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Resumo

O interese en Java para computación paralela está motivado polas súas intere-

santes caracteŕısticas, tales como o seu apoio multithread, portabilidade, facilidade

de aprendizaxe, alta produtividade e o aumento significativo no seu rendemento

computacional. No entanto, as aplicacións paralelas en Java carecen xeralmente de

mecanismos de comunicación eficientes, os cales adoitan usar protocolos baseados

en sockets que son incapaces de obter o máximo proveito das redes de baixa laten-

cia, obstaculizando a adopción de Java na computación de altas prestacións (High

Performance Computing, HPC). Esta Tese de Doutoramento presenta o deseño, im-

plementación e avaliación de solucións de comunicación en Java que superan esta

limitación. En consecuencia, desenvolvéronse múltiples dispositivos de comunicación

a baixo nivel para paso de mensaxes en Java (Message-Passing in Java, MPJ) que

aproveitan ao máximo o hardware de rede subxacente mediante operacións de ac-

ceso directo a memoria remota que proporcionan comunicacións de baixa latencia.

Tamén se inclúe unha biblioteca de paso de mensaxes en Java totalmente funcional,

FastMPJ, na cal foron integrados os dispositivos de comunicación. A avaliación ex-

perimental amosou que as primitivas de comunicación de FastMPJ son competitivas

en comparación con bibliotecas nativas, aumentando significativamente a escala-

bilidade de aplicacións MPJ. Por outra banda, esta Tese analiza o potencial da

computación na nube (cloud computing) para HPC, onde o modelo de distribución

de infraestrutura como servizo (Infrastructure as a Service, IaaS) xorde como unha

alternativa viable aos sistemas HPC tradicionais. A ampla avaliación do rendemen-

to de recursos cloud espećıficos para HPC do proveedor ĺıder, Amazon EC2, puxo

de manifesto o impacto significativo que a virtualización impón na rede, impedindo

mover as aplicacións intensivas en comunicacións á nube. A clave atópase no soporte

de virtualización apropiado, como o acceso directo ao hardware de rede, xunto coas

directrices para a optimización do rendemento suxeridas nesta Tese.
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Resumen

El interés en Java para computación paralela está motivado por sus interesantes

caracteŕısticas, tales como su soporte multithread, portabilidad, facilidad de apren-

dizaje, alta productividad y el aumento significativo en su rendimiento computacio-

nal. No obstante, las aplicaciones paralelas en Java carecen generalmente de meca-

nismos de comunicación eficientes, los cuales utilizan a menudo protocolos basados

en sockets incapaces de obtener el máximo provecho de las redes de baja latencia,

obstaculizando la adopción de Java en computación de altas prestaciones (High Per-

formance Computing, HPC). Esta Tesis Doctoral presenta el diseño, implementación

y evaluación de soluciones de comunicación en Java que superan esta limitación. En

consecuencia, se desarrollaron múltiples dispositivos de comunicación a bajo nivel

para paso de mensajes en Java (Message-Passing in Java, MPJ) que aprovechan al

máximo el hardware de red subyacente mediante operaciones de acceso directo a me-

moria remota que proporcionan comunicaciones de baja latencia. También se incluye

una biblioteca de paso de mensajes en Java totalmente funcional, FastMPJ, en la

cual se integraron los dispositivos de comunicación. La evaluación experimental ha

mostrado que las primitivas de comunicación de FastMPJ son competitivas en com-

paración con bibliotecas nativas, aumentando significativamente la escalabilidad de

aplicaciones MPJ. Por otro lado, esta Tesis analiza el potencial de la computación en

la nube (cloud computing) para HPC, donde el modelo de distribución de infraestruc-

tura como servicio (Infrastructure as a Service, IaaS) emerge como una alternativa

viable a los sistemas HPC tradicionales. La evaluación del rendimiento de recursos

cloud espećıficos para HPC del proveedor ĺıder, Amazon EC2, ha puesto de ma-

nifiesto el impacto significativo que la virtualización impone en la red, impidiendo

mover las aplicaciones intensivas en comunicaciones a la nube. La clave reside en un

soporte de virtualización apropiado, como el acceso directo al hardware de red, junto

con las directrices para la optimización del rendimiento sugeridas en esta Tesis.
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Abstract

