. The numbers are presented for the
modules matvec, blassm, unary and formats, as well as for SparsKit-II as a
whole. The percentage of loops not amenable for classification in unary (33%)
and formats (16%) is significant. However, the number of loop nests actually
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affected is low. The reason for this is that, in most cases, the innermost loops
contain GOTO statements that also make surrounding loops not amenable for
classification. It should be noted that the number of loop nests is less than the
number of loops actually analyzed. This is a consequence of the strategy that
we use for the analysis of the loop nests. In particular, the outermost loop is
analyzed first. Then, if the computational kernels could not be recognized, the
analysis of the inner loops is accomplished. We found this strategy effective
for the analysis of SparsKit-II. However, it is quite aggressive when full-scale
applications are considered because outer loops are usually devoted to control
tasks and, hence, contain calls to procedures.

3.7.2 SCC Recognition Results

Detailed statistics about the number of occurrences of each SCC class in the
modules of SparsKit-II are presented in Table 3.5. In the first column, the SCC
taxonomy of Fig. 3.4 is depicted as a tree that reveals the subclasses of each
SCC class. The next block of four columns show the numbers for the modules
matvec, blassm, unary and formats. Blank entries represent zero occurrences
of the corresponding class. The last two columns summarize the total number
(#SCCs) and the percentage (%SCCs) for each SCC class in SparsKit-II as
a whole. The percentages are calculated with respect to the total number of
SCCs, i.e., the sum of trivial, non-trivial and unknown SCCs. The rows are
organized in four sets. The first three sets contain the statistics corresponding
to trivial SCCs, non-trivial structural SCCs and non-trivial semantic SCCs,
respectively. The first row of each set presents the total numbers for the set.
The last set summarizes the total number of trivial, non-trivial and unknown
SCCs in the four modules and in SparsKit-II.

The class of trivial SCCs is the most frequent class of component in
SparsKit-II. However, it has little relevance for kernel recognition because it
mainly corresponds to computations associated with temporary scalar varia-
bles. In fact, 56%, 42%, 50% and 52% represent the computation of the loop
index variables of matvec, blassm, unary and formats, respectively. Further-
more, the cardinality-zero trivial SCCs (31%, 28%, 28% and 32%, respectively)
correspond to virtual components (see Def. 3.13) that capture the flow of va-
lues at run-time, but do not provide useful information from the recognition
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Characteristics of SparsKit-II
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Routines 17 11 42 35 105
Loop nests 28 27 88 113 256
Individual loops actually analyzed 40 41 126 172 379

Amenable for classification 39 38 85 144 306
Not amenable for classification 1 3 41 28 73

Table 3.4: Summary of characteristics of the source code of the SparsKit-II
library.

viewpoint. The details about this will be presented in Chapter 4.

The trivial class lin is associated with loop index variables whose iteration
space does not change during the execution of the loop nest. Typical examples
are the outermost loop and any loop whose init, limit and step expressions are
loop-invariant. For illustrative purposes, consider the source code of the lower
triangular system solver shown in Fig. 3.16(a). The index variable of dok is
represented by a lin trivial SCC class. On the other hand, the class subs
represents loop indices whose iteration space is defined on the basis of loop-
variant expressions. A well-known example is the inner loop of a loop nest
that traverses a sparse matrix stored in CRS format. The index variable of
doj in Fig. 3.16(a) fits into this category.

Regarding non-trivial SCC classes, the cardinality-one structural SCCs are
the most numerous classes in SparsKit-II. In particular, non-cond/assig/lin
(8%) and cond/assig/lin (3%) stand out from the other SCC classes. Most
of the non-conditional assignments correspond to simple loops devoted to the
initialization of an array variable where the left-hand side subscript expression
consists of an occurrence of the index variable of the surrounding loop. The
class of the index expression, lin, indicates that the array entries are writ-
ten according to a linear access pattern. On the contrary, the conditional
assignments are mainly related to the computation of conditional consecu-
tively written array kernels. This observation is reflected in the statistics
of Table 3.5, where the number of cond/lin occurrences (i.e. conditional li-
near induction variables) is almost as high as the number of cond/assig/lin
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SC

Cs

Trivial SCCs 105 131 232 444 912 57
Cardinality=0 ................. 32 37 64 131 264 17

none 32 37 64 131 264 17
Cardinality=1 ................. 73 94 168 313 648 40

inv 1 4 4 11 20 1
lin 40 38 95 176 349 22
red 1 1 0
subs 32 52 69 125 278 17

Non-trivial Structural SCCs 34 89 136 232 491 30
Cardinality=0 ................. 6 16 32 64 118 7

cond/none 16 21 37 2
non-cond/none 6 14 16 43 79 5

Cardinality=1 ................. 28 73 104 168 373 23
cond/lin 15 12 13 40 3
cond/red 2 2 0
non-cond/lin 1 1 7 27 36 2
non-cond/red 6 5 4 15 1
cond/assig/inv 2 2 4 0
cond/assig/lin 18 14 19 51 3
cond/assig/subs 6 3 2 11 1
cond/reduc/inv 1 1 0
cond/reduc/subs 1 3 4 0
cond/recur/lin 2 1 3 0
non-cond/assig/lin 12 18 39 59 128 8
non-cond/assig/red 1 1 0
non-cond/assig/subs 11 8 5 24 2
non-cond/reduc/lin 1 1 1 1 4 0
non-cond/reduc/subs 8 6 9 23 1
non-cond/recur/lin 7 19 26 2

Non-trivial Semantic SCCs 0 4 7 3 14 1
Cardinality=0 ................. 0 4 1 2 7 0

Scalar-minimum 1 1 0
Scalar-maximum 2 2 0
Scalar-find-and-set 4 4 0

Cardinality=1 ................. 0 0 6 1 7 0
Array-find-and-set 6 1 7 0

Trivial SCCs 105 131 232 444 912 57
Non-trivial SCCs 34 93 143 235 505 31
Unknown SCCs 13 16 26 140 195 12

Table 3.5: Basic kernels recognized by the SCC classification algorithm in
the SparsKit-II library.
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x(1) = y(1)
DO k = 2, n

t = y(k)
DO j = ial(k), ial(k + 1) − 1

t = t − al(j) ∗ x(jal(j))
END DO
x(k) = t

END DO

(a) Source code.

x1(1) = y(1)
DO k1 = 2, n, 1

x2 = µ(x1, x3)
t1 = µ(t0, t3)
j1 = µ(j0, j2)
t2 = y(k1)
DO j2 = ial(k1), ial(k1 + 1) − 1, 1

t3 = µ(t2, t4)
t4 = t3 − al(j2) ∗ x2(jal(j2))

END DO
x3 = α(x2, k1, t3)

END DO

(b) GSA form.

t3

t4

x1

x2

t2

x3

(c) GSA
graph.

Figure 3.16: Unit lower triangular system solver for a CRS matrix using
standard forward elimination (extracted from SparsKit-II,
module matvec, routine lsol). The code contains a SCC of
cardinality two.

occurrences. Finally, note that the prototype has been able to recognize
SCCs that capture the properties of a set of relevant computational ker-
nels such as (non-)cond/red for scalar reductions, (non-)cond/assig/subs for
irregular assignments, (non-)cond/reduc/subs for irregular reductions, and
(non-)cond/recur/lin for array recurrence operations.

Semantic SCCs represent a low percentage of the total number of com-
ponents. Nevertheless, we consider that the detection of this SCC class is a
significant advance for two reasons. On the one hand, the corresponding source
code kernels appear quite often in scientific applications that work with very
large matrices. The computational cost associated with these kernels usually
depends on matrix size. On the other hand, in general, the computations per-
formed in loop bodies can be represented as a combination of semantic and
structural SCCs. Thus, the detection of semantic SCCs can enable the paral-
lelization of a wider class of loops. The 14 semantic components that appear in
SparsKit-II are divided as follows: 7 cardinality-zero SCCs (1, 2 and 4 of classes
scalar-minimum, scalar-maximum and scalar-find-and-set, respectively) and 7
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cardinality-one SCCs (in particular, array-find-and-set).

3.7.3 Failures in SCC Recognition

The efficacy of our prototype for the analysis of the SparsKit-II library is
high. In fact, the results presented in Table 3.5 show that 88% of the SCCs
that appear in the loops that are amenable for classification were successfully
recognized. However, it is interesting to study the impact of the current limi-
tations of our prototype of the SCC classification algorithm. Statistics about
this issue are presented in Table 3.6. The first column shows the different rea-
sons for a SCC to be unsuccessfully classified. The number of unknown SCCs
in SparsKit-II is 201, which represents 13% of the total number of SCCs of
the library (the percentage was calculated with respect to the sum of the to-
tal number of trivial, non-trivial and unknown SCCs presented in Table 3.5).
It should be noted that up to 147 of the SCCs of formats (18%) were not
successfully classified. This is mainly due to the fact that some routines of
the module contain deep loop nests whose innermost loops include unknown
SCCs, which also leads to the unsuccessful classification of the enclosing loops.

The main limitation of the prototype is related to the classification of SCCs
with cardinality greater than one (4% of the SCCs of SparsKit-II). These com-
ponents appear in loops that contain mutually dependent variables. For ex-
ample, 10 SCCs of cardinality 2 arise in the routines of matvec that contain
equation system solvers. The code shown in Fig. 3.16(a) solves a lower triangu-
lar system. The system matrix is stored in CRS format. Note that in the GSA
graph (Fig. 3.16(c)), there is a strongly connected component SCC (x2,3, t3,4)
that represents the flow of values for the mutually dependent variables t and
x during the execution of dok.

Another typical computation that is represented by a SCC of cardinality
greater than one is the swap operation of two variables. Consider the code
of Fig. 3.17, which is a fragment of a bubble-sort algorithm that orders the
entries of a sparse matrix according to column indices. In each doj iteration,
two pairs of array entries are swapped if they fulfill a certain condition. In
our compiler framework, these computations are represented by two SCCs
of cardinality 3. The first one is composed of the source code statements
ko = jao(k), jao(k) = jao(j) and jao(j) = ko. It is a semantic SCC because
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Limitation of the prototype
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Cardinality> 1 10 4 16 32 62
Multidimensional array references 3 0 0 51 54
Statements of different classes 0 11 2 16 29
Other limitations 0 1 7 48 56
Total 13 16 25 147 201

Table 3.6: Relevance of current limitations of our prototype of the SCC
classification algorithm for the analysis of SparsKit-II.

the conditional expression (jao(k) > jao(j)) contains occurrences of array jao.
The second one is a structural SCC that consists of tmp = ao(k), ao(k) = ao(j)
and ao(j) = tmp.

The presence of references to multidimensional arrays in the loop body is
the next limitation that causes the prototype to fail (3%). However, the com-
ponents of SparsKit-II that present these characteristics do not capture any
computational kernel that deserves special mention, but the common kernels
studied in this thesis.

The least relevant limitation is the classification of SCCs with statements
of different classes (2%). However, these SCCs represent interesting computa-
tions. Consider the loop of Fig. 2.2(d), which computes an array-find-and-set
kernel using the array variable diag (see Section 2.2.4). The computational
kernel is represented by a semantic SCC that contains two array statements
diag(h) = 1/diag(h) and diag(h) = 1. The prototype classifies the statements
as cond/reduc/linear and cond/assig/lin, respectively. As a result, the trans-
fer function for the γ-statement (see Eq. (3.16)) makes the component being
classified as unknown.

The product and sum operations with sparse matrices included in blassm
also contain some loops whose computations are represented by SCCs with
statements of different classes (do100 in routine amub; do300 in aplb, apmbt
and aplsbt; do4 in aplsca). Consider the loop dokb of Fig. 3.18. There is a
non-trivial structural SCC composed of two statements c(len) = scal ∗ b(kb)
and c(jpos) = c(jpos) + scal ∗ b(kb) that are located in different branches
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of an if-endif construct. The first statement, which belongs to the class
cond/assig/lin, sets the initial value of a new entry in the array c of the pro-
duct matrix. In subsequent iterations, the second statement, which belongs
to class cond/reduc/subs, accumulates new values on the new entry indicated
by an element of the temporary array iw.

We finish this section with a brief description of some of the other limita-
tions of the SCC classification algorithm:

• Existence of SCCs of cardinality zero or one that are not defined in
our taxonomy. The taxonomy of SCC classes presented in Section 3.4
can be extended to capture new computational kernels. In Fig. 3.19
the innermost loop dojj of a level-4 loop nest is shown. It contains
a linear induction variable a0 that is conditionally incremented during
the execution of dojj . As the conditions (a0 ≥ ia(kvstr(i) + ii + 1))
and (jj = ja(a0))) depend on the variable itself, the computations are
represented by a scalar semantic SCC that has not been defined in our
taxonomy. In SparsKit-II there are other semantic components that are
not recognized by the current version of the prototype (e.g. doi(5) in
routine csrvbr of the module formats).

• Presence of occurrences of variables that are associated with unknown
SCCs. Consider the loop dojj in Fig. 3.19. There is a SCC that repre-
sents the computation of array b. One of the reasons for this component
to be unsuccessfully classified is the presence of the occurrence a0 in the
statement b(b0) = a(a0). As explained above, the component for a0 is
an unknown semantic SCC of cardinality one.

• Arithmetical operators not considered in the transfer functions. In Sec-
tion 3.5.3 we defined transfer functions for a set operators. Expressions
that contain other operators (e.g. module, power) will be classified as
unknown and will lead to the unsuccessfull classification of the SCC they
are included in.
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DO j = indu(i) − 1, ipos + 1,−1
k = j − 1
IF (jao(k) > jao(j)) THEN

ko = jao(k)
jao(k) = jao(j)
jao(j) = ko
IF (value2 "= 0) THEN

tmp = ao(k)
ao(k) = ao(j)
ao(j) = tmp

END IF
END IF

END DO

Figure 3.17: Loop that contains struc-
tural and semantic SCCs
with cardinality two. It
was extracted from a rou-
tine that converts the
storage format of sparse
matrix from symmetric
sparse row into CRS
(SparsKit-II, module for-
mats, routine ssrcsr).

DO kb = ib(jj), ib(jj + 1) − 1
jcol = jb(kb)
jpos = iw(jcol)
IF (jpos = 0) THEN

len = len + 1
jc(len) = jcol
iw(jcol) = len
IF (values) THEN

c(len) = scal ∗ b(kb)
END IF

ELSE
IF (values) THEN

c(jpos) = c(jpos) + scal ∗ b(kb)
END IF

END IF
END DO

Figure 3.18: Loop that contains
SCCs with statements of
different classes. It was
extracted from a routine
that performs the sparse
matrix by sparse matrix
product (SparsKit-II,
module blassm, routine
amub).

DO jj = kvstc(jb(j)), kvstc(jb(j) + 1) − 1
IF (a0 ≥ ia(kvstr(i) + ii + 1)) THEN

b(b0) = 0.d0
ELSE

IF (jj = ja(a0)) THEN
b(b0) = a(a0)
a0 = a0 + 1

ELSE
b(b0) = 0.d0

END IF
END IF
b0 = b0 + neqr

END DO

Figure 3.19: Code that contains non-recognized semantic SCCs. Extracted
from a routine that converts the CRS storage format into
variable block row format (SparsKit-II, module formats, rou-
tine csrvbr).





Chapter 4

Recognition of Loop-Level
Computational Kernels

The goal of the compiler framework presented in this thesis is to recognize the
types of computational kernels that are calculated during the execution of a
loop. In the previous chapter, we presented a classification scheme that is able
to recognize the basic kernels computed by the statements of a SCC. Consider
a set of statements x1, . . . , xn in GSA form that represent the operations co-
rresponding to the computation of a kernel. The kernel will be detected by the
SCC classification algorithm if x1, . . . , xn belong to a unique SCC. However, in
general, x1, . . . , xn may be associated with a set of SCCs and a set of use-def
chains among these SCCs. In order to actually recognize the kernel, it is ne-
cessary for the compiler to analyze the SCC graph constructed in the first stage
of our compiler framework. This stage, Recognition of Basic Computational
Kernels in Fig. 2.4, was described in Chapter 3.

The recognition of loop-level kernels involves two main tasks. On the one
hand, the analysis of the SCC graph in order to identify the set of kernels
computed in a loop. And, on the other hand, the actual recognition of the dif-
ferent kernels. From now on, these tasks will be referred to as kernel separation
and kernel classification, respectively. This chapter is organized as follows. In
Section 4.1, we introduce definitions and notations. In Section 4.2, we explain
several issues of kernel separation from the point of view of the analysis of
the SCC graph. In Section 4.3, we present a SCC graph classification algo-
rithm that accomplishes the recognition of loop-level kernels. This algorithm
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addresses both kernel separation and kernel classification. In Section 4.4, a
set of example codes extracted from our benchmark suite is analyzed in de-
tail. The explanations will show that, in order to classify loop-level kernels, the
compiler needs to analyze other data structures apart from the SCC graph, for
example, the control flow graph (CFG) of the program. The chapter finishes
with the presentation of experimental results in Section 4.5.

4.1 Basic Definitions and Notations

The SCC graph classification algorithm addresses the recognition of the set of
kernels computed in a loop. We will use the term loop class to refer to this
set of kernels. The individual kernels of the loop class, which were described
in Section 2.2, will be denoted as follows. In Chapter 3, we presented a SCC
classification algorithm that is able to recognize a subset of kernels: linear
induction variable, scalar reduction, linked-list traversal, array assignments,
array reductions, array recurrences, scalar minimum (maximum), array mini-
mum (maximum), scalar find-and-set and array find-and-set. In these cases,
we will use the abbreviations depicted in the SCC taxonomy of Fig. 3.4. There
is a subset of more complex kernels that cannot be detected with the SCC clas-
sification algorithm. These kernels will be denoted as follows:

• Induction variable whose value is reinitialized to a loop-invariant value as
(non-)cond/lin-r/inv. Similar notations will be used for scalar reduction
((non-)cond/red-r/inv) and linked-list traversal ((non-)cond/list-r/inv).