The use of Java for parallel computing is becoming more promising owing to

its appealing features, particularly its multithreading support, portability, easy-to-

learn properties, high programming productivity and the noticeable improvement in

its computational performance. However, parallel Java applications generally suffer

from inefficient communication middleware, most of which use socket-based proto-

cols that are unable to take full advantage of high-speed networks, hindering the

adoption of Java in the High Performance Computing (HPC) area. This PhD The-

sis presents the design, development and evaluation of scalable Java communication

solutions that overcome these constraints. Hence, we have implemented several low-

level message-passing devices that fully exploit the underlying network hardware

while taking advantage of Remote Direct Memory Access (RDMA) operations to

provide low-latency communications. Moreover, we have developed a production-

quality Java message-passing middleware, FastMPJ, in which the devices have been

integrated seamlessly, thus allowing the productive development of Message-Passing

in Java (MPJ) applications. The performance evaluation has shown that FastMPJ

communication primitives are competitive with native message-passing libraries, im-

proving significantly the scalability of MPJ applications. Furthermore, this Thesis

has analyzed the potential of cloud computing towards spreading the outreach of

HPC, where Infrastructure as a Service (IaaS) offerings have emerged as a feasible

alternative to traditional HPC systems. Several cloud resources from the leading

IaaS provider, Amazon EC2, which specifically target HPC workloads, have been

thoroughly assessed. The experimental results have shown the significant impact

that virtualized environments still have on network performance, which hampers

porting communication-intensive codes to the cloud. The key is the availability of

the proper virtualization support, such as the direct access to the network hardware,

along with the guidelines for performance optimization suggested in this Thesis.
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Preface

The performance and scalability of inter-node communications are key aspects

for running High Performance Computing (HPC) applications efficiently on parallel

architectures. In fact, current HPC systems, from multi-core clusters to large super-

computers, are aggregating a significant number of cores interconnected via a high-

speed network such as InfiniBand, RoCE or high-speed Ethernet (10/40 Gigabit).

Furthermore, the advent of cloud computing [15, 72] has generated considerable in-

terest in the HPC community due to the high availability of computational resources

at large scale. Thus, public Infrastructure as a Service (IaaS) providers (e.g., Ama-

zon) are increasingly offering virtualized HPC resources allowing end users to set up

virtual clusters to exploit supercomputing-level power. In this context, cloud com-

puting platforms have become an interesting alternative to deploy an HPC system

without any knowledge of the underlying infrastructure.

The continuously increasing number of cores available in the current multi- and

many-core era underscores the need for scalable parallel solutions, where the effi-

ciency of the underlying communication middleware is fundamental. In this context,

it is key to fully harness the power of the likely abundant processing resources from

HPC systems while taking advantage of the interesting features of high-speed net-

works, such as Remote Direct Memory Access (RDMA) operations, with still easy-

to-use programming models. The Message-Passing Interface (MPI) [61] remains as

the de-facto standard in the area of parallel computing owing to its flexibility and

portability, being able to achieve high performance in very different systems. Thus,

MPI is still the most widely extended programming model for writing parallel ap-

plications on HPC systems, traditionally using natively compiled languages (e.g.,

C/C++, Fortran).

xvii
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Java is currently among the preferred programming languages in web-based and

distributed computing environments, and it has become a valuable alternative for

parallel computing [73, 79]. The interest in Java for HPC is based on its appealing

characteristics that can be of special benefit for parallel programming such as built-

in networking and multithreading support, object orientation, automatic memory

management, portability, easy-to-learn properties and thus high programming pro-

ductivity. Moreover, the significant improvement in its computational performance

has narrowed the performance gap between Java and natively compiled languages,

thanks to the use of efficient Just-in-Time (JIT) compilers. However, although this

performance gap is usually small for sequential applications, it can be particularly

large for parallel applications when depending on communications performance. The

main reason is that current parallel Java applications generally suffer from ineffi-

cient communication middleware that do not take full advantage of high-speed net-

works [44]. This lack of efficient communication support in current Message-Passing

in Java (MPJ) [18] implementations usually results in lower performance than MPI,

which has hindered the use of Java in this area.

The present PhD Thesis, “Design and Evaluation of Low-Latency Communica-

tion Middleware on High Performance Computing Systems”, has been structured

to accomplish a twofold purpose. On the one hand, it focuses on providing a more

efficient Java communication middleware for parallel computing that overcomes the

performance constraints discussed above by fully exploiting the underlying network-

ing hardware, enabling low-latency and high-bandwidth inter-node communications

for parallel Java applications. This goal has been tackled specifically in the first part

of the Thesis, particularly for clusters and supercomputers as they are currently the

most widespread HPC deployments. On the other hand, the second part focuses on

the use of public cloud infrastructures for HPC and scientific computing. Hence,

the scalability of the Java communication middleware developed in the previous

part has been analyzed on the most popular IaaS cloud provider: Amazon EC2 [2].