• Induction variable reinitialized to a loop-variant value in an outer loop
as (non-)cond/lin-r/subs. Scalar reductions and linked-list traversals
will be referred to as (non-)cond/red-r/subs and (non-)cond/list-r/subs,
respectively.

• Scalar minimum (maximum) with location as scalar-minimum-w/loc (the
corresponding scalar kernel as scalar-maximum-w/loc). For operations
with arrays we will use array-minimum-w/loc and array-maximum-w/loc.

• Consecutively written array as (non-)cond/cwa.

We define two additional classes that do not correspond to any kernel described
in Section 2.2: scalar-location and array-location. These classes will be used in
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Section 4.4.2 for the detection of scalar and array minimum (maximum) with
location kernels.

The following definition introduces a concept that will be used for accom-
plishing the kernel separation task during the execution of the SCC graph
classification algorithm.

Definition 4.1. Let SCC(x1...n) be a non-wrap-around component of a SCC
use-def chain graph. The non-wrap-around source node (NWSN) sub-

graph of SCC(x1...n) is the subgraph composed of the set of nodes and edges
that are reachable from SCC(x1...n).

The SCC graph captures information regarding the classes and the depen-
dences between the basic kernels computed in a loop. However, that infor-
mation is not enough, for example, for the recognition of reinitialized scalar
reductions or consecutively written arrays. As will be shown in Section 4.4,
the analysis of data structures such as the control flow graph (CFG) is also
needed. Next, some definitions that will be helpful for describing some case
studies are introduced.

Definition 4.2. A SCC(x1...n) is multi-loop if it contains more than one
scalar statement or α-statement that belong to the body of several loops located
at the same nesting level.

Definition 4.3. A SCC(x1...n) is contained in loop doh, SCC(x1...n) $ doh,
if all the statements x1, . . . , xn belong to the body of doh.

Definition 4.4. We say that a SCC(x1...n) is exclusively contained in loop
doh, SCC(x1...n) " doh, if all the statements x1, . . . , xn belong to the body of
doh, and do not belong to the body of any inner loop.

In this chapter, the classes of use-def chains that were defined in Def. 3.10
will be referred to within the text. The notations SCC(x1...n) ⇒ SCC(y1...m),
SCC(x1...n) ! SCC(y1...m) and SCC(x1...n) ! SCC(y1...m) will be used for
representing structural, non-structural and control use-def chains, respectively.
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4.2 Kernel Separation Issues of the SCC Graph
Classification Algorithm

Programmers have learnt to optimize sequential code for obtaining the highest
performance from uniprocessor architectures. These optimizations were shown
to be effective for improving the efficiency of the sequential execution of the
program. However, as stated in Section 2.1, the use of such programming
practices results in source codes that require sophisticated techniques for the
automatic analysis of programs (e.g. for automatic detection of parallelism).

A common optimization consists of computing a set of independent com-
putational kernels in a unique loop nest. This approach enables, for example,
the reuse of temporary results that are needed for various kernels. The syn-
thetic code shown in Fig. 4.1 will be used to illustrate the key ideas behind
kernel separation. The legend of the SCC graph (Fig. 4.1(c)) distinguishes
several types of nodes: rectangle (non-trivial structural SCC), hexagon (non-
trivial semantic SCC), oval (trivial SCC), and shaded oval (trivial SCC that
represent a loop index variable). Although there is no hexagonal node in this
SCC graph, this type of node will appear in other graphs presented in subse-
quent sections. The edges depicted as solid, dashed and dotted lines represent
structural, non-structural and control use-def chains, respectively. The labels
of the edges are determined by means of Eq. (3.10) during the execution of
the SCC classification algorithm.

The loop doh of Fig. 4.1(a) contains four computational kernels: a non-
conditional irregular assignment (variable a), a conditional irregular reduction
(variable b) and two linear induction variables that are used as counters (one
non-conditional, ia, and one conditional, ib). The SCC graph that repre-
sents doh consists of two connected subgraphs (see Fig. 4.1(c)). The first one
contains a unique component SCCS

1 (ia2...3) of class non-cond/lin. Thus, the
kernel associated with ia is identified through the analysis of this simple sub-
graph. The second subgraph needs further analysis for the separation of the
remaining kernels. The reason that the three computational kernels belong to
a unique connected subgraph is that all of them use a common set of temporary
variables, namely, the loop index of the outermost loop doh and the tempo-
rary scalar tmp. The key observation that supports the separation process is
that the SCC graph contains a source node for each of the non-wrap-around
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ia = 0
ib = 0
DO h = 1, n

tmp = function(h)
a(f(h)) = tmp
ia = ia + 1
IF (c(h)) THEN

b(f(h)) = b(f(h)) + 2 ∗ tmp
ib = ib + 1

END IF
END DO

(a) Source code.

ia1 = 0
ib1 = 0
DO h1 = 1, n, 1

b1 = µ(b0, b3)
a1 = µ(a0, a2)
ia2 = µ(ia1, ia3)
ib2 = µ(ib1, ib4)
tmp1 = µ(tmp0, tmp2)
tmp2 = function(h1)
a2 = α(a1, f(h1), tmp2)
ia3 = ia2 + 1
IF (c(h1)) THEN

b2 = α(b1, f(h1), b1(f(h1)) + 2 ∗ tmp2)
ib3 = ib2 + 1

END IF
b3 = γ(c(h1), b2, b1)
ib4 = γ(c(h1), ib3, ib2)

END DO

(b) GSA form.
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Figure 4.1: Synthetic code to illustrate kernel separation.
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components SCCS
1 (ib2...4), SCCA

1 (b1...3) and SCCA
1 (a1...2) that represent the

remaining three computational kernels. Note that the SCC graph includes a
fourth source node that consists of the wrap-around component SCCS

0 (tmp1).
The statements of the wrap-around SCCs are inserted in the code during the
construction of the GSA form to represent the flow of values. However, from
the detection of parallelism viewpoint, they do not provide the compiler with
any useful information. As a result, wrap-around SCCs can be ignored safely
during the execution of the SCC graph classification algorithm.

There are some exceptions to the general separation scheme described
above. After the decomposition of the SCC graph, some special connected
subgraphs that do not provide useful information for kernel separation may
appear. Consider the synthetic loop shown in Fig. 4.2. The index variable
of loop doh is not referenced within the loop body, i.e. it is just used as
a counter. As a result, the loop header is represented by a connected sub-
graph that is composed of a unique component SCCS

1 (h1) (see Fig. 4.2(c)).
A similar situation arises for the index variables of the inner loops of a loop
nest. The corresponding loop headers are represented by a subgraph of two
components: one associated with the loop header, and another composed of
the µ-statements inserted in GSA form at the beginning of the loop body of
the surrounding loops. The two connected subgraphs described above share
a common characteristic: they consist of SCCs associated with source code
temporary variables that are not referenced in any statement within the loop
body. These exceptions, as well as the general separation procedure described
above, have been considered for the design of the SCC graph classification
algorithm presented in the following section.

4.3 SCC Graph Classification Algorithm

The SCC graph classification algorithm, which is the main topic of our work [7],
accomplishes loop-level kernel recognition by performing kernel separation and
kernel classification in a unique traversal of the SCC graph. The algorithm
proceeds as follows. First, the SCC graph is divided into a set of connected
subgraphs. For each connected subgraph, a demand-driven classification al-
gorithm starts from each non-wrap-around source node. This procedure se-
parates and classifies the set of kernels that are computed in the statements
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max = a(1)
i = 2
DO h = 1, n

IF (max < a(i)) THEN
max = a(i)
i = i + 1

END IF
END DO

(a) Source code.

max1 = a(1)
i1 = 1
DO h1 = 1, n, 1

i2 = µ(i1, i4)
max2 = µ(max1 , max4)
IF (max2 < a(i2)) THEN

max3 = a(i2)
i3 = i2 + 1

END IF
i4 = γ(max2 < a(i2), i3, i2)
max4 = γ(max2 < a(i2), max3, max2)

END DO

(b) GSA form.

lin

unknown

scalar maximum

unknown

SCCS
1 (h1)

SCCS
1 (i2...4)

rhs index : a(i2)

rhs : max3

SCCS
0 (max2,4)

SCCS
1 (max3)max2 a(i2)

(c) SCC graph.

Figure 4.2: Example code whose SCC graph contains cycles (loop already
presented in Fig. 3.3)

of the SCCs included in the NWSN subgraph (see Def. 4.1). We call this
set of kernels NWSN subgraph class. Finally, the loop class is determined by
applying a transfer function to all the NWSN subgraph classes. This trans-
fer function basically consists of the union of the sets of kernels recognized
during the analysis of all the NWSN subgraphs. However, as will be shown
in Section 4.4.1, there are some exceptions where some kernels of the NWSN
subgraph class are not transfered into the loop class.

The core of the SCC graph classification algorithm is the procedure for
the classification of NWSN subgraphs. It basically consists of a post-order
traversal of the NWSN subgraph. When a node SCC(x1...n) is visited, the
successors in the SCC graph that are reached through structural, control and
non-structural use-def chains are classified in that order. For each use-def
chain, the successor is classified and, after that, a transfer function that de-
termines the type of kernel represented by the target and source SCCs of the
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use-def chain is applied. We call this kernel use-def chain class. The clas-
sification of the NWSN subgraph fails if either the class of the target SCC
or the class of the source SCC have not been successfully computed by the
SCC classification scheme presented in Chapter 3. In that case, the NWSN
subgraph class and the loop class are set to unknown, and the classification
process of inner loops starts. It should be noted that the nodes are visited
only once. If a target SCC has already been visited, then the transfer function
is applied directly. At the end of the NWSN classification algorithm, the class
of the SCC associated with the NWSN is added to the NWSN subgraph class.

As shown in Section 3.3, the SCC graph may contain cycles due to the
fact that control use-def chains are not taken into account for the construc-
tion of the graph. The example code of Fig. 4.2 contains two mutually
dependent components (see Def. 3.9). Thus, there is a cycle composed of
SCC (i2...4) ! SCC (max2,4) and SCC (max2,4) ! SCC (i2...4). These situa-
tions can be detected by using a stack of SCCs as follows. When a node is
visited, the corresponding SCC is inserted into the stack. Next, the contents
of the stack are checked before analyzing the target SCC of a use-def chain.
If the target SCC is in the stack, then there is a cycle in the SCC graph.
This detection mechanism was also used in the SCC classification algorithm
described in the previous chapter.

A pseudocode of the SCC graph classification algorithm is depicted in
Fig. 4.3. For the sake of clarity, we have omitted some implementation de-
tails, for instance, the management of the stack and the checking of whether a
SCC has been successfully classified. We have presented two procedures: Clas-
sify SCC Graph() and Classify Node(). The latter carries out the post-order
traversal of the SCC graph by analyzing the target nodes of the use-def chains
before the application of the corresponding transfer function. The procedures
whose names are TF NWSN Subgraphs(), TF Structural UseDef Chains(),
TF Control UseDef Chains() and TF Non Structural UseDef Chains() repre-
sent the transfer functions of the NWSN subgraphs and structural, control and
non-structural use-def chains. Note that due to the demand-driven nature of
Classify Node(), the NWSN subgraph classification algorithm is implicitly im-
plemented by running Classify Node() with the non-wrap around source node
as argument. The details about the division of the SCC graph into connected
subgraphs are not shown in the pseudocode.
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ALGORITHM: Classify SCC Graph()
INPUT: scc graph: SCC use-def chain graph
OUTPUT: [loop]: Loop class

PROCEDURE
FOREACH NWSN subgraph IN scc graph

[NWSN subgraph] = Classify Node(source node of NWSN subgraph)
[loop] = TF NWSN Subgraphs([loop],[NWSN subgraph])

END FOREACH
IF [loop] is unknown THEN

FOREACH inner loop
Classify SCC Graph(inner loop)

END FOREACH
END IF

ENDPROCEDURE

(a) Procedure Classify SCC Graph().

ALGORITHM: Classify Node()
INPUT: node: Node of the SCC graph
OUTPUT: [NWSN subgraph]: Class of the NWSN subgraph

PROCEDURE
FOREACH chain IN set of structural use-def chains

[chain] = Classify Node(target node of chain)
[NWSN subgraph] = TF Structural UseDef Chains([NWSN subgraph],[chain])

END FOREACH
FOREACH chain IN set of control use-def chains

[chain] = Classify Node(target node of chain)
[NWSN subgraph] = TF Control UseDef Chains([NWSN subgraph],[chain])

END FOREACH
FOREACH chain IN set of non-structural use-def chains

[chain] = Classify Node(target node of chain)
[NWSN subgraph] = TF Non Structural UseDef Chains([NWSN subgraph],[chain])

END FOREACH
ENDPROCEDURE

(b) Procedure Classify Node().

Figure 4.3: Pseudocode of the SCC graph classification algorithm.
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The transfer functions of the use-def chains provide the compiler with a
mechanism to detect the typical scenarios where the different kernels consi-
dered in this work are computed. Furthermore, during their execution, the
compiler may carry out any test that enables the recognition of a particu-
lar kernel. In the rest of this section, we just outline the goals of the transfer
functions for the structural, control and non-structural use-def chains because,
in general, each kernel requires the checking of different conditions. In Sec-
tion 4.4, we will describe the tests that are needed for several case studies
extracted from our benchmark suite.

Transfer Function of Structural Use-Def Chains

The transfer functions of structural use-def chains is presented in Table 4.1.
The first two columns define the characteristics that must fulfill the target
SCC and the source SCC. The last column shows the use-def chain class for
each possible value of the label associated with it: lhs index, rhs and rhs index
(see Eq. (3.10)). The rows are organized in sets. The first row of each set
shows the notations of the target SCC and the source SCC, which supplies
the following information about components: trivial/non-trivial (Def. 3.2),
cardinality (Def. 3.4) and scalar/array (Def. 3.5). The remaining rows show the
classes of the target SCC, the source SCC and the use-def chain. The notation
of the SCC class provides information about structural/semantic (Def. 3.3) and
conditionality (Def. 3.6). The symbol “=” represents that the use-def chain
class and the NWSN subgraph class are not changed during the execution
of the transfer function. Finally, blank entries represent use-def chains that
correspond to non-recognized computational kernels (the use-def chain class
is set to unknown). This transfer function has been defined to enable the
recognition of the kernels computed in our benchmark suite. However, it is
expected to work well with other real codes.

Structural use-def chains (see Def. 3.10) were defined so that they show
which dependences are essential for the recognition of loop-level kernels. As a
result, this transfer function enable the detection of a wide range of kernels.
Next, we will enumerate some relevant kernels. For example, consider the con-
secutively written array shown in Fig. 3.2(a), which was used as a guide for the
description of the SCC classification algorithm in Chapter 3. The SCC graph



4.3. SCC Graph Classification Algorithm 95

Ta
rg

et
SC

C
So

ur
ce

SC
C

St
ru

ct
ur

al
us

e-
de

fc
ha

in
cl

as
s

lh
s

in
de

x
rh

s
rh

s
in

de
x

[S
C

C
S 1
(y

1
)]

[S
C

C
S 0
(x

1.
..
n
)

]
lin

co
nd

/n
on

e
sc

al
ar

-lo
ca

tio
n

su
bs

co
nd

/n
on

e
sc

al
ar

-lo
ca

tio
n

su
bs

sc
al

ar
-m

in
im

um
sc

al
ar

-m
in

im
um

su
bs

sc
al

ar
-m

ax
im

um
sc

al
ar

-m
ax

im
um

[S
C

C
S 1
(y

1
)]

[S
C

C
S 1
(x

1.
..
n
)

]
in

v
(n

on
-)

co
nd

/l
in

(n
on

-)
co

nd
/l

in
-r

/i
nv

in
v

(n
on

-)
co

nd
/r

ed
(n

on
-)

co
nd

/r
ed

-r
/i

nv
su

bs
(n

on
-)

co
nd

/l
in

(n
on

-)
co

nd
/l

in
-r

/s
ub

s
su

bs
(n

on
-)

co
nd

/r
ed

(n
on

-)
co

nd
/r

ed
-r

/s
ub

s
[S

C
C

S 1
(y

1
)]

[S
C

C
A 1
(x

1.
..
n
)

]
lin

(n
on

-)
co

nd
/a

ss
ig

/l
in

(n
on

-)
co

nd
/a

ss
ig

/l
in

lin
(n

on
-)

co
nd

/r
ed

uc
/l

in
(n

on
-)

co
nd

/r
ed

uc
/l

in
=

lin
(n

on
-)

co
nd

/r
ec

ur
/l

in
(n

on
-)

co
nd

/r
ec

ur
/l

in
=

lin
ar

ra
y-

m
in

im
um

ar
ra

y-
m

in
im

um
lin

ar
ra

y-
m

ax
im

um
ar

ra
y-

m
ax

im
um

su
bs

(n
on

-)
co

nd
/a

ss
ig

/s
ub

s
(n

on
-)

co
nd

/a
ss

ig
/s

ub
s

su
bs

(n
on

-)
co

nd
/r

ed
uc

/s
ub

s
(n

on
-)

co
nd

/r
ed

uc
/s

ub
s

=
[S

C
C

S 1
(y

1.
..
m

)]
[S

C
C

A 1
(x

1.
..
n
)

]
co

nd
/l

in
co

nd
/a

ss
ig

/l
in

co
nd

/c
w
a

no
n-

co
nd

/l
in

no
n-

co
nd

/a
ss

ig
/l

in
no

n-
co

nd
/c

w
a

co
nd

/l
in

-r
/s

ub
s

co
nd

/a
ss

ig
/l

in
co

nd
/c

w
a

no
n-

co
nd

/l
in

-r
/s

ub
s

no
n-

co
nd

/a
ss

ig
/l

in
no

n-
co

nd
/c

w
a

Table 4.1: Transfer function for the analysis of structural use-def chains.
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of the loop contains a structural use-def chain SCCA
1 (a1...3) ⇒ SCCS

1 (i2...4)
(see Fig. 3.15). According to the entry 16 of the transfer function of Table 4.1,
the cond/cwa kernel can be recognized. The details regarding additional tests
will be explained in Section 4.4.3.