Additionally, a comprehensive feasibility study of using Amazon EC2 resources for

HPC has been carried out. This extensive review ranges from the identification of

the main causes of communication inefficiency on a cloud computing environment

up to the proposal of some techniques for reducing their impact on the scalability

of communication-intensive HPC codes, both for Java and natively compiled lan-

guages. This study also considers other important aspects of Amazon EC2 to be
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a viable alternative in the HPC area, such as providing high-performance file I/O

through Solid State Drive (SSD) disks, the performance characterization of paral-

lel/distributed file systems for data-intensive applications (e.g., Big Data workloads)

or the use of coprocessors, such as Graphics Processing Units (GPU), as many-core

accelerators [56].

Work Methodology

The Thesis methodology has followed a classical approach in research and en-

gineering: analysis, design, implementation and evaluation. Thus, the work of this

Thesis has started with the feasibility analysis of providing efficient Java communi-

cations for HPC. For this task, a proof-of-concept low-level communication device

was implemented and integrated in a production Java communication middleware.

This communication device provides native support for an InfiniBand network, se-

lected for being widely used in current HPC systems. The feedback obtained from

this initial task was used to define and structure the subsequent developments,

where one of the most relevant contributions was the implementation of FastMPJ, a

production-quality Java message-passing middleware. The communication support

of this modular middleware was built upon several low-level communication devices

that take full advantage of high-speed networks. Therefore, the communication

device for InfiniBand was integrated in FastMPJ, while additional low-level commu-

nication devices were implemented to extend its high-speed network support. An

important task was the evaluation of this middleware on representative clusters and

supercomputers, as well as the analysis of the state of the art regarding the use of

Java for HPC. Next, this Java communication middleware was evaluated on a public

cloud computing infrastructure, Amazon EC2, using HPC-aimed resources, both in

terms of performance and cost. As the popularity of public clouds has increased

significantly in the last years, another task was to evaluate Amazon EC2 resources

for running HPC applications. Amazon EC2 was selected as it is currently the most

popular IaaS provider, offering several cloud resources that are intended to be well

suited for HPC: cluster instances equipped with powerful multi-core CPUs, high-

speed networks (10 Gigabit Ethernet), multi-GPU cluster instances and instances

that provide SSD-based disks as local storage.
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Structure of the Thesis

In accordance with the current regulations of the University of A Coruña, the

PhD dissertation has been structured as a compilation Thesis (i.e., based on merg-

ing research articles). Particularly, this research work comprises nine JCR-indexed

journal papers which have been organized into two different parts. The Thesis be-

gins with the Introduction chapter, intended to give the reader a general overview of

all the research carried out in these papers. First, this chapter introduces the scope

and main motivations of the Thesis in order to delimit its context and provides a

clear description of the main objectives to be achieved. Next, it includes an overall

discussion of the main research results of each part in order to provide consistency

and coherence to the different works.

Hereafter, the Thesis is divided into two parts. In the first part (Design of Low-

Latency Java Communication Middleware on High-Speed Networks), we present the

design, implementation and evaluation of efficient Java communication middleware

for parallel computing. The journal papers derived from the first part, each one

presented as a separate chapter (Chapters 2-5), are the following:

R. R. Expósito, G. L. Taboada, J. Touriño, and R. Doallo. Design of scalable

Java message-passing communications over InfiniBand. Journal of Supercom-

puting, 61(1):141–165, 2012.

R. R. Expósito, S. Ramos, G. L. Taboada, J. Touriño, and R. Doallo. FastMPJ:

a scalable and efficient Java message-passing library. Cluster Computing, 2014.

(in press, http://dx.doi.org/10.1007/s10586-014-0345-4).

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Low-

latency Java communication devices on RDMA-enabled networks. 2014. (Sub-

mitted for journal publication).

G. L. Taboada, S. Ramos, R. R. Expósito, J. Touriño, and R. Doallo. Java

in the high performance computing arena: research, practice and experience.

Science of Computer Programming, 78(5):425–444, 2013.

The second part of the Thesis (Evaluation of Communication Middleware for

HPC on a Public Cloud Infrastructure) presents a detailed feasibility study of the use

http://dx.doi.org/10.1007/s10586-014-0345-4
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of a public cloud computing platform, Amazon EC2, for running HPC applications.

The journal papers derived from the second part, each one also presented as a

separate chapter (Chapters 6-10), are the following:

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Evalua-

tion of messaging middleware for high-performance cloud computing. Personal

and Ubiquitous Computing, 17(8):1709–1719, 2013.