Structural use-def chains also enable the detection of array operations that
involve either regular (e.g. (non-)cond/assig/lin, (non-)cond/reduc/lin) or ir-
regular (e.g. (non-)cond/assig/subs, (non-)cond/reduc/subs) subscript expres-
sions. A (non-)cond/assig/subs kernel will be studied in Section 4.4.1.

As stated in Section 3.4.2, semantic reduction operations with scalars can-
not be detected in the SCC classification algorithm because of lack of informa-
tion. The candidate kernels pointed out in that stage (e.g. scalar-minimum,
scalar-maximum, scalar-find-and-set) are confirmed or discarded in this trans-
fer function. A fragment of code from our benchmark suite that computes a
scalar minimum with location will be analyzed in Section 4.4.2.

Finally, note that induction variables reinitialized to an invariant or subs-
cripted value (e.g. (non-)cond/lin-r/inv, (non-)cond/lin-r/subs) can also be
recognized. The same holds for scalar reductions (e.g. (non-)cond/red-r/inv,
(non-)cond/red-r/subs).

Transfer Function of Control Use-Def Chains

Control use-def chains are usually associated with conditional expressions that
involve temporary variables computed in the loop nest. The cond/cwa kernel
shown in Figs. 3.2(a) and 3.15 contains an if-endif construct whose condition,
c(h1), consists of a reference to a loop-invariant array c. The SCC graph shows
a control use-def chain from each component SCCS

1 (i2...4), SCCA
1 (a1...3) and

SCCS
0 (tmp1,3). As the target component SCCS

1 (h1) represents a temporary
variable (in particular, a loop index), the use-def chains are not relevant from
the kernel recognition viewpoint. The transfer function of control use-def
chains is presented in Table 4.2. Note that the situations described above
correspond to “=” entries in the table (entries 3, 5, and 1, respectively).

This transfer function will also be used for other purposes. First, it enables
the recognition of complex kernels that consist of one basic semantic kernel
and one basic structural kernel whose execution depends on the same condition
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Target SCC Source SCC Control use-def chain class
[SCCS

1 (y1)] [ SCCS
0 (x1...n) ]

lin cond/none =
subs cond/none =
subs scalar-minimum =
[SCCS

1 (y1)] [ SCCS
1 (x1...n) ]

lin (non-)cond/lin =
subs (non-)cond/subs =
[SCCS

1 (y1)] [ SCCA
1 (x1...n) ]

lin (non-)cond/assig/lin =
lin (non-)cond/assig/subs =
[SCCS

0 (y1...m)] [ SCCS
0 (x1...n) ]

scalar-minimum scalar-location scalar-minimum-w/loc
scalar-maximum scalar-location scalar-maximum-w/loc
[SCCA

1 (y1...m)] [ SCCA
1 (x1...n) ]

array-minimum cond/assig/lin array-minimum-w/loc
array-maximum cond/assig/lin array-maximum-w/loc
array-find-and-set cond/lin array-find-and-set
non-cond/assig/lin cond/lin =
non-cond/assig/lin cond/assig/lin =
non-cond/assig/lin (non-)cond/cwa =

Table 4.2: Transfer function for the analysis of control use-def chains.

within the loop body. A typical example is the computation of the kernel scalar
(array) minimum with location, which is studied in detail in Section 4.4.2. On
the other hand, it can be used to detect temporary scalar and array variables
that control the execution of other computational kernels in the loop nest. The
recognition of these kernels is addressed in the analysis of the consecutively
written array kernel presented in Section 4.4.4.

Finally, control use-def chains also provide a mechanism for kernel sepa-
ration. Consider the code shown in Fig. 4.4 that sets to zero the non-zero
elements of an array (variable a), and that counts the number of updated
elements (variable i). The transfer function of Table 4.2 (entry number 12)
adds the class array-find-and-set of the semantic SCCA

1 (a1...3) to the class of
the NWSN subgraph. At the end of the demand-driven process, the class
cond/lin of SCCS

1 (i2...4) is also added to the NWSN subgraph class. This way
both kernels are separated and recognized.
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i = 0
DO h = 1, n

IF (a(f(h)) "= 0) THEN
a(f(h)) = 0
i = i + 1

END IF
END DO

(a) Source code.

i1 = 0
DO h1 = 1, n, 1

i2 = µ(i1, i4)
a1 = µ(a0, a3)
IF (a1(f(h1)) "= 0) THEN

a2 = α(a1, f(h1), 0)
i3 = i2 + 1

END IF
i4 = γ(a1(f(h1)) "= 0, i3, i2)
a3 = γ(a1(f(h1)) "= 0, a2, a1)

END DO

(b) GSA form.

lin

cond/lin

array find and se

SCCS
1 (h1)

a1(f(h1))

a1(f(h1))

SCCA
1 (a1...3)

lhs index : a2(f(h1))

SCCS
1 (i2...4)

a1(f(h1))

(c) SCC graph.

Figure 4.4: Kernel separation through control use-def chains.

Transfer Function of Non-Structural Use-Def Chains

Unlike structural and control chains, non-structural use-def chains do not ena-
ble the recognition of loop-level computational kernels. In general, they will
be used by the compiler as a mechanism to gather information that is re-
levant for subsequent compiler optimizing and parallelizing transformations.
It should be noted that, however, non-structural use-def chains may lead the
classification scheme to be unsuccessful in some situations. In Section 4.5.1
some examples of codes with these characteristics will be presented.

An example application may be the recognition of the access pattern of
a set of arrays during the execution of a loop. Consider the non-structural
use-def chain SCCS

1 (tmp2) ! SCCS
1 (h1) in the SCC graph of Fig. 3.15. The

label of the chain, rhs index : f(h1), indicates that the index variable of the
loop, doh1 , is referenced in the subscript expression of an array, f , in the
right-hand side expression of the statement tmp2 = f(h1). As the subscript
expression, h1, consists of an occurrence of index variable, the compiler knows
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that the entries of f are accessed as dictated by the loop index. This infor-
mation may be useful, for example, in the scope of automatic parallelization
of sequential codes. If doh1 is parallelized, then the entries of array f may
be scattered among the processors in the same manner as the iterations of
doh1 in order to minimize the overhead of the parallel code. In Chapter 5, we
will describe the parallelization of a code where non-structural chains provide
essential information for the generation of parallel code.

4.4 Case Studies

In this section we present a detailed analysis of a set of loop nests extracted
from our benchmark suite. These case studies are intended to provide the
reader with a general overview of the loop classification algorithm. In Sec-
tion 4.4.1, a simple loop pattern called irregular assignment [5, 6] is studied.
In Section 4.4.2, several codes for the computation of minimum reduction
operations, both with scalar and array variables, are analyzed. Finally, Sec-
tions 4.4.3 and 4.4.4 are devoted to the recognition of several forms of conse-
cutively written arrays [32].

4.4.1 Irregular Assignment

An irregular assignment consists of a loop where, at each iteration h, a write
operation of the array element a(f(h)) is performed, f being the subscript
array. The expression whose value is assigned to a(f(h)) does not contain
occurrences of a, thus the code is free of loop-carried true data dependences.
Nevertheless, as the subscript expression f(h) is loop-variant, loop-carried out-
put data dependences may be present at run-time (unless f is a permutation
array). An example abstraction of this computational kernel, as well as the
corresponding GSA form and SCC graph, is shown in Fig. 4.5. In Fig. 4.5(a),
array entries a(f(h)) are assigned the value of the expression tmp + K, where
tmp is a temporary variable and K is a constant expression. The value of tmp

in each loop iteration is represented as b(h) in the figure. Irregular assignment
computations are a type of array operation (see Section 2.2.5) that can be
found in codes from different application fields such as computer graphics [19],
finite elements [48], or operations for the manipulation of sparse matrices [41].
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a(...) = ...
DO h = 1, n

tmp = b(h)
a(f(h)) = tmp + K

END DO
... = ...a(...)...

(a) Source code.

DO h1 = 1, n, 1
a1 = µ(a0, a2)
tmp1 = µ(tmp0, tmp2)
tmp2 = b(h1)
a2 = α(a1, f(h1), tmp2 + K)

END DO

(b) GSA form.

Control use def chain

Non structural use def chain

Structural use def chain

Non trivial semantic SCC

Non trivial structural SCC

Trivial SCC of an index variable

Trivial SCC

NWSN subgraph

LEGEND OF THE SCC GRAPH

non cond/assig/subs

lin

subs

none

rhs : tmp2

rhs index : rhs(h1)

lhs index : a2(f(h1))

SCCS
1 (h1)

SCCA
1 (a1...2)

SCCS
0 (tmp1)

SCCS
1 (tmp2)

rhs : tmp2

(c) SCC graph.

Figure 4.5: Irregular assignment computations.

Several code transformations that enable the parallel execution of irregu-
lar assignments can be found in the literature [6, 27]. The detection could be
carried out through a specific technique that combines source code pattern-
matching and data dependence analysis. This approach was successfully ap-
plied to irregular reductions in the Polaris parallelizing compiler [35]. In this
section, however, we address the detection problem using the classification
schemes presented in the thesis. These schemes provide support for the effi-
cient recognition of a wide range of kernels in a unified manner.

The irregular assignment kernel shown in the loop doh of Fig. 4.5(a) is rec-
ognized as follows. First, the SCC classification algorithm performs an exhaus-
tive analysis of the loop in GSA form, doh1 , which is presented in Fig. 4.5(b).
As a result, doh1 is represented as the SCC graph shown in Fig. 4.5(c). Next,
the loop classification algorithm splits this graph into a set of NWSN sub-
graphs. One NWSN subgraph that starts from SCCA

1 (a1...2) is found in doh1

(see the dotted curve of Fig. 4.5(c)). It consists of three nodes, SCCS
1 (h1),

SCCS
1 (tmp2) and SCCA

1 (a1...2), which are related through non-structural use-
def chains only. The loop classification scheme performs a post-order traversal
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of the NWSN subgraph. The NWSN SCCA
1 (a1...2) is visited first. As it is

the source of two non-structural use-def chains, SCCA
1 (a1...2) ! SCCS

1 (h1)
and SCCA

1 (a1...2) ! SCCS
1 (tmp2), the target components are visited before

applying the corresponding transfer function. When SCCS
1 (h1) is visited,

the demand-driven process finds a sink node that was successfully classified.
As explained in Section 4.3, the transfer function of non-structural use-def
chains does not enable the recognition of kernel classes. Thus, the analysis
of the behavior of that transfer function will not be addressed in this section.
As a consequence, the demand-driven process can continue with the analysis
of SCCA

1 (a1...2) ! SCCS
1 (tmp2). The process continues after classifying the

chains SCCS
1 (tmp2) ! SCCS

1 (h1) and SCCA
1 (a1...2) ! SCCS

1 (tmp2) in that
order. Finally, the class of the NWSN SCCA

1 (a1...2) is added to the NWSN
subgraph class. Thus, the subgraph is classified as non-cond/assig/subs.

It should be noted that the loop classification algorithm is not concerned
with the analysis of the output dependences that arise on array a during
the execution of the loop, as these dependences are represented by the class
of the SCCA

1 (a1...2). The remaining true dependence is captured as a non-
structural use-def chain SCCA

1 (a1...2) ! SCCS
1 (tmp2). This non-structural

chain, which is associated with the temporary variable tmp, does not provide
the compiler with relevant information for the recognition of the irregular
assignment computed in doh1 .

In real codes, more complex irregular assignment computations can be
found. The example loop doh shown in Fig. 4.6(a) contains multiple assign-
ment statements that may potentially write on different entries of array a

during the execution of a loop iteration. The statements are executed if a
condition c(h) is fulfilled. The SCC graph that represents doh is depicted in
Fig. 4.6(c). It should be noted that the SCC graph is similar to that of the sim-
pler case shown in Fig. 4.5(c). In fact, the two types of irregular assignments
are represented by SCCs whose class is (non-)cond/assig/subs, the only differ-
ence being the conditionality of the SCC (see SCCA

1 (a1...2) and SCCA
1 (a1...4)

in the SCC graphs of Figs. 4.5(c) and 4.6(c), respectively). The characteristics
that distinguish these irregular assignments are represented in the SCC graphs
as follows. First, the NWSN subgraph of SCCA

1 (a1...4) contains a control chain
SCCA

1 (a1...4) ! SCCS
1 (h1). According to the entry 7 of Table 4.2, the classifi-

cation process can continue with the analysis of non-structural use-def chains.
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a(...) = ...
DO h = 1, n

IF (c(h)) THEN
tmp = b(h)
a(f(h)) = tmp + K1

a(g(h)) = tmp + K2

END IF
END DO
... = ...a(...)...

(a) Source code.

DO h1 = 1, n, 1
a1 = µ(a0, a4)
tmp1 = µ(tmp0, tmp2)
IF (c(h1)) THEN

tmp2 = b(h1)
a2 = α(a1, f(h1), tmp2 + K1)
a3 = α(a2, g(h1), tmp2 + K2)

END IF
tmp3 = γ(c(h1), tmp2, tmp1)
a4 = γ(c(h1), a3, a1)

END DO

(b) GSA form.
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(c) SCC graph.

Figure 4.6: Irregular assignment computations with multiple assignment
statements.

The subgraph also contains two non-structural chains from SCCA
1 (a1...4) to

each trivial component SCCS
1 (h1) and SCCS

1 (tmp2). There is a pair of use-def
chains SCCA

1 (a1...4) ! SCCS
1 (h1) and SCCA

1 (a1...4) ! SCCS
1 (tmp2) for each

assignment statement of array a in the source code. For the sake of clarity,
the two chains are depicted in Fig. 4.6(c) as a unique dashed edge with two
labels. The behavior of the loop classification algorithm does not change sig-
nificantly. In fact, the NWSN subgraph inherits [SCCA

1 (a1...4)], i.e. the class
cond/assig/subs of the NWSN.

The SCC graph contains another NWSN subgraph associated with the
node of SCCS

0 (tmp1,3). According to Tables 4.1 and 4.2, the NWSN subgraph
should inherit [SCCS

0 (tmp1,3)], i.e. cond/none. However, this class will not
be considered because it is associated with a virtual component that arises
from the definition of the scalar temporary variable tmp within an if-endif
construct. This case is an exception to the general behavior of the transfer
function that merges the classes of the NWSN subgraphs (see Section 4.3).



4.4. Case Studies 103

The final step of the loop classification algorithm is the merging of the
classes of both NWSN subgraphs. The resulting loop class is cond/assig/subs.

4.4.2 Minimum with Location

An important characteristic of our compiler framework is that it enables the
recognition of structural and semantic kernels in a unified manner. The mini-
mum with location kernel (see Section 2.2.2) is a representative example of the
combination of structural and semantic basic kernels (see Def. 3.3). A specific
technique for the detection of this type of kernel was presented in [44].

Consider the loop doi shown in Fig. 4.7 which calculates the length minlen

of the smallest row of a sparse matrix stored in CRS format, as well as the
corresponding row number irow. In our framework, the SCC graph of doi

contains one NWSN subgraph. The loop classification scheme proceeds as fol-
lows. Let us focus on structural and control use-def chains. The control chains
SCCS

0 (irow2,4) ! SCCS
1 (len2), and SCCS

0 (minlen2,4) ! SCCS
1 (len2) will not

be considered because, as len2 is detected as a temporary scalar variable, they
do not provide useful information. First, the compiler addresses the analysis
of the structural chain SCCS

0 (irow2,4) ⇒ SCCS
1 (irow3). As the right-hand

side expression of the statement irow3 = i1 consists of an occurrence of the
index variable i1 of the outermost loop, [SCCS

0 (irow2,4) ⇒ SCCS
1 (irow3)] is

set to the class scalar-location (entry 1 of Table 4.1). Second, the struc-
tural chain [SCCS

0 (minlen2,4) ⇒ SCCS
1 (minlen3)] is set to scalar-minimum

(entry 3 of Table 4.1). Note that at this point of the analysis, the neces-
sary information for detecting a scalar minimum kernel is available as the
condition len2 < minlen2 fulfills the properties defined in Section 3.4.2 for
the SCC class scalar-minimum. The check consists of the condition len2 <

minlen2 matching e < v, where v is an occurrence of the reduction vari-
able minlen defined in the scalar statement minlen3 = len2 of the tar-
get component SCCS

1 (minlen3), and e consists of the right-hand side of
that statement. Finally, according to the entry 8 of Table 4.2, the con-
trol chain SCCS

0 (irow2,4) ! SCCS
0 (minlen2,4) enables the recognition of a

scalar-minimum-w/loc kernel. For this kernel to be successfully detected, the
compiler must check that the scalar statements minlen3 = len2 and irow3 = i1
belong to the same basic block within the loop body. The demand-driven clas-
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minlen = ia(2) − ia(1)
irow = 1
DO i = 2, nrow

len = ia(i + 1) − ia(i)
IF (len < minlen) THEN

minlen = len
irow = i

END IF
END DO

(a) Source code.

minlen1 = ia(2) − ia(1)
irow1 = 1
DO i1 = 2, nrow,1

len1 = µ(len0, len2)
irow2 = µ(irow1, irow4)
minlen2 = µ(minlen1, minlen4)
len2 = ia(i1 + 1) − ia(i1)
IF (len2 < minlen2) THEN

minlen3 = len2

irow3 = i1
END IF
irow4 = γ(len2 < minlen2, irow3, irow2)
minlen4 = γ(len2 < minlen2, minlen3, minlen2)

END DO

(b) GSA form.

lin

scalar minimum

lin
subs

subs

cond/none

none

rhs : irow3

rhs : minlen3

rhs : len2
rhs : len2

SCCS
0 (minlen2,4)

SCCS
1 (minlen3)SCCS

1 (irow3)

SCCS
1 (i1)

SCCS
1 (len2)

len2

minlen2

len2

rhs : i1 rhs index : ia(i1 + 1)
rhs index : ia(i1)

SCCS
0 (irow2,4)

SCCS
0 (len1)

(c) SCC graph.