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Perfor-

mance analysis of HPC applications in the cloud. Future Generation Computer

Systems, 29(1):218–229, 2013.

R. R. Expósito, G. L. Taboada, S. Ramos, J. González-Domı́nguez, J. Touriño,

and R. Doallo. Analysis of I/O performance on an Amazon EC2 cluster

compute and high I/O platform. Journal of Grid Computing, 11(4):613–631,

2013.

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Perfor-

mance evaluation of data-intensive computing applications on a public IaaS

cloud. 2014. (Submitted for journal publication).

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. General-

purpose computation on GPUs for high performance cloud computing. Con-

currency and Computation: Practice and Experience, 25(12):1628–1642, 2013.

Finally, the Conclusions and Future Work chapter summarizes the main contri-

butions of the Thesis and outlines the main research lines that can be derived from

this work.

Funding and Technical Means

The necessary means to carry out this Thesis have been the following:

Working material, human and financial support primarily by the Computer

Architecture Group of the University of A Coruña, along with a Research
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Fellowship funded by the Ministry of Education, Culture and Sport of Spain

(FPU grant AP2010-4348).

Access to bibliographical material through the library of the University of A

Coruña.

Additional funding through the following research projects:

• European funding: project “Open European Network for High Perfor-

mance Computing on Complex Environments” (ComplexHPC, COST

Action ref. IC0805).

• State funding by the Ministry of Economy and Competitiviness of Spain

through the project “Architectures, Systems and Tools for High Perfor-

mance Computing” (TIN2010-16735).

• Regional funding by the Galician Government (Xunta de Galicia) under

the Consolidation Program of Competitive Research Groups (Computer

Architecture Group, refs. GRC2013/055 and 2010/6) and Galician Net-

work of High Performance Computing (ref. 2010/53).

• Private funding: projects “High Performance Computing for High Per-

formance Trading (HPC4HPT)” funded by the Barrié Foundation and

“F-MPJ-Cloud (Fast Message-Passing in Java on the Cloud)” funded by

a research grant of Amazon Web Services (AWS) LLC.

Access to clusters, supercomputers and cloud computing platforms:

• Pluton cluster (Computer Architecture Group, University of A Coruña,

Spain). Initially, 16 nodes with 2 Intel Xeon quad-core Nehalem-EP

processors and up to 16 GB of memory, all nodes interconnected via

InfiniBand DDR and 2 of them via 10 Gigabit Ethernet. Additionally, two

nodes with one Intel Xeon quad-core Sandy Bridge-EP processor and 32

GB of memory, interconnected via InfiniBand FDR, RoCE and iWARP,

and four nodes with one Intel Xeon hexa-core Westmere-EP processor,

12 GB of memory and 2 GPUs NVIDIA Tesla “Fermi” 2050 per node,

interconnected via InfiniBand QDR. Later, 16 nodes have been added,

each of them with 2 Intel Xeon octa-core Sandy Bridge-EP processors,
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64 GB of memory and 2 GPUs NVIDIA Tesla “Kepler” K20m per node,

interconnected via InfiniBand FDR.

• DAS-4 cluster (Advanced School for Computing and Imaging, ASCI, Vrije

University Amsterdam, the Netherlands). For the experiments of the

Thesis, 64 nodes have been used, each of them with 2 Intel Xeon quad-

core Westmere-EP processors and 24 GB of memory, interconnected via

InfiniBand QDR. Furthermore, we have used one fat node with 4 AMD

Opteron twelve-core Magny-Cours processors and 128 GB of memory.

• XB5 cluster (Phylogenomics Group, University of Vigo, Spain). One fat

node with 4 Intel Xeon ten-core Westmere-EX processors and 512 GB of

memory has been used.

• Finis Terrae supercomputer (Galicia Supercomputing Center, CESGA,

Spain): 144 nodes with 8 Intel Itanium-2 dual-core Montvale processors

and 128 GB of memory, interconnected via InfiniBand DDR. Addition-

ally, we have used one Superdome system with 64 Intel Itanium-2 dual-

core Montvale processors and 1 TB of memory.

• MareNostrum supercomputer (Barcelona Supercomputing Center, BSC,

Spain): 2560 nodes with 2 IBM PowerPC dual-core 970MP processors

and 8 GB of memory, interconnected via Myrinet 2000.

• Hermit supercomputer (High Performance Computing Center Stuttgart,

HLRS, Germany): 3552 nodes each of them with 2 AMD Opteron 16-core

Interlagos processors and up to 64 GB of memory, interconnected via the

custom Cray Gemini interconnect with a 3D torus topology.

• Amazon EC2 IaaS cloud platform (Amazon Web Services, AWS). Several

instance types have been used: (1) CC1, 2 Intel Xeon quad-core Nehalem-

EP processors, 23 GB of memory and 2 local storage disks per instance;

(2) CC2, 2 Intel Xeon octa-core Sandy Bridge-EP processors, 60.5 GB

of memory and 4 local storage disks per instance; (3) CG1, 2 Intel Xeon

quad-core Nehalem-EP processors, 22 GB of memory, 2 GPUs NVIDIA

Tesla “Fermi” 2050 and 2 local storage disks per instance; (4) HI1, 2

Intel Xeon quad-core Westmere-EP processors, 60.5 GB of memory and

2 SSD-based local storage disks per instance; (5) CR1, 2 Intel Xeon octa-

core Sandy Bridge-EP processors, 244 GB of memory and 2 SSD-based
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local storage disks per instance; and (6) HS1, 1 Intel Xeon octa-core

Sandy Bridge-EP processor, 117 GB of memory and 24 local storage

disks per instance. All these instance types are interconnected via 10

Gigabit Ethernet.

A three-month research visit to the Rechenzentrum Universität Mannheim,

Germany, which has allowed the access to the Hermit supercomputer installed

at the High Performance Computing Center Stuttgart (HLRS) for implement-

ing the corresponding FastMPJ commmunication device for the network sup-

port of the Cray XE/XK/XC family of supercomputers. This research visit

was funded by INDITEX S.A. in collaboration with the University of A Coruña

through a competitive INDITEX-UDC grant obtained in 2013.

Main Contributions

The main contributions related to the first part of the Thesis are:

1. Design and implementation of the ibvdev low-level communication library,

which is a Java message-passing device implemented on top of the Verbs in-

terface that provides scalable communications on InfiniBand systems [38].

2. Design, implementation and evaluation of an efficient Java message-passing

library: FastMPJ. This middleware not only benefits from the integration of

ibvdev, but also from two new low-level communication devices: (1) mxdev,

implemented on top of MX/Open-MX for communication on Myrinet and

generic Ethernet hardware; and (2) psmdev, implemented on top of InfiniPath

PSM for the support of the InfiniPath family of InfiniBand adapters from

Intel/QLogic [31].

3. Design, implementation and optimization of Java communication devices on

RDMA-enabled networks. This work includes the design and implementation

of two new communication devices, ugnidev and mxmdev, which have been

integrated into FastMPJ. The former device is intended to provide efficient

support for the RDMA networks used by Cray supercomputers. The latter
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includes support for the recently released messaging library developed by Mel-

lanox for its RDMA adapters. Furthermore, an enhanced version of ibvdev,

which includes additional support for RDMA networks along with an opti-

mized short-message communication protocol, has been provided [36].

4. An up-to-date review of Java for HPC, which includes an extensive perfor-

mance evaluation that focuses on message passing due to its scalability and

extended use in HPC. Thus, FastMPJ is evaluated comparatively with repre-

sentative MPI and MPJ middleware. This review also analyzes the current

state of Java for HPC both for shared and distributed memory programming,

showing an important number of past and present projects which are the result

of the sustained interest in the use of Java in this area [79].

The main contributions related to the second part of the Thesis are:

1. A detailed study of the impact of the virtualized network overhead on the

scalability of HPC applications on the leading public IaaS cloud: Amazon

EC2. This work compares the first generation of the HPC-aimed family of

EC2 cluster instances, whose access to its high-speed network (i.e., 10 Gigabit

Ethernet) is paravirtualized, with the performance of a similar private cloud

testbed that supports the direct access to the same EC2 networking technology

through the PCI passthrough technique and the same testbed running on a

non-virtualized environment [33].

2. A thorough analysis of the main performance bottlenecks in HPC application

scalability on Amazon EC2 along with the proposal and evaluation of some

techniques to reduce the impact of the virtualized network overhead. This

work gives more insight into the performance of running HPC applications on

Amazon EC2, using an important number of cores (up to 512) and comparing

the first and second HPC-aimed generations of cluster instances in terms of

single instance performance, scalability and cost-efficiency, as well as taking

into account hybrid programming models (e.g., MPI+OpenMP) [35].