Figure 4.7: Computation of minimum and its location (extracted from
SparsKit-II, module unary, subroutine blkfnd).
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sification algorithm finishes by setting the NWSN subgraph class and the loop
class to scalar-minimum-w/loc.

The example loop described above is simple. However, it is a representative
case of more complex kernels that involve subscripted subscripts. The code
shown in Fig. 4.8 calculates the minimum value m of the rows n1 . . . n2 of
a sparse matrix stored in CRS format (a, ia and ja). The location l within
array a is also computed. The SCC graph of Fig. 4.8(c) is very similar to
that of Fig. 4.7(c). In fact, the loop classification scheme is faced with similar
structural and control use-def chains, the differences being the classes of the
source and the target SCCs.

A more complex kernel is presented in Fig. 4.9. It consists of calculating the
minimum of each row of a sparse matrix in CRS format and their locations.
The main difference with respect to the previous cases is that minima and
locations are stored in two array variables m and l, respectively. Thus, the
array definition statements belong to the same SCC as the corresponding µ and
γ-statements (two SCCs arise when scalars are involved as shown in Figs. 4.7
and 4.8). In the examples, the locations are represented by SCCA

1 (l1...5),
whose class is cond/assig/lin. The minima are captured as a SCCA

1 (m1...5),
whose class is array-minimum.

4.4.3 Consecutively Written Array

The consecutively written array computational kernel (see Section 2.2.5) is
usually implemented by using an induction variable of step one to define which
array entries are written during loop execution. The loop nest doii presented
in Fig. 4.10 computes a permutation of the rows of a sparse matrix stored in
CRS format (a, ia and ja). The result is also stored in a sparse matrix in
CRS format (ao, iao and jao). The inner loop dok initializes the arrays ao

and jao with the values corresponding to one row of the matrix. This task
is carried out by using the linear induction variable of step one, ko, as the
subscript expression for the definition of ao and jao. The condition values,
which is used to determine at run-time if the entries ao of the sparse matrix are
computed, is loop-invariant. Thus, if values is true, the assignment statement
ao(ko) = a(k) is executed in every loop iteration.

The parallel execution of the consecutively written array kernel of the in-
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m = a(f(1))
l = f(1)
DO row = n1, n2

DO h = begin(row), end(row)
IF (a(f(h)) < m) THEN

m = a(f(h))
l = f(h)

END IF
END DO

END DO

(a) Source code.

m1 = a(f(1))
l1 = f(1)
DO row1 = n1, n2

l2 = µ(l1, l3)
m2 = µ(m1, m3)
h1 = µ(h0, h2)
DO h2 = begin(row1), end(row1)

l3 = µ(l2, l5)
m3 = µ(m2, m5)
IF (a(f(h2)) < m3) THEN

m4 = a(f(h2))
l4 = f(h2)

END IF
l5 = γ(a(f(h2)) < m3, l4, l3)
m5 = γ(a(f(h2)) < m3, m4, m3)

END DO
END DO

(b) GSA form.

cond/none

lin

scalar minimum

subs

nonesubs subs

SCCS
0 (l2,3,5)

SCCS
1 (row1)

SCCS
0 (m2,3,5)

SCCS
1 (h2)

rhs index : f(h2)

SCCS
0 (h1)

SCCS
1 (l4)

rhs : l4

SCCS
1 (m4)

m3

rhs index : end(row1)
rhs index : begin(row1)

rhs index : a(f(h2))

rhs : h2

m3

a(f(h2))a(f(h2))

(c) SCC graph.

Figure 4.8: Computation of the minimum value of a set of rows of a sparse
matrix, and its location.
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DO row = 1, n
m(row) = a(f(begin(row)))
l(row) = f(begin(row))
DO h = begin(row) + 1, end(row)

IF (a(f(h)) > m(row)) THEN
m(row) = a(f(h))
l(row) = f(h)

END IF
END DO

END DO

(a) Source code.

DO row1 = 1, n
m1 = µ(m0, m3)
l1 = µ(l0, l3)
h1 = µ(h0, h2)
m2 = α(m1, row1, a(f(begin(row1))))
l2 = α(l1, row1, f(begin(row1)))
DO h2 = begin(row1) + 1, end(row1)

m3 = µ(m2, m5)
l3 = µ(l2, l5)
IF (a(f(h2)) > m3(row1)) THEN

m4 = α(m3, row1, a(f(h2)))
l4 = α(l3, row1, f(h2))

END IF
m5 = γ(a(f(h2)) > m3(row1), m4, m3)
l5 = γ(a(f(h2)) > m3(row1), l4, l3)

END DO
END DO

(b) GSA form.
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Figure 4.9: Computation of minimum of each row of a matrix and their
locations.



108 Chapter 4. Recognition of Loop-Level Computational Kernels

nermost loop dok can be accomplished using, for instance, induction variable
substitution techniques or the array splitting and merging parallelizing trans-
formation. However, it is possible for the compiler to extract coarser-grain
parallelism from the outer loop doii by checking that the set of consecutive
entries of arrays jao and ao that are written in the iterations of doii do not
overlap at run-time. The strategies stated above will be described in more de-
tail in Chapter 5. The rest of this section will focus on the detection problem.

Consider the loop doii of Fig. 4.10. As shown in Fig. 4.10(c), the corre-
sponding SCC graph consists of one connected subgraph that contains two
NWSN subgraphs associated with SCCA

1 (jao1...3) and SCCA
1 (ao1...4). Let us

focus on the NWSN subgraph of SCCA
1 (jao1...3). During the post-order traver-

sal of this subgraph, structural use-def chains are processed in the following
order. First, SCCS

1 (ko3,4) ⇒ SCCS
1 (ko2) points out the possible existence of

a non-cond/lin-r/subs (see entry 7 of Table 4.1). For the reinitialized induction
variable to be detected, the compiler must check the position of the statements
of the SCC within the body of doii:

1. The increments of ko are performed in dok only, i.e. SCCS
1 (ko3,4)$dok

(see Def. 4.3).

2. The reinitialization of ko is carried out in doii but not in dok, i.e.
SCCS

1 (ko2)"doii (see Def. 4.4)

3. The statement ko2 precedes the inner loop dok in the control flow graph
of the loop body.

All these conditions are fulfilled in the outermost loop doii, so ko is recognized
as a non-cond/lin-r/subs.

The following step of the NWSN subgraph classification algorithm is the
analysis of the structural use-def chain SCCA

1 (jao1...3) ⇒ SCCS
1 (ko3,4). In

this case, the compiler must confirm the existence of the consecutively written
array jao. For this purpose, we have used the approach of [32]:

1. All the operations on ko are increments (or decrements) of the value 1.

2. Every time an array entry jao(ko) is written, the corresponding induc-
tion variable ko is updated. This task is accomplished throughout the
analysis of the CFG of doii.
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DO ii = 1, nrow
ko = iao(perm(ii))
DO k = ia(ii), ia(ii + 1) − 1

jao(ko) = ja(k)
IF (values) THEN

ao(ko) = a(k)
END IF
ko = ko + 1

END DO
END DO

(a) Source code.

DO ii1 = 1, nrow,1
jao1 = µ(jao0, jao2)
k1 = µ(k0, k2)
ko1 = µ(ko0, ko3)
ao1 = µ(ao0, ao2)
ko2 = iao(perm(ii1))
DO k2 = ia(ii1), ia(ii1 + 1) − 1, 1

jao2 = µ(jao1, jao3)
ko3 = µ(ko2, ko4)
ao2 = µ(ao1, ao4)
jao3 = α(jao2, ko3, ja(k2))
IF (values1) THEN

ao3 = α(ao2, ko3, a(k2))
END IF
ao4 = γ(values1, ao3, ao2)
ko4 = ko3 + 1

END DO
END DO

(b) GSA form.

cond/assig/lin

none

non cond/assig/lin

none

non cond/lin

subs

lin

subs

SCCA
1 (jao1...3)

SCCS
1 (ko3,4)

SCCS
1 (ko2)

SCCS
0 (ko1)

SCCS
1 (ii1)

SCCS
1 (k2)

SCCS
0 (k1)

SCCA
1 (ao1...4)

lhs index : jao3(ko3) lhs index : ao3(ko3)

rhs : ko3

rhs : ko2
rhs index : a(k2)

rhs index : iao(perm(ii1))

rhs : k2

rhs index : ia(ii1)
rhs index : ia(ii1 + 1)

rhs index : ja(k2)

(c) SCC graph.

Figure 4.10: Permutation of the rows of a sparse matrix (extracted from
SparsKit-II, module unary, subroutine rperm).
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Note the advantage of using our compiler framework for the recognition of
consecutively written arrays. The framework provides precise information
about what loops can potentially compute this kernel at run-time. Thus,
specific detection techniques such as [32] can be applied on demand to confirm
that the kernel is computed in the loop.

Regarding the NWSN subgraph of SCCA
1 (ao1...4), the classification pro-

cess is similar to that of the subgraph described above. A remarkable diffe-
rence is that the component represents a cond/cwa that actually computes a
non-cond/cwa kernel. This is because the condition values is loop-invariant,
so the array either is updated in every iteration or it is not modified during
the execution of the loop.

4.4.4 Consecutively Written Array with Sparse Temporary
Array

More complex consecutively written arrays can be found in sparse/irregular
programs. Consider the example code shown in Fig. 4.11 and its SCC graph,
which is depicted in Fig. 4.12. This subroutine builds a sparse matrix in CRS
format (c, jc, ic) from an input matrix (a, ja, ia) by extracting only the
elements that are stored in the positions pointed by a mask matrix stored in
a sparse storage format (imask, jmask).

The code consists of two loop nests. In the first loop, doj1, the initializa-
tion of the temporary array variable iw to the logical constant value false is
performed. The second loop nest, doii1 , is mainly devoted to the computation
of two conditional consecutively written arrays c and jc, which are recognized
as explained in Section 4.4.3. This example is specially interesting because
of the use of the variable iw to determine the iterations where c and jc are
computed. This mechanism is implemented with two inner loops, dok2 and
dok4 , which are executed, respectively, at the beginning and at the end of each
doii1 iteration. In the first loop dok2 , the array elements to be processed are
marked. In the second loop dok4 , these marks are unset. There is a loop
dok3 where the value of iw is tested, and that is located in the middle of the
loops dok2 and dok4 . If the mark is set, the corresponding elements c(len) and
jc(len) are calculated, len being a cond/lin induction variable. Otherwise, no
processing is performed.
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DO j = 1, ncol
iw(j) = false

END DO

DO ii = 1, nrow
DO k = imask(ii), imask(ii + 1) − 1

iw(jmask(k)) = true
END DO
k1 = ia(ii)
k2 = ia(ii + 1) − 1
ic(ii) = len + 1
DO k = k1, k2

j = ja(k)
IF (iw(j)) THEN

len = len + 1
jc(len) = j
c(len) = a(k)

END IF
END DO
DO k = imask(ii), imask(ii + 1) − 1

iw(jmask(k)) = false
END DO

END DO

(a) Source code.

DO j1 = 1, ncol,1
iw1 = µ(iw0, iw2)
iw2 = α(iw1, j1, false)

END DO

DO ii1 = 1, nrow, 1
iw3 = µ(iw1, iw6)
len2 = µ(len1, len3)
k1 = µ(k0, k4)
j2 = µ(j1, j3)
c1 = µ(c0, c2)
k11 = µ(k10, k12)
k21 = µ(k20, k22)
jc1 = µ(jc0, jc2)
ic1 = µ(ic0, ic2)
DO k2 = imask(ii1), imask(ii1 + 1) − 1, 1

iw4 = µ(iw3, iw5)
iw5 = α(iw4, jmask(k2), true)

END DO
k12 = ia(ii1)
k22 = ia(ii1 + 1) − 1
ic2 = α(ic1, ii1, len2 + 1)
DO k3 = k12, k22, 1

len3 = µ(len2, len5)
j3 = µ(j2, j4)
c2 = µ(c1, c4)
jc2 = µ(jc1, jc4)
j4 = ja(k3)
IF (iw4(j4)) THEN

len4 = len3 + 1
jc3 = α(jc2, len4, j4)
c3 = α(c2, len4, a(k3))

END IF
len5 = γ(iw4(j4), len4, len3)
c4 = γ(iw4(j4), c3, c2)
jc4 = γ(iw4(j4), jc3, jc2)

END DO
DO k4 = imask(ii1), imask(ii1 + 1) − 1, 1

iw6 = µ(iw4, iw7)
iw7 = α(iw6, jmask(k4), false)

END DO
END DO

(b) GSA form.

Figure 4.11: Filter the contents of a sparse matrix using a mask matrix
(SparsKit-II, module unary, subroutine amask).
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Figure 4.12: SCC graph of the code presented in Fig. 4.11.
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In our compiler framework, doii1 is represented by a SCC use-def chain
graph that contains three NWSNs (see Fig. 4.12): SCCA

1 (jc1...4), SCCA
1 (c1...4)

and SCCA
1 (ic1...2). During the analysis of the SCC graph, the demand-driven

algorithm is faced with the classification of SCCA
1 (iw3...7). For the masking

mechanism to be recognized by the compiler, SCCA
1 (iw3...7) must fulfill the

following properties:

1. The [SCCA
1 (iw3...7)] is non-cond/assig/subs, with two structural use-def

chains SCCA
1 (iw3...7) ⇒ SCCS

1 (k2) and SCCA
1 (iw3...7) ⇒ SCCS

1 (k4).

2. SCCA
1 (iw3...7) is a multi-loop component (see Def. 4.2) that contains two

α-statements that belong to the body of two different loops: dok2 and
dok4 .

3. The same elements of the auxiliary array iw are written in the loops
dok2 and dok4 . This constraint is tested as follows:

(a) Check that the iteration spaces are equal. Applying Lemma 3.1,
this can be assured by proving that the init, limit and step ex-
pressions of dok2 and dok4 are pair-wise syntactically identical, and
thus they are GSA-equivalent (see Def. 3.1). In the GSA form of
Fig. 4.11(b), these expressions are imask(ii1), imask(ii1 + 1) − 1
and 1 both in dok2 and dok4 .

(b) Check that the left-hand side indices of the α-statements are GSA-
-equivalent expressions. This condition is fulfilled because both
expressions are syntactically identical (see Theorem 3.1) except for
the occurrences of the index variables k2 and k4. However, as shown
above, k2 and k4 are GSA-equivalent (i.e. k2

GSA≡ k4). Thus, we

can conclude that jmask(k2)
GSA≡ jmask(k4).

4. The temporary array iw is initialized in doj1 (value false of iw2).

5. The elements of array iw are set to a value different than false in dok2

(true of iw5), and those marks are deleted in dok4 (false of iw7).

The analysis of the control use-def chains SCCA
1 (jc1...4) ! SCCA

1 (iw3...7),
SCCA

1 (c1...4) ! SCCA
1 (iw3...7), and SCCS

1 (len2...5) ! SCCA
1 (iw3...7) depicted

in Fig. 4.12 is addressed next. The target component of these chains is
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SCCA
1 (iw3...7). In order to identify those computational kernels (in the exam-

ple, the cond/cwa kernels associated with jc and c) whose execution is driven
by the contents of the sparse and temporary array iw, the compiler performs
the following checks during the execution of the transfer function:

1. The conditional expression iw4(j4) that guards the cond/cwa kernels
consists of an equality comparison between the value of the auxiliary
array iw and the value of the marks (true in iw5).

2. The loop dok2 precedes dok3 in the CFG, and dok3 precedes dok4 in the
CFG.

Note that no kernel class is added to the NWSN class (see the symbol “−” in
the last entry of Table 4.2). At the end of the NWSN subgraph classification
process, the classes of the NWSNs, SCCA

1 (jc1...4) and SCCA
1 (c1...4), will be

added, i.e. cond/cwa.

Finally, the third NSWN subgraph associated with SCCA
1 (ic1...2) is clas-

sified. According to the entry 9 of Table 4.1, the structural use-def chain
SCCA

1 (ic1...2) ⇒ SCCS
1 (ii1) is classified as non-cond/assig/lin. This class is

inherited by the NWSN subgraph and, at the end, it is added to the loop class,
which results to be {cond/cwa,non-cond/assig/lin}.

4.5 Experimental Results

The goal of the SCC graph classification algorithm is the recognition of the
set of computational kernels calculated in a loop. In this section we present
statistics about the efficacy of this algorithm for the analysis of the SparsKit-II
library.