3. A comprehensive evaluation of the I/O storage subsystem on Amazon EC2.

This work evaluates both generations of cluster instances along with storage-

optimized instances, which provide SSD-based disks, in order to determine
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their suitability for I/O-intensive applications. The evaluation has been car-

ried out at different layers, ranging from the cloud low-level storage devices

(e.g., ephemeral disks) and I/O interfaces (e.g., MPI-IO, HDF5) up to the

application level, including also an analysis in terms of cost. Furthermore,

the Network File System (NFS) performance has been characterized, showing

the impact of the main NFS configuration parameters on a virtualized cloud

environment [32].

4. A performance analysis of running data-intensive computing applications on

Amazon EC2. This work analyzes the full I/O software stack for data-intensive

computing, both for HPC and Big Data workloads. More specifically, the

performance and cost-efficiency of four instance types that provide 10 Giga-

bit Ethernet has been characterized at multiple layers, using a representative

suite of benchmarking tools (e.g., IOzone, IOR, Intel Hibench), parallel/dis-

tributed file systems (OrangeFS, HDFS), distributed computing frameworks

(Apache Hadoop), I/O-intensive parallel codes for HPC (e.g., FLASH-IO)

and MapReduce-based workloads for Big Data processing (e.g., Sort, PageR-

ank) [37].

5. A feasibility study of using heterogeneous architectures with many-core ac-

celerators on Amazon EC2. Thus, the GPU family of EC2 cluster instances

has been assessed using representative Compute Unified Device Architecture

(CUDA) and Open Computing Language (OpenCL) synthetic kernels and

benchmarks, and their results have been compared with a non-virtualized GPU

environment in order to analyze the virtualization overhead for GPGPU. Fur-

thermore, hybrid parallel codes (e.g., MPI+CUDA) have been also taken into

account at the application level, using two real-world applications and the

High Performance Linpack (HPL) benchmark [34].
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Chapter 1

Introduction

This introductory chapter is intended to give the reader a brief summary of

the whole research carried out in this Thesis. The structure of this chapter is as

follows: Section 1.1 introduces the scope and main motivations of the Thesis in

order to delimit its context. A clear description of the main objectives that must be

achieved is included in Section 1.2. Finally, Section 1.3 provides an overall discussion

of the main research results in order to provide consistency and coherence to the

different journal papers that compose this work.

1.1. Scope and Motivation

High Performance Computing (HPC) has become increasingly important over

the last decades as an essential tool for scientific and industry research. In fact,

HPC is currently one of the leading edge disciplines in Information Technology (IT)

with a wide range of demanding applications in economy, science, and engineer-

ing. These applications usually involve the construction of mathematical models

and numerical solution techniques that often require a huge number of computing

resources to perform large scale experiments or to cut down the computational com-

plexity into a reasonable time frame. These computational needs have been tipically

addressed by supercomputers installed at national laboratories, big research groups

or large companies. Despite the significance of HPC towards scientific research and

1
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industrial growth, only the largest research projects are able to afford expensive su-

percomputers. Moreover, the access to these systems is usually highly restricted and

can only be obtained by an allocation through competitive research grant proposals.

Hence, for small or medium-scale users with emerging, but limited, HPC demands,

the conventional option has been to set up their own in-house HPC cluster.

In order to meet the computational power demands of HPC applications, cur-

rent deployments are increasing significantly the number of cores installed, inter-

connected via high-speed networks. This trend in hardware evolution increases the

complexity of the system, which demands scalable communication middleware and

programming languages with high productivity in parallel code development. For

performance reasons, those languages compiled to the native code of each platform

(e.g., C/C++, Fortran) have been traditionally the most widely used for writing

parallel applications. However, the interest in Java for parallel programming has

been rising during the last years thanks to the noticeable improvement in its com-

putational performance and its inherent productivity features. Nevertheless, even

though Java is usually the preferred programming language in web-based and dis-

tributed computing environments, its presence in the HPC area is still reduced. The

main reason that has hindered the adoption of Java is the lack of efficient Java com-

munication middleware, most of which use socket-based protocols that are unable

to take full advantage of high-speed networks.

Moreover, setting up a dedicated infrastructure for HPC is a complex endeavor

that requires a long lead time, high capital expenditure, and large operational costs.

These entry barriers have restricted HPC to a small number of significant users. A

cheap, fast, and effective alternative could tremendously spread the outreach of HPC

to new users. Recently, the emergence of cloud computing brings new possibilities

for constructing and using HPC platforms. Public clouds (e.g., Amazon EC2 [2])

have emerged as a promising alternative to clusters and supercomputers, in which

resources are no longer hosted by the researcher’s computational facilities, but leased

from big data centers only when needed. This is especially interesting for users who

cannot afford their own HPC infrastructure due to the limitations mentioned earlier.