Table 4.3 presents, for each nesting level and for each module of SparsKit-
II, the number of loops that are amenable for classification and those that are
not (see Section 3.7.1). Further statistics are shown for amenable loops. In
particular, the number of loops whose computational kernels were successfully
recognized. Next four columns show the numbers for the modules matvec,
blassm, unary and formats, respectively. The last column summarizes, for
each loop class, the total number of occurrences in SparsKit-II. Percentages
with respect to the total number of loops in SparsKit-II are also presented. The
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rows of the table are organized in sets. Each set corresponds to a nesting level,
level-1 being the innermost level. The last set summarizes the information for
all the nesting levels.

Experimental results show that 19% of the loops of SparsKit-II are not
amenable for classification due to the presence of jump statements, the exis-
tence of procedure calls or an incorrect translation into GSA form. From the
remaining 81% loops, 47% contain computational kernels that can be recog-
nized by our prototype. The 96% of the amenable loops have nesting levels
1 and 2. In fact, the SparsKit-II library contains only 16 loops with nesting
levels 3 and 4. The effectiveness decreases as the nesting level rises because
outer loops usually compute more complex kernels. In fact, all the recognized
loops concentrate in levels 1 and 2 (38% and 9%, respectively). The only
exception is a level-4 loop nest in the module matvec.

Table 4.4 shows, for each nesting level and for each module, the wide
variety of kernels classes that were successfully recognized by our prototype.
The first column presents the kernel classes in the form of a tree. The last
column summarizes the total number of occurrences for each kernel class.
Blank entries mean zero occurrences of the class. In our compiler framework,
the class of a loop represents the set of kernels computed in the loop. For this
reason, the total number of kernels (207) is greater than the total number of
loops recognized by the prototype, 176 (see totals in Table 4.3).

The most numerous classes are non-cond/assig/lin and non-cond/recur/lin.
These classes mainly correspond to level-1 simple loops that initialize the en-
tries of an array variable that will be referenced in subsequent loop nests
within a routine (see the discussion about the non-cond/assig/lin SCC class
in Section 3.7.2). Our approach has detected well-known kernels such as ir-
regular reductions (21 non-cond/reduc/subs, and 4 cond/reduc/subs), even
in level-4 loops. But also it has detected multiple irregular assignment ker-
nels (18 non-cond/assig/subs, and 4 cond/assig/subs), consecutively written
arrays (15 non-cond/cwa, and 15 cond/cwa), and semantic kernels such as
scalar-minimum-w/loc and array-find-and-set (1 and 3 level-1 loops, respec-
tively).

An interesting characteristic of our classification scheme is that it enables
the recognition of loops that include a combination of structural and semantic
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SparsKit-II
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Level-1 loops 22 32 86 104 244 (65%)
Not amenable for classification 0 3 22 16 41 (11%)
Amenable for classification 22 29 64 88 203 (54%)

Recognized 20 22 51 49 142 (38%)
Level-2 loops 16 8 35 60 119 (31%)
Not amenable for classification 1 0 16 11 28 ( 7%)
Amenable for classification 15 8 19 49 91 (24%)

Recognized 5 2 12 14 33 ( 9%)
Level-3 loops 1 1 4 6 12 ( 3%)
Not amenable for classification 0 0 2 1 3 ( 1%)
Amenable for classification 1 1 2 5 9 ( 2%)

Recognized 0 0 0 0 0 ( 0%)
Level-4 loops 1 0 1 2 4 ( 1%)
Not amenable for classification 0 0 1 0 1 ( 0%)
Amenable for classification 1 0 0 2 3 ( 1%)

Recognized 1 0 0 0 1 ( 0%)
Total number of loops 40 41 126 172 379 (100%)
Not amenable for classification 1 3 41 28 73 ( 19%)
Amenable for classification 39 38 85 144 306 ( 81%)

Recognized 26 24 63 63 176 ( 47%)

Table 4.3: Effectiveness of the SCC graph classification algorithm for the
recognition of the loop-level kernels computed in SparsKit-II.

basic computational kernels. The code of Fig. 4.13(a) presents an interesting
loop that calculates two computational kernels: an array-find-and-set seman-
tic kernel, iwk, and a cond/cwa structural kernel, kvstc. The loop class is
successfully recognized by the prototype.

As shown in Table 4.3, 19% of the loops of SparsKit-II are not amenable
for classification. However, we have checked a great deal of these loops con-
tain computational kernels that could be recognized with our classification
scheme. In many cases, applying restructuring techniques to the source code
before running the classification algorithms could lead the prototype to the
recognition of the kernels. Some examples including structural and seman-
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Level-1 loops 20 26 56 57 159
Structural kernels ................. 20 26 52 57 155

non-cond/lin 1 1
non-cond/red 5 5 10
non-cond/assig/lin 11 12 25 24 72
non-cond/assig/subs 7 4 1 12
non-cond/reduc/lin 1 1 1 3
non-cond/reduc/subs 4 2 3 9
non-cond/recur/lin 7 16 23
non-cond/cwa 1 2 4 7
cond/lin 2 1 1 4
cond/assig/inv 1 1
cond/assig/lin 1 1
cond/assig/subs 1 2 3
cond/reduc/inv 1 1
cond/reduc/subs 1 1
cond/cwa 1 2 4 7

Semantic kernels ................... 0 0 4 0 4
scalar-minimum-w/loc 1 1
array-find-and-set 3 3

Level-2 loops 5 2 23 17 47
Structural kernels .................

non-cond/assig/lin 1 5 1 7
non-cond/assig/subs 2 2 2 6
non-cond/reduc/lin 1 1
non-cond/reduc/subs 3 3 5 11
non-cond/cwa 6 2 8
cond/assig/lin 1 1 2
cond/assig/subs 1 1
cond/reduc/subs 3 3
cond/cwa 6 2 8

Level-4 loops 1 0 0 0 1
Structural kernels ................. 0 0 0 0 0

non-cond/reduc/subs 1 1

Table 4.4: Loop-level kernels recognized by the SCC graph classification
algorithm in the SparsKit-II library.
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nc = 1
kvstc(1) = 1
DO i = 2, ncol + 1

IF (iwk(i) "= 0) THEN
nc = nc + 1
kvstc(nc) = i
iwk(i) = 0

END IF
END DO
nc = nc − 1

(a) Level-1 loop extracted
from SparsKit-II, module
unary, routine csrkvstc.
The routine finds a block
column partitioning of
sparse matrix in CRS.

DO k = k2, k1,−1
j = jb(k)
IF (test.and.(j < ii)) THEN

test = false
ko = ko − 1
b(ko) = diag(ii)
jb(ko) = ii
iw(ii) = ko

END IF
ko = ko − 1
b(ko) = a(k)
jb(ko) = j

END DO

(b) Innermost loop extracted
from SparsKit-II, module blassm,
routine apldia. The routine adds
a diagonal matrix to a general
sparse matrix.

Figure 4.13: Interesting codes where the SCC graph classification algo-
rithm fails although the SCC graph contains no unknown
SCC.

tic kernels are: 1 non-cond/reduc/subs in matvec; 3 cond/cwa in blassm; 2
non-cond/reduc/subs, 6 scalar-maximum, and 9 (non-)cond/cwa in unary; and
5 scalar-maximum (minimum), 1 scalar-maximum-w/loc, and 13 cond/cwa in
formats.

4.5.1 Failures in SCC Graph Recognition

The main reasons that make the SCC graph classification algorithm fail are
the existence of unknown SCCs, the existence of use-def chains that have not
been considered in the transfer functions of the algorithm, and the limitations
of the methods that are used for the detection of specific computational ker-
nels. According to Table 4.3, 34% of the total number of loops in SparsKit-II
are not successfully recognized. The main reason for failure is the presence
of unknown SCCs in the SCC graph, which represents up to 30% of loops.
Because of its relevance, this issue will be addressed first. Next, we will focus
on the remaining 4% of the loops, which are represented by SCC graphs free
of unknown SCCs.
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As discussed in Section 3.7.3, the SCC classification algorithm may fail
for several reasons, the most relevant being the existence of SCCs with car-
dinality greater than one, multidimensional array references, and SCCs with
statements of several classes. In Fig. 4.13(b) an interesting loop that com-
putes a semantic scalar-find-and-set kernel, test, jointly with other structural
kernels is presented. The scalar variable test is used to distinguish the first
loop iteration so that special values can be stored in array entries b(ko), jb(ko)
and iw(ii), where ko is a linear induction variable and ii is a loop-invariant
value. The classification of dok fails because there is a structural SCC of car-
dinality two that represents the computations of the variables j and jb. This
SCC arises because the statements j = jb(k) and jb(ko) = j may introduce
loop-carried dependences during the execution of the loop. A similar loop can
also be found in the routine aplsca of blassm. Other example loops with SCCs
of cardinality greater than one were shown in Section 3.7.

In the following, let us focus on the 4% of non-recognized loops whose
SCC graphs are free of unknown SCCs. The transfer functions presented
in Section 4.3 for the classification of structural, control and non-structural
use-def chains cover a wide range of the kernels that can be found in SparsKit-
II. However, there are kernels that cannot be successfully recognized. Con-
sider the loop doj of Fig. 4.14(a), which contains two structural basic ker-
nels: non-cond/assig/subs (variable index) and a non-cond/reduc/subs (varia-
ble icnt). The distinguishing characteristic of this loop is that icnt is refe-
renced in the left-hand side index expression of the array assignment state-
ment index(icnt(ivalj)) = j. As a result, the SCC graph of doj contains a
non-structural use-def chain between both components. This is an example of
a use-def chain between two structural SCCs that leads the transfer function
of non-structural chains to classify the chain as unknown. Thus, the use-def
chain and, hence, the SCC graph are classified as unknown. This example
illustrates the fact that the transfer functions proposed in this thesis could be
adapted to cover a wider range of computational kernels. A similar situation
is found in other loops of SparsKit-II (e.g. do30 in the routine levels of the
module unary).

On the other hand, our framework provides information that the compiler
can use as a guide for the detection of specific computational kernels. Consider
the loop dojj of Fig. 4.14(b), which contains a non-conditional consecutively
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DO j = n, 1,−1
ivalj = ival(j)
index(icnt(ivalj)) = j
icnt(ivalj) = icnt(ivalj) − 1

END DO

(a) Loop nest extracted from SparsKit-
II, module formats, routine dcsort.
The routine is devoted to computation
related to sorting algorithms.

DO jj = 1, numc
b(b1) = a(a0)
b1 = b1 + neqr
a0 = a0 + 1

END DO

(b) Innermost loop extracted from
SparsKit-II, module formats, routine
csrvbr. The routine converts the
CRS storage format of a sparse ma-
trix into variable block row format.

Figure 4.14: Interesting codes where the SCC graph classification algo-
rithm fails although the SCC graph contains no unknown SCC
(cont.).

written array b. In the SCC graph, these computations would be represented
by means of a use-def chain between two SCCs: a structural scalar SCC for
the induction variable b1, and a structural array SCC for the array assignment
operation of array b. As the use-def chain is structural and the left-hand side
index expression of the statement b(b1) = a(a0) is an occurrence of b1 (i.e. the
label of the use-def chain is lhs index), the compiler can use the algorithm
described in Section 4.4.3 for the detection of consecutively written arrays (see
the blank entry number 17 of Table 4.1). Note that the detection technique
fails if the compiler cannot determine that neqr takes the value 1 during
the execution of dojj. As a consequence, it would be necessary to extend
the capabilities of the detection technique in order to recognize the kernel of
the figure. The prototype has detected 5 loops in SparsKit-II in which the
detection technique described in Section 4.4.3 has failed.

The classification of the SCC graph of the loop dojj of Fig. 4.14(b) will also
fail for another reason. The loop contains a non-conditional linear induction
variable a0 that is used to access a read-only array a located in the right-hand
side of the assignment statement b(b1) = a(a0). Thus, there is a non-structural
use-def chain between the SCC of array b and the SCC of the linear induction
variable a0. The application of the corresponding transfer function leads the
compiler to classify the SCC graph as unknown. A similar situation is found
in the loop do100 of the routine lnkcsr of formats. Instead of a non-conditional
induction variable, a linked-list kernel is used to access a read-only array.



Chapter 5

Generation of Parallel Code

The kernel recognition technique presented in the previous chapters rests on
two classification algorithms that perform an exhaustive analysis of the code of
a loop. These algorithms could be used as an information-gathering framework
that provides support for other optimizing and parallelizing techniques. In this
chapter, we focus on the application of this compiler framework to the scope
of automatic parallelization of sparse/irregular codes.

The rest of the chapter is organized as follows. In Section 5.1, an automatic
parallelization method based on our compiler framework is presented. The
remaining sections of the chapter are devoted to the analysis of the case studies
presented in Section 4.4, that is, the automatic parallelization of irregular
assignments (Section 5.2), minimum reduction operations (Section 5.3) and
consecutively written arrays (Section 5.4). Finally, experimental results that
compare the effectiveness of our method with the Polaris parallelizing compiler
are presented in Section 5.5.

5.1 Automatic Parallelization Method

The key idea of our method consists of using a repository of the paralleli-
zing transformations that were proposed in the literature for each compu-
tational kernel (see Fig. 2.4). In the scope of irregular codes, well-known
examples are irregular reductions [20, 22, 32, 55], irregular assignments [6, 27]
or DOACROSS loops [33, 54]. Once the kernels computed in a loop have been
recognized, the compiler can select the most efficient transformation from the
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repository. This selection phase is critical for maximizing the performance of
the parallel code. The most appropriate transformation should be determined
not only by considering the characteristics of the target parallel architecture
(shared memory, distributed memory, distributed/shared memory, etc...), but
also the parameters of the application itself. For instance, in [55] a method
to select the most appropriate technique for the parallel execution of irregular
reductions is presented. Similar approaches could be used for other computa-
tional kernels.

The last stage of this algorithm is the generation of parallel code according
to the selected technique. If there is no technique for a given kernel in the
repository, then a generic approach could be applied; for instance, one based
on speculative parallel execution of irregular loops [39]. General methods can
be applied to any loop with irregular computations. However, efficiency usual-
ly falls with respect to code transformations that are tuned for the efficient
execution of a specific computational kernel on a specific target architecture.
In order to generate parallel code according to a given parallelizing transfor-
mation, it is necessary for the compiler to extract information from the loop
body, for instance, what variables store the results of the computations, what
array variables determine the access patterns of other variables in irregular
computations, or what is the most appropriate point of the program for the
insertion of the code of a run-time test. It should be noted that, in general,
each parallelizing transformation requires that the compiler retrieves specific
information. In the following, a brief description of the information-gathering
process for the case studies of Chapter 4 is presented.

5.2 Irregular Assignment

The detection of several syntactical variations of irregular assignments was
described in Section 4.4.1. In this section, we will focus on explaining how our
compiler framework can provide compiler support for the generation of parallel
code. Two parallelizing transformations were proposed in the literature. The
first approach, which is based on the concept of array expansion, is presented
in Section 5.2.1. The second one, which uses the inspector-executor model,
is described in Section 5.2.2. The discussion will be oriented to reveal the
relevant information for the implementation of each parallelizing technique, as
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well as to show how such information can be gathered during the construction
of our framework.

5.2.1 Array Expansion Approach

The use of the Array SSA program representation as support for the automatic
parallelization of irregular assignments is described in [27]. Parallel code for
P processors is generated as follows. Each array definition a in the sequential
code, is replaced by two new array variables, a1(1 : asize) and @a1(1 : asize).
The value of the array element defined in the sentence is stored in a1. The
@-array stores the last loop iteration at which the elements of array a1 were
modified. Each processor p is assigned a set of iterations of the sequential loop,
and the arrays are expanded as a1(1 : asize, 1 : P ) and @a1(1 : asize, 1 : P ). As
a result, distinct processors, p1 and p2, can write into different memory loca-
tions concurrently, a1(f(h1), p1) and a1(f(h2), p1), while computing different
iterations h1 and h2, respectively. The entries of array a are computed by a
reduction operation. Consider the irregular assignment of Fig. 5.1(a). This
method replaces the sequential loop doh with the three-phase parallel code
shown in Fig. 5.1(b). In the first stage, each processor p initializes its region
of the expanded arrays, a1(1 : asize, p) and @a1(1 : asize, p). Next, proces-
sor p executes the set of loop iterations that it was assigned, iterations(p),
preserving the order of the sequential execution. At the end of the second
stage, partial results computed by different processors are stored in separa-
te memory locations. In the last stage, the value of each array element a(j)
(j = 1, ..., asize) is determined by means of a reduction operation that obtains
the value of the element of a1(j, 1 : P ) with the highest iteration number in
@a1(j, 1 : P ). Each processor computes the final value of a subset of array
elements a(j), which is denoted as array elements(p). Note that processors
must be synchronized at the end of the execution stage to ensure that the com-
putation of arrays a1 and @a1 has finished before performing the reduction at
the finalization stage.

For the array expansion approach to be implemented, the compiler needs
to extract the following information from the source code:

1. The array variable that stores the result. Consider the example of
Fig. 5.1(a). The array a is identified as the source code variable whose
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computations are represented by the component SCCA
1 (a1...2) of class

non-cond/assig/subs.

2. The source code statements that perform write operations on the array,
as their location within the CFG is necessary for the insertion of the
@-arrays. Within our framework, those statements are the source code
statements associated with the α-statements of the SCC that represents
the irregular assignment computations. In the example of Fig. 5.1(a),
the statement of SCCA

1 (a1...2) is a2 = α(a1, f(h1), tmp2 + K).