In fact, cloud computing can provide HPC users with infrastructures at cheaper price

compared to dedicated infrastructures, since they benefit from economy of scale and

also multiple users sharing resources, which results in improved utilization.
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In this context, the present PhD Thesis is composed of two parts in order to ac-

complish a twofold purpose. On the one hand, the first part of the Thesis (Design of

Low-Latency Java Communication Middleware on High-Speed Networks) arises from

the main goal of improving Java communications performance on traditional HPC

systems (i.e., clusters and supercomputers) in order to increase the adoption of this

language for parallel computing. The availability of an efficient Java communication

middleware would allow parallel programmers to benefit from its appealing features

at a reasonable overhead, thus increasing their programming productivity. On the

other hand, the second part (Evaluation of Communication Middleware for HPC

on a Public Cloud Infrastructure) focuses on the feasibility of using a public cloud

platform, Amazon EC2, for HPC and scientific computing. This study includes not

only the evaluation of our Java communication middleware in the cloud, but also

provides an extensive review that considers other important aspects of the Amazon

cloud to be a viable alternative in the HPC area. The specific motivations of each

part of the Thesis are discussed next.

1.1.1. Java Communications for HPC

The growing computational power requirements of HPC applications have been

traditionally addressed by using dedicated HPC infrastructures such as multi-core

clusters or custom supercomputers, which are currently the most widely extended

parallel architectures in the TOP500 list [89]. Most of these systems are increasingly

aggregating a significant number of cores interconnected via high-speed networks.

This current trend to increase the number of cores per processor underscores the im-

portance of efficient and scalable communication middleware along with highly pro-

ductive programming languages, in order to fully exploit the features of the abundant

processing resources and the underlying networking hardware. Current networking

technologies typically rely on scalable topologies and advanced network adapters

that allow for low-latency and high-bandwidth communications, usually providing

interesting features such as Remote Direct Memory Access (RDMA) operations

that enable zero-copy and kernel-bypass facilities. Examples of popular high-speed

networks widely extended in HPC environments are InfiniBand (IB) [47], Myrinet,

high-speed Ethernet (10/40 Gigabit), RDMA over Converged Ethernet (RoCE) [46],

Internet Wide Area RDMA Protocol (iWARP) [70] or the Gemini interconnect [1].



4 Chapter 1. Introduction

The performance of inter-node communications on top of high-speed networks

can have a dramatic impact on the overall scalability of communication-intensive

parallel applications. Hence, this scenario requires scalable parallel solutions, where

communication efficiency is fundamental. This efficiency not only depends heavily

on the use of high-speed networks [59], but also on the communication middle-

ware [91]. Therefore, it is fundamental to fully harness the power of the likely abun-

dant processing resources while taking full advantage of high-speed networks with

still easy-to-use programming models. The Message-Passing Interface (MPI) [61]

is the de-facto standard in the area of parallel computing owing to its flexibility

and portability, being able to achieve high performance in very different systems.

MPI has been the preferred choice for writing parallel applications on distributed

memory systems for a long time, traditionally using natively compiled languages

such as C/C++ or Fortran. With the advent of the many-core era, MPI remains

as the most widely extended programming model for communication between nodes

within parallel applications, but it is usually combined with other popular program-

ming models, such as Compute Unified Device Architecture (CUDA) [64] or Open

Computing Language (OpenCL) [77], in order to enable the use of the increasingly

widespread coprocessors, such as Graphics Processing Units (GPUs), as many-core

HPC accelerators [56].

Java is a highly portable and flexible programming language that enjoys a dom-

inant position in a wide diversity of computing environments. In fact, Java has

become the leading programming language both in academia and industry due to

its appealing features that make it a highly productive language. Although some

early works have identified its potential for scientific computing soon after its re-

lease [27, 40, 88], Java was severely criticized for its poor computational performance

in its beginnings [12]. However, the performance gap between Java and natively com-

piled languages has been narrowing for the last years. The Java Virtual Machine

(JVM) is currently equipped with efficient Just-in-Time (JIT) compilers that can ob-

tain near-native performance from the platform-independent bytecode [78]. In fact,

the JVM identifies sections of the code frequently executed and converts them to na-

tive machine code instead of interpreting the bytecode. Therefore, Java is currently

gaining popularity in other domains which usually make use of HPC infrastructures,

such as the area of parallel computing [73, 79] and Big Data analytics, where the

Java-based Hadoop distributed computing framework [86] is among the preferred
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choices for the development of applications that follow the MapReduce program-

ming model [25]. Additionally, Java provides some appealing properties that can

be of special benefit for parallel programming, especially its built-in networking and

multithreading support in the core of the language. These interesting features along

with the continuous increase in the performance of the JVM and its other traditional

advantages for general programming, such as object orientation, automatic memory

management, type-safety, platform independence, portability, security, easy-to-learn

properties and thus a higher productivity in code development, have turned Java

into an interesting alternative for HPC.