In order to apply that parallelizing transformation, the compiler needs fur-
ther information that is not gathered during the analysis of the loop body:
the range of the array (asize), the number of processors (P ) and the map-
ping of computations to processors (iterations(p) in the execution stage and
array elements(p) in the finalization stage). The compiler may obtain this
information in several ways: user supplied parameters, lexical and syntactical
analysis of the source code before translation into the internal representation,
or default values determined by the compiler.

An optimization to perform element-level dead code elimination at run-
time is presented in [27]. In irregular assignments, the same array element
may be computed several times, although only the last value is used after the
loop ends. Consequently, intermediate values need not be computed. Classi-
cal dead code elimination typically removes assignment statements from the
source code. This technique eliminates unnecessary array element definitions
at run-time. In order to apply this optimization, no further information is
needed.

Table 5.1 summarizes the relevant information from the point of view of
the generation of parallel code. The first column shows the computational
kernel. There is an entry for each kernel described in this chapter, namely,
irregular assignment, minimum with location and consecutively written ar-
ray. The second column indicates the parallelizing transformation. The last
column presents both the information extracted from the source code by the
compiler, as well as other information that is necessary for the implementation
of each parallelizing technique. The minimum with location kernel and the
consecutively written array kernel will be addressed in Sections 5.3 and 5.4,
respectively.
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a(...) = ...
DO h = 1, fsize

tmp = b(h)
a(f(h)) = tmp + K

END DO
... = ...a(...)...

(a) Source code (also pre-
sented in Fig. 4.5).

DOALL p = 1, P
! —— Initialization stage ——–
a1(1 : asize, p) = 0
@a1(1 : asize, p) = 0

! ——— Execution stage ———-
DO h ∈ iterations(p)

tmp = b(h)
a1(f(h), p) = tmp + K
@a1(f(h), p) = h

END DO
END DOALL

! ——– Finalization stage ——–
DOALL p = 1, P

DO j ∈ array elements(p)
pmax = MAXLOC(@a1(j, 1 : P ))
IF (@a1(j, pmax) > 0) THEN

a(j) = a1(j, pmax)
END IF

END DO
END DOALL

(b) Parallel code.

Figure 5.1: Parallelization of irregular assignment computations using an
approach based on array expansion. Element-level dead code
elimination is not considered.

5.2.2 Inspector-Executor Approach

We proposed in [6] a technique targeted for distributed-shared memory archi-
tectures that is based on the inspector-executor model. The key idea consists
of reordering loop iterations so that data write locality is exploited on each
processor. The sequential loop is replaced with a two-phase parallel code
(see Fig. 5.2). In the inspector stage (see Fig. 5.2(a)), array a is split into
subarrays of consecutive locations, ap (p = 1, ..., P ), and the computations as-
sociated with each block are assigned to different processors. Load-balancing
is preserved by building subarrays ap of different sizes. As a result, the loop
iteration space (1, ..., fsize) is partitioned into sets fp that perform write op-
erations on different blocks ap. In the executor stage (see Fig. 5.2(b)), each
processor p executes the conflict-free computations associated with the loop
iterations contained in a set fp.
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Computational Parallelizing Relevant information for the
Kernel transformation generation of parallel code

Irregular
Assignment

Array Expansion
(with dead code
elimination)

a, P , asize

α-statements in CFG
Mapping of sequential iterations
Mapping of array entries

Inspector-Executor
(with dead code
elimination)

a, P , asize, fsize

lhs of α-statements of the SCC
Location of the inspector code

Minimum
with Location

P
Parallel reduction Mapping of sequential iterations

Reduction variable

Consecutively
written array

Splitting and merging a, P
DOALL loop with a, P
run-time test I, L

Table 5.1: Relevant information of several loop-level kernels for the gener-
ation of parallel code.

The implementation of the inspector-executor approach in a parallelizing
compiler requires the following information to be extracted from the loop body:

1. The array that stores the results (variable a).

2. The subscript expressions that define the access pattern for the array
during the execution of the loop. This expression is f(h) in the irreg-
ular assignment of Fig. 5.1(a). During the construction of the frame-
work, the SCC classification algorithm analyzes the statement a2 =
α(a1, f(h1), tmp2 + K) of the component SCCA

1 (a1...2) that represents
the irregular assignment. During the analysis, the contextual classi-
fication of the left-hand side subscript expression f(h) is performed.
When, at the end, the class of f(h) is determined to be subs, the
compiler can gather the expression f(h). When the classification of
SCCA

1 (a1...2) finishes and the class of SCCA
1 (a1...2) is determined to be

non-cond/assig/subs, the compiler knows that the left-hand side sub-
script expression of the irregular assignment is f(h).

3. The location within the program that enables the reuse of the inspec-
tor code. Next, we briefly outline an algorithm that can be used in the
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! Frequency distribution
his(1 : asize) = 0
DO h = 1, fsize

his(f(h)) = his(f(h)) + 1
END DO

! Accumulative frequency distribution
DO h = 2, asize

his(h) = his(h) + his(h − 1)
END DO

! Computation of the linked lists
Refs = (his(asize)/P ) + 1
count(1 : P ) = 0
DO h = 1, fsize

thread = (his(f(h))/Refs) + 1
IF (count(thread) = 0) THEN

next(fsize + thread) = h
ELSE

next(prev(thread)) = h
END IF
prev(thread) = h
count(thread) = count(thread) + 1

END DO

(a) Inspector code.

a(...) = ...
DOALL p = 1, P

h = next(fsize + p)
DO k = 1, count(p)

tmp = b(h)
a(f(h)) = tmp + K
h = next(h)

END DO
END DOALL
... = ...a(...)...

(b) Executor code.

Figure 5.2: Parallelization of the irregular assignment of Fig. 5.1(a) using
an approach based on the inspector-executor model. Element-
level dead code elimination is not considered.

scope of our framework as it takes advantage of the demand-driven im-
plementation of the GSA form. Let {v1, ..., vn} be the set of variables
that are referenced in the subscript expressions that define the access
pattern for array a. Let {s1, ..., sn} represent the nodes of the CFG that
are associated with the definition statements of variables {v1, ..., vn}.
The inspector can be inserted just after the first node s of the CFG
that is reachable from s1, ..., sn. The demand-driven implementation
of the GSA form provides an efficient solution to the statement-level
reaching definition problem. Thus, the identification of {s1, ..., sn} from
{v1, ..., vn} is straightforward. Next, the statement s can be determined
through the analysis of the CFG. Several considerations should be taken
into account. For example, it is not desirable that s belongs to a loop
body, in order to prevent the inspector from being computed several
times unnecessarily.



128 Chapter 5. Generation of Parallel Code

Further information that must be available at compile-time is the range of the
arrays a and f (asize and fsize, respectively) and the number of processors
(P ). The information is summarized in Table 5.1.

This approach also supports element-level dead code elimination at run-
time. As in the array expansion technique, no further information is needed.

5.3 Minimum with Location

In Section 4.4.2, the detection of an example loop nest that computes a scalar
minimum with location kernel was described in detail. The parallelization
strategy for this kernel is similar to the parallelization of sum scalar reduction
operations, for instance. The method consists of two stages. In the first
stage, each processor calculates the local results corresponding to a set of loop
iterations (the sets are constructed so that they define a partition of the loop
iteration space). Next, the local results are combined to compute the result
of the reduction operation. In the example code shown in Fig. 4.7, the local
result is a pair < minlen, irow >. The pairs are combined so that the result
consists of the pair with the lowest minlen value. Hereafter, we will refer to
the pair < minlen, irow > as the reduction variable.

In order to implement the parallelizing transformation described above,
the compiler has to extract the reduction variable from the loop body. In the
scope of our compiler framework, the reduction variable < minlen, irow >

can be determined during the execution of the SCC graph classification al-
gorithm, more specifically, during the analysis of the control use-def chain
SCCS

0 (irow2,4) ! SCCS
0 (minlen2,4) (see the SCC graph of Fig. 4.7(c)) whose

target and source SCCs represent the computation of the minimum and the
computation of the location, respectively. As shown in Table 5.1, further in-
formation must be available at compile-time: the number of processors P , and
the mapping of loop iterations to processors.

5.4 Consecutively Written Array

In Sections 4.4.3 and 4.4.4, we described the detection of several syntactical
variations of the consecutively written array (CWA) kernel. Hereafter, we will
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explain the parallelization strategy briefly, and we will describe the support
that can be provided by our compiler framework. The section finishes with the
description of a run-time test that is needed for the parallelization of one of
the consecutively written arrays presented as an example (see Section 5.4.1).

Consecutively written array computations [32] consist of writing conse-
cutive array locations in consecutive loop iterations. Non-conditional CWAs
contain non-conditional induction variables. Current optimizing/parallelizing
compilers parallelize this kernel by calculating a closed form expression for the
induction variable and replacing the references to the variable with such an
expression. In our framework, the information about the conditionality of the
induction variable is intrinsically represented in the SCC class non-cond/lin.
Furthermore, as our SCC classification algorithm is a generalization of the
method proposed in [18], the closed form expression could be determined du-
ring the classification process as proposed in that work.

In general, the approach described above cannot be applied to condi-
tional CWAs (except if the compiler can determine that the conditions are
loop-invariant). In these cases, the array splitting and merging transforma-
tion described in [32] can be used. The technique consists of replacing the
original loop with a three-phase code. In Fig. 5.3(b), a parallel implemen-
tation for shared-memory architectures of the CWA of Fig. 5.3(a) is shown.
In an initialization stage, a private copy of array a is allocated to each pro-
cessor p. In the execution stage, the processors work on private copies a(1 :
asize, p) from position 1 in parallel. The iterations of the sequential loop
are distributed among processors according to a block scheme (denoted as
consecutive iterations(p)). After computation, each processor knows the
number of array elements l(p) modified in a(1 : asize, p). In the finalization
stage, the starting position of the original array for each processor is calcu-
lated as i(p) = (

∑p−1
h=1 l(h)) + 1. Finally, the private copies are copied back

(merged) to the original array a. This reconstruction process is depicted in
Fig. 5.4. The dashed edges show the data movements during the execution of
the copy back process.

As shown in Table 5.1, the implementation of the array splitting and mer-
ging method requires the array variable that stores the result to be identified
by the compiler. Furthermore, the number of processors P must be available
at compile-time. Our compiler framework provides support for recognizing the
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i = 1
DO h = 1, n

IF (...) THEN
a(i) = Exp
i = i + 1

END IF
END DO

(a) Source code of
a conditional consec-
utively written array
kernel.

DOALL p = 1, P
! —— Initialization stage ——–
aaux(1 : asize, p) = 0

! ——— Execution stage ———-
l(p) = 1
DO h ∈ consecutive iterations(p)

IF (...) THEN
aaux(i(p), p) = Exp
l(p) = l(p) + 1

END IF
END DO
l(p) = l(p) − 1

END DOALL

! ——– Finalization stage ——–
DOALL p = 1, P

! —- Determine start position ——
I(p) = 1
DO h = 1, p − 1

I(p) = I(p) + l(h)
END DO
! —- Copy back array elements ——
DO h = 1, l(p)

a(I(p) + h) = aaux(h, p)
END DO

END DOALL

(b) Parallel code.

Figure 5.3: Array splitting and merging parallelizing transformation.

1

1

1

Original array a()

l1

l2

l1 + 1 l1 + l2 + 1

Private copy of processor 1

Private copy of processor 2

a(1 : asize, 1)

a(1 : asize, 2)

ip = p−1
j=1 lj + 1

Figure 5.4: Illustration of the array splitting and merging technique for
two processors.
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array of results in the loop body. Consider the example shown in Fig. 4.10.
The task is accomplished during the analysis of the structural use-def chains
SCCA

1 (jao1...3) ⇒ SCCS
1 (ko3,4) and SCCA

1 (ao1...4) ⇒ SCCS
1 (ko3,4). The ar-

rays of result, jao and ao, correspond to the array variables of the source
components SCCA

1 (jao1...3) and SCCA
1 (ao1...4), respectively.

In Section 4.4.4, we described the recognition of the kernels computed in
the level-2 loop nest doii of Fig. 4.11. We showed how the SCC classifica-
tion algorithm determines that the loop class of doii consists of two kernels:
cond/cwa (variables jc and c) and non-cond/assig/lin (variable ic). From the
point of view of automatic parallelization, doii could be parallelized with the
array splitting and merging transformation described above. However, there is
an important fact related to ic that has to be considered in order to generate
correct parallel code. In each doii iteration, ic(ii) is set to len + 1, where len

is the cond/lin induction variable of step 1 used to compute the consecutively
written arrays jc and c. In the parallel code, each processor p calculates a
set of consecutive elements of ic. As len is a local variable in each processor,
the values stored in ic have to be corrected at the end of the loop execution
in order to preserve the semantics of the sequential code. In particular, each
processor p has to add to its elements of ic the sum of the total number of
elements computed by processors 1, . . . , (p − 1). Within our framework, the
non-structural use-def chain SCCA

1 (ic1...2) ! SCCS
1 (len2...5) of Fig. 4.12 pro-

vides the compiler with the necessary information for the generation of correct
parallel code.

5.4.1 Run-Time Test

In Section 4.4.3, we described the recognition of a (non-)cond/cwa kernel in
a level-2 loop nest that was extracted from the routine rperm of the module
unary of the SparsKit-II library. This consecutively written array has a distin-
guishing characteristic that consists of using a reinitialized induction variable
to access the elements of the array. In the code of Fig. 4.10, the linear induc-
tion variable of step one, ko, is reinitialized to a different loop-variant value,
iao(perm(ii)), at the beginning of each iteration of the outermost loop doii.
Thus, each doii iteration performs write operations on a subarray of arrays ao

and jao. So, if the subarrays do not overlap, doii can be executed in a fully
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parallel manner (DOALL loop). The pattern of write operations is depicted in
Fig. 5.5 for two processors. The subarray written by each processor p ∈ {1, 2}
is defined by the starting position ip and the length lp.

In the computational kernel described above, the compiler cannot deter-
mine the entries of each subarray because, in general, the value of iao(perm(ii))
is known at run-time only. As a result, the array splitting and merging tech-
nique cannot be applied because the compiler cannot assure that consecutive
array entries are modified in consecutive loop iterations. A parallelization
strategy for this kernel could consist of executing the loop doii in a fully pa-
rallel manner (DOALL loop), provided that the subarrays corresponding to
the loop iterations do not overlap. This condition can be checked by inser-
ting in the parallel code the following run-time test that we propose. Let
I = {i1, i2, ..., in} and L = {l1, l2, ..., ln} be, respectively, the sets of starting
positions and lengths of the subarrays , a1, a2, ..., an, defined in each iteration
of a loop. The subarrays a1, a2, ..., an do not overlap if there is no subarray
whose starting position corresponds to an entry of another subarray:

) ∃aj(j ∈ {1, ..., n}) / ik ≤ ij ≤ ik + lk + 1 , ∀k ∈ {1, . . . , n} , k )= j (5.1)

For this strategy to be implemented, the compiler needs to determine the
sets I and L. In the example code shown in Fig. 4.10(a), the starting positions
are given by

I = {iao(perm(ii)) ; ii = 1 . . . nrow}

Within our framework, this expression is identified when the SCC graph classi-
fication algorithm processes the structural chain SCCS

1 (ko3,4) ⇒ SCCS
1 (ko2)

(see the SCC graph of Fig. 4.10(c)). Note that iao(perm(ii)) is the right-
hand side of the statement ko2 = iao(perm(ii1)) associated with the target
component SCCS

1 (ko2). On the other hand, the lengths are

L = {(ia(ii1 + 1) − 1) − (ia(ii1)) + 1 ; ii = 1 . . . nrow}

i.e. the number of iterations of the inner loop dok for each doii loop iteration.
This expression can be computed at the end of the classification of the compo-
nent SCCS

1 (k2) associated with the innermost loop dok2 (see Fig. 4.10). The
compiler must be provided with support for symbolic computations.

Finally, the compiler must determine an appropriate point of the program
for the run-time test to be inserted. A correct location is just before doii in the



5.5. Experimental Results 133

Processor 1
Processor 2

i1 i2

l1 l2

Figure 5.5: Write operations performed by two processors when a CWA is
defined using a reinitialized induction variable of step one.

control flow graph of the program. However, as arrays iao, perm and ia are
invariant with respect to doii, a more efficient location would be the point of
the program where the results of the test can be reused for several executions
of doii. Within our framework, this information can be extracted using the
method proposed in Section 5.2 for inserting the inspector code.

5.5 Experimental Results

In this chapter, we have described a technique for the automatic parallelization
of codes at the loop-level based on the information provided by our compiler
framework. In order to evaluate the effectiveness of our approach, we have
analyzed the routines of the SparsKit-II library with the Polaris parallelizing
compiler. Polaris [11] is a source-to-source restructuring compiler that is or-
ganized in passes. The first passes perform source code transformations that
are intended to make the code more amenable to dependence analysis. Next,
dependence tests are run to discard the existence of loop-carried dependences
that preclude the parallelization of a loop. Note that the reason the failure of
Polaris is the failure of the dependence tests. In contrast, our approach fails
when the loop class cannot be determined, i.e. when the SCC graph fails to
recognize the computational kernels computed in the loop.

Table 5.2 summarizes the results of our experiments in terms of the number
of loops that can be parallelized with our approach and with Polaris. For each
nesting level, the number of loops with regular, regular-irregular and irregular
computations is presented. The distinguishing characteristic is the presence
of subscripted subscripts in the source code. In regular computations, the
index expression of array references can usually be expressed as a linear or
affine function of the loop index variables. In general, this property does not
hold for irregular computations. A mixed situation is also possible: there is



134 Chapter 5. Generation of Parallel Code

no subscripted subscript in the code, but there are if-endif constructs whose
conditional expressions contain array references. Depending on the character-
istics of the index expressions of the array references included in the body of
the if-endif statement, the access pattern for those array references may be ei-
ther regular or irregular. We will use the term regular-irregular computations
to refer to these cases. Level-3 has been omitted because the numbers are
zero for the two approaches. The last set of rows shows the total number of
loops for all nesting levels. Comprehensive experimental results for each loop
of SparsKit-II are presented in Appendix A.

According to the table, Polaris detects more parallelism than our approach
(189 vs 152, respectively). However, the main difference comes from the ana-
lysis of regular loops (126 vs 84), which is the strength of the compiler techno-
logy included in Polaris. It should be noted that the detection of parallelism
in regular codes was not our main objective because it is well covered in the
literature (see Section 2.1). The rest of this section will focus on the compa-
rison of both approaches with respect to the loops that contain irregular and
regular-irregular computations. In this case, Polaris is less effective than our
approach (63 vs 68). However, these total numbers are of little significance
because they do not show the real differences between both compiler technolo-
gies. The explanation of such differences is the main topic of the discussion
below.

The first consideration is related to the strategies that Polaris and our
approach use for the analysis of the loop nests of SparsKit-II. In our prototype,
inner loops are analyzed only if the computational kernels of the outer loops
were not successfully recognized. In contrast, Polaris analyzes all the loops
included in a loop nest. As a consequence, we have checked that from the
63 parallel loops of Polaris, there are 18 loops that were not analyzed by our
prototype although their computations would have been recognized, and even
the loop would have been detected as parallel.

Let us focus on parallel irregular loops. Polaris had success with 7 level-2
and 2 level-1 irregular loops where our prototype failed (these cases are marked
with the symbol “<” in the tables of Appendix A). Table 5.3 lists these loops
for each nesting level. The first column shows the loop within SparsKit-II.
The notation consists of a triplet composed by the name of the module, the
name of the routine and the name of the loop. The second column presents



5.5. Experimental Results 135

Our approach Polaris
Level-1 parallel loops 118 156
Irregular loops 31 35
Regular-irregular loops 4 5
Regular loops 83 116
Level-2 parallel loops 33 33
Irregular loops 32 23
Regular-irregular loops 0 0
Regular loops 1 10
Level-4 parallel loops 1 0
Irregular loops 1 0
Regular-irregular loops 0 0
Regular loops 0 0
Total number of parallel loops 152 189
Irregular loops 64 58
Regular-irregular loops 4 5
Regular loops 84 126

Table 5.2: Effectiveness of our approach for the automatic detection of
loop-level parallelism in the SparsKit-II library. Comparison
with the Polaris parallelizing compiler.

the loop class that the prototype should determine. The last column shows
the reason why the prototype failed to recognize the loop class: references
to multidimensional arrays (M), statements of different classes in the SCCs
(S), and existence of goto statements (G) or Fortran intrinsic procedure calls
(I) in the loop body. A complete list of failure reasons is described in Ap-
pendix A. It should be noted that the irregularity of the computations is not
necessarily represented in kernel classes (e.g. non-cond/reduc/subs). The ir-
regular computations may arise, for instance, as subscripted subscripts in the
right-hand side of the statements (a particular case are the init, limit and step
expressions of the loop headers). Except for the loop formats:csrmsr:do1 , the
loop classes that appear in the table can be recognized by the SCC and SCC
graph classification schemes described in the previous chapters. However, the
kernels were not recognized because of the limitations of the current version
of our prototype. The primary failure reason was the presence of multidimen-
sional array references in the loop body (M). Regarding formats:csrmsr:do1 ,
the detection failed because the SCC classification algorithm cannot classify
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Loop class Failure
reason

Level-1 parallel loops
matvec:amuxe:do25 non-cond/reduc/lin M
formats:csrell:do5 non-cond/assig/lin M

Level-2 parallel loops
matvec:amuxe:do10 non-cond/reduc/lin M
matvec:amuxd:do10 non-cond/reduc/subs MI
unary:dscaldg:do110 non-cond/assig/lin GI
formats:csrdns:do4 non-cond/assig/lin M
formats:csrell:do6 non-cond/assig/lin M
formats:csrmsr:do1 unknown S
formats:cooell:doi(3) non-cond/assig/lin M

Table 5.3: Loops in SparsKit-II where our approach failed and Polaris had
success.

SCCs that contain statements of different classes (S).

From the remaining cases, our approach beats Polaris in 1 level-4, 14 level-2
and 15 level-1 loops with irregular computations (symbol “>” in the tables of
Appendix A). Table 5.4 shows these loops as well as the source code variables
that may introduce loop-carried dependences according to the dependence
tests of Polaris (Loop-carried dependences). The last column (Kernel class)
presents the class of computational kernel that captures such dependences in
our approach. Polaris fails in loops that contain irregular assignment com-
putations, either conditional or non-conditional ((non-)cond/assig/subs). The
loop unary:amask:do100 deserves special mention, because the irregular assign-
ment is devoted to the computation of temporary values that are not useful
when the execution of the loop finishes. In fact, they are part of a more com-
plex masking mechanism that controls the loop iterations that are actually
executed at run-time. The automatic parallelization of this loop in the scope
of our compiler framework was studied in Section 5.4

On the other hand, Polaris cannot parallelize loops that contain conditional
consecutively written array kernels (cond/cwa) because it cannot compute a
closed form expression for the corresponding conditional induction variable
(cond/lin). The level-2 loop unary:rperm:do100 contains an interesting case
of cond/cwa kernel where the induction variable is reinitialized to a loop-
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Loop-carried Kernel classdependences
Level-1 parallel loops

blassm:aplb:do200 , do301 iw non-cond/assig/subs
blassm:apmbt:do200 , do301 iw non-cond/assig/subs
blassm:aplsbt:do200 , do301 iw non-cond/assig/subs
blassm:apldia:do1 b cond/assig/subs
unary:clncsr:do110 indu non-cond/assig/subs
unary:rperm:do50 iao non-cond/assig/subs
unary:dmperm:do101 ao non-cond/assig/subs
unary:extbdg:do13 ao,jao,ko cond/cwa

bdiag cond/assig/subs
unary:blkfnd:do1 minlen scalar-minimum-w/loc
unary:csrkvstc:dok iwk cond/assig/subs
formats:ssrcsr:do110 indu non-cond/assig/subs
formats:csrbsr:doj iw non-cond/assig/subs
Level-2 parallel loops

blassm:diamua:do1 b non-cond/assig/subs
blassm:amudia:do1 b non-cond/assig/subs
unary:submat:do100 ao,jao,klen cond/cwa
unary:csort:do6 iwork non-cond/assig/subs
unary:transp:do3 iwk non-cond/assig/subs
unary:amask:do100 c,jc,len cond/cwa

iw non-cond/assig/subs
unary:rperm:do100 ao,jao (non-)cond/cwa
unary:dperm1:do900 b,jb,ko (non-)cond/cwa
unary:dperm2:do900 b,jb,ko (non-)cond/cwa
unary:dscaldg:do2 a non-cond/reduc/subs
unary:xtrows:do100 ao,jao,ko (non-)cond/cwa
formats:csrmsr:do500 ao,jao,iptr cond/cwa
formats:csrssk:do4 asky cond/assig/subs
formats:csrsss:do7 al,jal,kl cond/cwa
formats:csrvbr:doi(4) iwk non-cond/assig/subs
formats:vbrcsr:doj ao,ja non-cond/cwa
Level-4 parallel loops

matvec:vbrmv:doi(2) k non-cond/reduc/subs

Table 5.4: Loops in SparsKit-II where our approach had success and Polaris
failed.
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variant expression at the beginning of each iteration in the outer loop. These
complex forms of induction variables cannot be handled by Polaris either. The
parallelization of this loop was analyzed in detail in Section 5.4.1.

Finally, Polaris cannot parallelize the irregular reduction computational
kernel (non-cond/reduc/subs) that appears in unary:dscaldg:do2 because the
reduction operator is not the sum but the product.

Regarding loops that contain regular-irregular computations, there is 1
level-1 loop in the routine dscaldg of module unary where Polaris beats our
prototype. As shown in Section 3.7.3, this kernel is represented by a semantic
SCC that cannot be successfully classified because it contains statements of
different classes. As the kernel is not recognized, the automatic parallelization
process fails. On the other hand, there is also 1 level-1 loop in the routine
csrkvstc of unary where it is our prototype that beats Polaris. Polaris fails
because the loop contains a cond/cwa kernel.



Conclusions

This thesis has covered two main subjects in the field of compiler technology
for the analysis of source codes. On the one hand, we have proposed a scheme
for the recognition of computational kernels at loop-level. This scheme is able
to handle loop nests that contain both regular and irregular computations.
Recognition is accomplished without considering the semantics of the code. On
the other hand, we have described the way our recognition scheme can be used
as a compiler framework that enables the automatic detection of parallelism
in irregular codes.

The main contributions of the thesis can be summarized in the following
items:

• A method that enables the recognition of a wide variety of basic com-
putational kernels that contain regular and irregular computations. The
basic kernels of a loop are recognized through the analysis of the strongly
connected components that appear in the GSA graph of the program.
This SCC classification algorithm recognizes kernels whose result is stored
in scalar variables (e.g. induction variables, scalar reductions) as well as
in array variables (e.g. irregular assignments, array recurrences). Fur-
thermore, the technique handles kernels that are defined using if-endif
constructs, for instance, minimum (maximum) and find-and-set opera-
tions whose result may be stored either in a scalar or an array variable.

• A technique for the recognition of the set of computational kernels that
are calculated during the execution of a loop. This algorithm is based on
the analysis of the SCC graph, which is an intermediate representation of
the loop body that captures relevant information about the dependences
between the basic kernels. No constraint is imposed on the regularity or
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the irregularity of the computations. We have shown that this SCC clas-
sification algorithm enables the recognition of kernels whose complexity
cannot be handled by the method indicated in the previous item (e.g.
scalar minimum (maximum) with location, array minimum (maximum)
with location, consecutively written array).

• The application of our kernel recognition scheme to the automatic de-
tection of coarse-grain loop-level parallelism in irregular codes. We have
shown that the SCC and SCC graph classification algorithms can be
used as a powerful information-gathering framework that provides the
compiler with the information that the implementation of parallelizing
transformations require. The main characteristics of our detection tech-
nique are:

– Compile-time detection of regular and irregular kernels whose com-
putations can be executed in parallel. Detection is accomplished
even in loops that contain complex control constructs. In the scope
of irregular codes, the information needed for the generation of
parallel code may not be available at compile-time (e.g. irregular
reductions, irregular assignments). In these situations, the com-
piler takes advantage of run-time support provided by available
code transformations that enable the parallel execution preserving
the sequential semantics of the loop (e.g. techniques based on the
inspector-executor model).

– Detection of a wide range of structural and semantic kernels in a
unified manner. Previous works on detection of parallelism in irre-
gular codes addressed the problem of recognizing specific and iso-
lated kernels (usually using pattern-matching to analyze the source
code). The recognition of semantic kernels could enable the pa-
rallelization of a wider set of loops that would not be parallelized
otherwise.

• A comparison of the effectiveness of our detection method against the Po-
laris parallelizing compiler. Encouraging experimental results have been
obtained by detecting parallelism in irregular loops where the pattern-
matching techniques available in Polaris fail. Some examples are irre-
gular assignments and consecutively written arrays. We have shown that
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the recognition of these kernels allows the detection of parallelism in
loops with complex irregular computations. For instance, we presented
a code where the detection of an irregular assignment allows the com-
piler to parallelize a complex loop that contains a consecutively written
array kernel.

We conclude with the presentation of some tasks that could be accom-
plished in order to complement the work developed in this dissertation, and
that may be considered for future research work:

• Measure the effectiveness of our kernel recognition scheme for the analy-
sis of other representative benchmark suites, mainly for irregular com-
putations. We expect that this study will lead us to:

– Measure the impact of the current limitations of the SCC classifica-
tion algorithm for the analysis of full-scale applications. We intend
to use this information as a guide for the inclusion of new features.

– Identify new frequently used computational kernels.

– Study the possibilities of parallelizing these new kernels, and pro-
pose new efficient parallelizing transformations.

• Extend the compiler framework in order to perform interprocedural and
alias analysis.

• Address the analysis of source codes written in other programming lan-
guages, for instance, C, C++ or Java. We intend to integrate our pro-
totype in the GNU GCC compiler as the first step to accomplish this
goal.

• Study the advantages and drawbacks of combining our compiler frame-
work (and the subsequent automatic parallelization stage) with the exis-
ting techniques that address the detection of parallelism in regular codes
efficiently. During the construction of the framework, the SCC graph
classification algorithm analyzes all the dependences that will appear
during the execution of a loop. The dependences associated with irregu-
lar computations could be analyzed as described in this thesis. Regarding
the dependences related to regular access patterns, the compiler could
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be used for the construction of equation systems that would later be
analyzed with classical dependence tests. Furthermore, the efficiency of
the tests could be improved by eliminating, for instance, loop-invariant
array references that would cause the test to fail.

• Study the applicability of the framework in the scope of optimizing tech-
niques for intensive I/O applications. From the point of view of the com-
piler, it would be necessary to determine the kind of data flow analysis
needed by these techniques and address their integration within the clas-
sification schemes that construct our compiler framework. For instance,
this extension would require the analysis of loops that contain I/O state-
ments and the characterization of the access patterns of the I/O arrays.

• Provide support for automatic program comprehension techniques in the
scope of irregular codes. In this thesis, we addressed the recognition of
computational kernels that do not supply information about the seman-
tics of the program. However, we could adapt the transfer functions of
our classification schemes in order to check additional constraints that
cope with semantics. This approach would enable more aggressive code
transformations.

• Measure the effectiveness of induction variable substitution techniques
for the computation of closed form expressions in loops with irregular
computations. We will try to improve current technology by including
support for symbolic computations within our framework.



Appendix A

Loop-Level Detection Results
vs Polaris for SparsKit-II

In Chapters 3 and 4 we presented experimental results that show the effec-
tiveness of the SCC classification algorithm and the SCC graph classification
algorithm, respectively. As a benchmark suite we used the SparsKit-II library
because it consists of a set of simple routines that contain a wide range of
loops with irregular computations. In this appendix, we include detailed in-
formation about the effectiveness of Polaris and the automatic parallelization
approach we outlined in Chapter 5.

Tables A.1, A.2, A.3 and A.4 compare both approaches for each loop of the
modules matvec, blassm, unary and formats of SparsKit-II. The first column,
R/I, shows whether the loop contains regular (R), irregular (I) or regular-
irregular (R/I) computations. The criterium to distinguish these types of
computations was explained in Section 5.5. The second column shows the
identifiers of the loops within the corresponding module. They are indented
according to their nesting level. The identifier consists of the routine name and
the loop name. The loop name is denoted as dox, x being a symbol that identi-
fies the loop within the routine (e.g. the loop index variable possibly followed
by a sequence number within brackets, the number associated with Fortran77
loop labels). The third and the sixth columns, P/S, indicate whether the loop
computations are detected as parallelizable (P ) or serial (S) by Polaris and
by our approach, respectively. A symbol “−” means that the loop was not
analyzed by the corresponding compiler. The fifth column compares the effec-
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tiveness of Polaris and our detection technique: same effectiveness (=), Polaris
is effective but our approach is not (<), and our approach is effective but Po-
laris not (>). Finally, the remaining columns present information about the
failure reasons of both approaches. The fourth column, Dependences, presents
the source code variables for which the dependence tests implemented in Po-
laris failed. The message printed by Polaris says ‘‘Variable (may) have

loop-carried dependences’’. Regarding our approach, this information is
shown in the seventh and eighth columns of the table. The seventh, unk,
shows the existence of unknown SCCs in the loop body. In this case, the
reasons for the unsuccessful classification are indicated as follows: cardinality
greater than one (C), references to multidimensional arrays (M), statements
of different classes (S), and operators whose transfer function has not been
defined (O). The eighth column shows whether the loop body is not amenable
for classification due to the existence of goto statements (G), procedure call
statements (C) or Fortran intrinsic procedure calls (I). The routines that do
not contain DO loops have been omitted from the tables.

In some rows of the tables there is a symbol “−” in the columns P/S of
both the Polaris compiler and our prototype. In most cases, it is due to the
fact that the loop is a while loop that is implemented with GOTOs. Polaris
recognizes while loops, but it does not analyze the control flow graph for finding
loops implemented with GOTOs. The current version of our prototype does
not handle any of these loops.

The tables contain blank entries in the seventh and eighth columns. This
means that, although the loop is amenable for classification and all the SCCs
were successfully classified, the SCC graph classification algorithm cannot de-
rive a known class for the loop.

Table A.1: Loop-level detection results vs Polaris for the
module matvec of SparsKit-II.

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I amux:do100 P = P
I amux:do99 P −
R amuxms:do10 P = P
I amuxms:do100 P = P

continued on next page



145

continued from previous page

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I amuxms:do99 P −
R atmux:do1 P = P
I atmux:do100 P = P
I atmux:do99 P −
R atmuxr:do1 P = P
I atmuxr:do100 P = P
I atmuxr:do99 P −
R amuxe:do1 P = P
I amuxe:do10 P < S M
I amuxe:do25 P < S M
R amuxd:do1 P = P
I amuxd:do10 P < S M I
R amuxd:do9 P < S M
R amuxj:do1 P = P
I amuxj:do70 P = P
I amuxj:do60 P −
R vbrmv:doi(1) P = P
I vbrmv:doi(2) S k > P
I vbrmv:doj S k −
R vbrmv:dojj S k −
R vbrmv:doii P −
I lsol:do150 S x = S C
I lsol:do100 P = P
I ldsol:do150 S x = S C
I lsol:do100 P = P
R lsolc:do140 P = P
I lsolc:do150 S x = S C
I lsolc:do100 P = P
R ldsolc:do140 P = P
I ldsolc:do150 S x = S C
I ldsolc:do100 P = P
I ldsoll:do150 S x = S C
I ldsoll:do100 S x = S C
I ldsoll:do130 P = P
I usol:do150 S x = S C
I usol:do100 P = P
I udsol:do150 S x = S C

continued on next page
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continued from previous page

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I udsol:do100 P = P
R usolc:do140 P = P
I usolc:do150 S x = S C
I usolc:do100 P = P
R udsolc:do140 P = P
I udsolc:do150 S x = S C
I udsolc:do100 P = P

Table A.2: Loop-level detection results vs Polaris for the
module blassm of SparsKit-II.

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R amub:do1 P = P
I amub:do500 S c,ic,iw,jc,len,scal = S
I amub:do200 S c,iw,jc,len,scal = S
I amub:do100 S c,iw,jc,len = S S
I amub:do201 S iw > P
R aplb:do1 P = P
I aplb:do500 S c,ic,iw,jc,len = S
I aplb:do200 S iw > P
I aplb:do300 S c,iw,jc,len = S S
I aplb:do301 S iw > P
R aplb1:do6 S c,jc = S G

R/I aplb1:do5 − −
R aplsb:do6 S c,j1,j2,jc,ka,kb,kc = S G

R/I aplsb:do5 − −
R aplsb1:do6 S c,j1,j2,jc,ka,kb,kc = S G

R/I aplsb1:do5 − −
R apmbt:do1 P = P
R apmbt:do2 P < S O
I apmbt:do500 S c,ic,iw,jc,len = S
I apmbt:do200 S iw > P
I apmbt:do300 S c,ic,jc,len = S S
I apmbt:do301 S iw > P
R apmbt:do501 P = P

continued on next page
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Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R aplsbt:do1 P = P
R aplsbt:do2 P = P
I aplsbt:do500 S c,ic,iw,jc,len = S
I aplsbt:do200 S iw > P
I aplsbt:do300 S c,ic,jc,len = S S
I aplsbt:do301 S iw > P
R aplsbt:do501 P = P
I diamua:do1 S b > P
R diamua:do2 P −
R diamua:do3 P = P
R diamua:do31 P = P
I amudia:do1 S b > P
I amudia:do2 P −
R amudia:do3 P = P
R amudia:do31 P = P
I aplsca:do1 P = P
I aplsca:do5 S a,ia,ja,ko = S

R/I aplsca:do4 S a,ja,ko,test = S
R apldia:do2 P = P
R apldia:do3 P = P
I apldia:do1 S b > P
I apldia:do5 S b,ib,jb,ko = S

R/I apldia:do4 S b,jb,ko,test = S

Table A.3: Loop-level detection results vs Polaris for the
module unary of SparsKit-II.

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
I submat:do100 S ao,jao,klen > P
R submat:do60 S ao,jao,klen −
I filter:do10 S b,index,jb = S G
R filter:do22 P = P
R filter:do23 S norm = S I
R filter:do30 S b,index,jb = S I
I filterm:do10 S b,index,jb = S G
R filterm:do22 P = P

continued on next page
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continued from previous page

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R filterm:do23 S norm = S I
R filterm:do30 S b,index,jb = S I
R csort:do1 P = P
I csort:do3 P = P
I csort:do2 P −
R csort:do4 S iwork = S
I csort:do5 S iwork = S C
I csort:do51 S iwork = S C
I csort:do6 S iwork > P
R csort:do61 P −
I csort:do7 S ia,iwork = S C
R csort:do8 S ia = S
R clncsr:do90 P = P
R clncsr:do120 S a,indu,ja,k = S G
I clncsr:do100 − = −
I clncsr:do110 S indu > P
I clncsr:do140 S a,j,ja,kfirst, = S G

klast,tmp

I clncsr:do130 − = −
I clncsr:do190 S a,ja = S C

R/I clncsr:do160 S a,ja = S C
R/I clncsr:do150 S a,ja = S C
R/I clncsr:do180 S a,ja = S C
R/I clncsr:do170 S a,ja = S C
R copmat:do100 P = P
R copmat:do200 P = P
R copmat:do201 P = P
R msrcop:do100 P = P
R msrcop:do200 P = P
R msrcop:do201 P = P
R msrcop:do202 P = P
R getelm:do5 S iadd = S G
R getelm:do10 − −
R getdia:do1 P = P
I getdia:do6 S ko = S G
I getdia:do51 S diag,idiag,k = S G
I getdia:do7 S a,ia,ja,ko = S

continued on next page
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Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R getdia:do71 S a,ja,ko = S
R transp:do1 S jcol = S I
I transp:do3 S iwk > P
R trasnp:do2 P −
R transp:do35 P = P
I transp:do4 P = P
R transp:do44 S ia = S
R transp:do80 S ia = S
I getl:do7 S ao,jao,ko = S G

R/I getl:do71 S ao,jao,ko = S G
I getu:do7 S ao,jao,ko = S G

R/I getu:do71 S ao,jao,ko = S G
R levels:do10 P = P
R levels:do20 S levnum,nlev = S I
R levels:do15 S levi = S I
R levels:do21 P = P
I levels:do22 P = P
R levels:do23 S ilev = S
I levels:do30 S ilev,lev = S
R levels:do35 S ilev = S
R amask:do1 P = P
I amask:do100 S c,iw,jc,len > P
I amask:do2 S iw −

R/I amask:do200 S c,jc,len −
I amask:do3 S iw −
I rperm:do50 S iao > P
R rperm:do51 S iao = S
I rperm:do100 S ao,jao > P
R rperm:do60 P −
I cperm:do100 P = P
R cperm:do1 P = P
R cperm:do2 P = P
I dperm1:do900 S b,jb,ko > P
R dperm1:do800 P −
I dperm2:do900 S b,jb,ko > P
I dperm2:do800 P −
I dmperm:do101 S ao > P

continued on next page
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continued from previous page

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R/I dvperm:do6 − S
R dvperm:do200 P < S O

R/I ivperm:do6 − S
R ivperm:do200 P < S O
I retmx:do11 S k2,t2 = S I
R retmex:do101 S t = S I
R diapos:do1 P = P
R diapos:do6 P = P

R/I diapos:do51 P −
I dscaldg:do110 P < S GI
R dscaldg:do111 P = P

R/I dscaldg:do1 P < S S
I dscaldg:do2 S a > P
R dscaldg:do21 P −
R extbdg:do1 P = P
I extbdg:do11 S ao,bdiag,iao,jao, = S I

kb,ko

I extbdg:do12 S ao,bdiag,jao,ko = S
I extbdg:do13 S ao,bdiag,jao,ko > P
I getbwd:do3 S ml,mu = S I
R getbwd:do31 S ml,mu = S I
R blkfnd:do1 S minlen > P
R blkfnd:do99 S ia,imsg,ja,nrow = S G
R blkfnd:do10 P < S G

R/I blkchk:do20 S irow = S G
R/I blkchk:do6 S irow,j2 = S G
R/I blkchk:do7 S j2 = S G
R blkchk:do5 S j2 = S G
R infdia:do1 P = P
I infdia:do3 P = P
I infdia:do2 P −
R infdia:do41 P = P
R amubdg:do1 P = P
R amubdg:do2 P = P
I amubdg:do7 S iw = S C
I amubdg:do6 S iw,last = S
I amubdg:do5 S iw,last = S

continued on next page
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Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R amubdg:do61 S iw,last = S
R amubdg:do8 P = P
R aplbdg:do1 P = P
R aplbdg:do2 P = P
I aplbdg:do7 S iw = S C
I aplbdg:do5 S iw,last = S
I aplbdg:do6 S iw,last = S
R aplbdg:do61 S iw,last = S
R aplbdg:do8 P = P
R rnrms:do1 P < S I
R rnrms:do2 S scal = S I
R rnrms:do3 P < S I
R rnrms:do4 P < S O
R cnrms:do10 P = P
I cnrms:do1 S diag = S I
I cnrms:do2 S diag = S I
R cnrms:do3 P < S I

R/I roscal:do1 P = P
R/I coscal:do1 P = P
I addblk:do10 S c,jc,ka,kamax, = S G

kb,kbmax,kc

I addblk:do20 − S G
R/I get1up:do5 S k = S G
I xtrows:do100 S ao,jao,ko > P
R xtrows:do60 P −
I csrkvstr:doi S jo,kvstr,nr = S G

R/I csrkvstr:doj S j,kvstr,nr = S G
I csrkvstc:doi(1) S iwk,ncol = S I
I csrkvstc:dok S iwk > P

R/I csrkvstc:doi(2) S kvstc,nc > P
R/I kvstmerge:do200 − S G
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Table A.4: Loop-level detection results vs Polaris for the
module formats of SparsKit-II.

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R csrdns:do1 P < S M
R csrdns:do2 P < S M
I csrdns:do4 P < S M
I csrdns:do3 S dns = S M
R dnscsr:do4 S a,ja,next = S M
R dnscsr:do3 S a,ja,next = S M
R coocsr:do1 P = P
I coocsr:do2 P = P
R coocsr:do3 S k = S C
I coocsr:do4 S ao,iao,jao = S
R coocsr:do5 S iao = S
R coicsr:do35 P = P
I coicsr:do4 P = P
R coicsr:do44 S iwk = S
I coicsr:do5 − −
I coicsr:do6 − −
R coicsr:do65 − −
R coicsr:do80 P = P
R csrcoo:do10 P = P
R csrcoo:do11 P = P
I csrcoo:do13 P = P
R csrcoo:do12 P −
I csrssr:do7 S ao,jao,ko = S G
R csrssr:do71 S ao,jao,ko = S G
R ssrcsr:do10 P = P
I ssrcsr:do30 P = P
I ssrcsr:do20 P −
R ssrcsr:do40 S iwk = S C
I ssrcsr:do60 S kosav = S C
R ssrcsr:do50 P = P
I ssrcsr:do80 S ao,iwk,jao = S C
I ssrcsr:do70 S ao,iwk,jao = S C
R ssrcsr:do90 P = P
I ssrcsr:do120 S ao,indu,jao,k = S G
I ssrcsr:do100 − −

continued on next page



153
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Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I ssrcsr:do110 S indu > P
I ssrcsr:do140 S ao,j,jao,kfirst, = S G

klast,tmp

I ssrcsr:do130 − −
I ssrcsr:do190 S ao,jao = S C

R/I ssrcsr:do160 S ao,jao = S C
R/I ssrcsr:do150 S ao,jao = S C
R/I ssrcsr:do180 S ao,jao = S C
R/I ssrcsr:do170 S ao,jao = S C
R xssrcsr:do1 P = P
I xssrcsr:do3 P = P
I xssrcsr:do2 P −
R xssrcsr:do4 S indu = S
I xssrcsr:do6 S ao,jao,kosav = S
R xssrcsr:do5 P = P
I xssrcsr:do8 S ao,indu,jao,ko = S
I xssrcsr:do9 S ao,indu,jao,k = S G
R csrell:do3 S ndiag = S I
R csrell:do4 P < S M
R csrell:do41 P < S M
I csrell:do6 P < S M
I csrell:do5 P < S M

R/I ellcsr:do6 S a,ja,kpos = S M
R/I ellcsr:do5 S a,ja,kpos = S M
I csrmsr:do1 P < S S

R/I csrmsr:do2 P = P
I csrmsr:do500 S ao,iptr,jao > P
I csrmsr:do100 S ao,iptr,jao −
R csrmsr:do600 S jao = S
R msrcsr:do1 P = P
I msrcsr:do500 S ao,iptr,jao = S S

R/I msrcsr:do100 S added,ao,idiag, = S
iptr,jao

R csrcsc2:do1 P = P
I csrcsc2:do3 P = P
I csrcsc2:do2 P −
R csrcsc2:do4 S iao = S

continued on next page
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continued from previous page

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I csrcsc2:do6 S ao,iao,jao = S
I csrcsc2:do62 S ao,iao,jao = S
R csrcsc2:do7 S iao = S
I csrlnk:do100 S ia,link = S
R csrlnk:do99 P = P
R lnkcsr:do100 S ao,ipos,jao, = S G

next

R lnkcsr:do99 − −
R csrdia:do41 S kmask = S G
R csrdia:do55 P < S M
R csrdia:do54 P < S M
I csrdia:do6 S ao,jao,ko = S M G
R csrdia:do51 S ao,diag,jao,ko = S M G
R csrdia:do52 S = S M G
R csrdia:do7 P = P
R diacsr:do80 S a,ja,ko = S M G
R diacsr:do70 S a,ja,ko = S M G
I bsrcsr:do2 S ao,jao,krow = S M
R bsrcsr:do23 S ao,jao,krow = S M
R bsrcsr:do21 P < S M
R bsrcsr:do22 P < S M
R csrbsr:doj P = P
I csrbsr:doii − −
I csrbsr:dowhile − −
I csrbsr:dok S ao,iw,jao,ko = S M
R csrbsr:doi P < S M
I csrbsr:doj S iw > P
R csrbnd:do15 P < S M
R csrbnd:do10 P < S M
I csrbnd:do30 S abd = S M
I csrbnd:do20 S abd = S M
R bndcsr:do30 S a,jo,ja,ko = S M G
R bndcsr:do20 S a,i,j,ja,ko = S M G
I csrssk:do3 S isky = S I
R csrssk:do31 S ml = S I
R csrssk:do1 P = P
I csrssk:do4 S asky > P

continued on next page
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Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I csrssk:do41 S asky −
R csrssk:do50 P = P
R csrssk:do60 S isky = S
R sskssr:do50 S ao,jao,kend, = S G

next

R sskssr:do31 S ao,jao,next = S G
R csrjad:do10 S idiag,ilo = S I
R csrjad:do20 P = P
I csrjad:do40 P = P
R csrjad:do30 P −
I csrjad:do60 S ao,jao,ko,k1 = S
I csrjad:do50 P = P
R jadcsr:do137 P = P
I jadcsr:do140 P = P
I jadcsr:do138 P −
R jadcsr:do141 S kpos = S
I jadcsr:do200 S ao,iao,jao = S
I jadcsr:do160 S ao,iao,jao = S
R jadcsr:do5 S iao = S
R dcsort:do10 P = P
I dcsort:do20 P = P
R dcsort:do30 S icnt = S
I dcsort:do40 S icnt,index = S
R cooell:doi(1) P < S M
R cooell:dok(1) P < S M
R cooell:doi(2) S nc = S M
I cooell:dok(2) S ao,jao,nc = S CM
I cooell:doi(3) P < S M
R cooell:doj P < S M
R xcooell:do4 P < S M
R xcooell:do4,1 P < S M

R/I xcooell:do10 S ncmax = S M
R/I xcooell:do30 S ac,jac,k = S M
R xcooell:do45 P < S M
R xcooell:do44 P < S M
R xcooell:do55 P < S M
R xcooell:do54 P < S M

continued on next page
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continued from previous page

Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump
R csruss:do1 P = P
I csruss:do3 P = P
I csruss:do2 P −
R csruss:do4 S ial,iau = S
I csruss:do7 S al,au,iau,jal, = S C

jau,kl

I csruss:do71 S al,au,iau,jal, = S C
jau,kl

R csruss:do8 S iau = S
R usscsr:do1 P = P
I usscsr:do3 P = P
I usscsr:do2 P −
R usscsr:do4 S ia = S
I usscsr:do6 S a,ja = S
R usscsr:do5 P = P
I usscsr:do8 S a,ia,ja = S
I usscsr:do7 S a,ia,ja = S
R usscsr:do9 S ia = S
I csrsss:do7 S al,jal,kl > P
I csrsss:do71 S al,jal,kl −
I csrsss:do8 S au,ial = S C
I csrsss:do81 S au,ial = S C
R csrsss:do9 S ial = S
R ssscsr:do1 P = P
I ssscsr:do3 P = P
I ssscsr:do2 P −
R ssscsr:do4 S ia = S
I ssscsr:do6 S a,ja = S
R ssscsr:do5 P = P
I ssscsr:do8 S a,ia,ja = S
I ssscsr:do7 S a,ia,ja = S
R ssscsr:do9 S ia = S
I csrvbr:doi(1) S ncol = S I
R csrvbr:doi(2) P = P
R csrvbr:doi(3) P = P
I csrvbr:doi(4) S iwk > P
R csrvbr:doj P −

continued on next page
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Loop Polaris compiler Our approach
R/I Identifier P/S Dependences P/S unk Jump

I csrvbr:doi(5) S a,b,bo,jb,ko,kb = S
I csrvbr:dojj S bo,j,jb,jo,kb = S
I csrvbr:doii S ao,b = S
R csrvbr:dojj S b = S
R csrvbr:doi(6) P = P
I csrvbr:doi(7) S iwk,jb,ko,kb = S
I csrvbr:dojj S iwk = S

R/I csrvbr:doj S jb,ko,kb = S
I csrvbr:doi(8) S ao,b = S
I csrvbr:doii S ao,b = S
I csrvbr:doj S ao,b,bo = S

R/I csrvbr:dojj S ao,b = S
I vbrcsr:doi S a,ao,ia,ja = S
I vbrcsr:doj S ao,ja > P
R vbrcsr:dojj P −
R vbrcsr:doii S ao,ja = S
R vbrcsr:doj P < S
I vbrcsr:doii S a,ao = S
R vbrcsr:dojj P < S
I csorted:doi S = S G
R csorted:doj S = S G
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