Nevertheless, although the performance gap between Java and natively compiled

languages is usually relatively small for sequential applications, it can be particu-

larly large for parallel applications when depending on communications performance.

The related literature points out the inefficiency of Java communications as the main

cause for its usually low parallel performance. The main reason is that current par-

allel Java applications generally suffer from inefficient communication middleware,

most of them based on protocols with high communication overhead (e.g., sockets-

based protocols) that are unable to take full advantage of high-speed networks [44].

This lack of efficient communication support in current Message-Passing in Java

(MPJ) [18] implementations usually results in lower performance than native MPI

libraries, which has been the main obstacle for the embracement of Java in HPC.

Thus, the adoption of Java as an alternative language on these systems heavily de-

pends on the availability of efficient communication middleware in order to benefit

from its appealing features at a reasonable overhead.

Therefore, the main motivation of the first part of the Thesis is to improve the

efficiency of Java communications for HPC, providing a communication middleware

that takes full advantage of high-speed networks in order to increase the performance

of parallel Java applications. This communication middleware would definitely con-

tribute to increase the benefits of the adoption of Java for HPC, in order to achieve

higher parallel programming productivity.
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1.1.2. HPC in the Cloud

Cloud computing [15, 72], the current emerging trend in delivering IT services, is

a relatively recent Internet-based computing model which is gaining significant ac-

ceptance in many areas and IT organizations as an elastic, flexible, and variable-cost

way to deploy their service platforms using outsourced resources. These resources

can be rapidly provisioned and released with minimal management effort. Public

cloud providers offer access to external users who are typically billed by consump-

tion using the pay-as-you-go pricing model. More specifically, Infrastructure as a

Service (IaaS) is a type of cloud service which dinamically provides, by means of

virtualization technologies, on-demand and self-service access to elastic computa-

tional resources (e.g., CPU, memory, networking and storage). Public IaaS cloud

providers typically make huge investments in data centers, and then rent it out, al-

lowing consumers to avoid heavy capital investments and obtain both cost-effective

and energy-efficient solutions [71]. Thus, organizations are no longer forced to invest

in additional computational resources, since they can just leverage the infrastruc-

ture offered by the IaaS provider. Customers can derive significant economies of

use by leveraging the pay-per-use model, instead of upgrading their infrastructure,

dimensioned to handle peak requests.

Traditional HPC systems are typically managed and operated by individual orga-

nizations in private. However, computing demand is fluctuating, resulting in periods

where dedicated resources are either underutilized or overloaded. The advantages

of the pay-as-you-go model, elasticity, flexibility, customization, security, migration

and resource control offered by virtualization make cloud computing an attractive

option for meeting the needs of HPC applications. IaaS cloud providers can be

well-suited for handling the increasing processing requirements of resource-intensive

applications due to the high availability of on-demand computational resources at

large scale. In fact, in the last years the use of cloud infrastructures for HPC has gen-

erated a strong interest in the scientific and research community as an emerging and

feasible alternative to traditional HPC systems [29, 49, 63, 90, 92]. The cloud-based

approach offers a lot of apparent benefits and interesting perspectives, promising cost

savings and more flexibility. This model provides a powerful abstraction that easily

allows end users to set up elastic virtual clusters to exploit supercomputing-level

power without any knowledge of the underlying infrastructure. The provisioning of
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these virtual clusters as on-demand pay-as-you-go resources avoids initial cost for

physically owned hardware and allows great flexibility and scalability for customers

and their applications. Moreover, cloud-based virtual clusters allow scientists to

securely gain administrative privileges within the guest operating system and com-

pletely customize their execution environment, thus providing the perfect setup for

their experiments. Furthermore, public IaaS resources usually may on average be

better utilized than private computing resources within laboratories or companies,

which increases efficiency in terms of cost and energy consumption.

Despite the advantages of cloud for HPC, it still remains unclear whether and

when clouds can become a feasible substitute or complement to clusters and super-

computers. There is a mismatch between the requirements and goals of HPC and

the characteristics and goals of current cloud environments. HPC is performance-

oriented, whereas clouds are usually cost and resource-utilization oriented. Further-

more, clouds have traditionally been designed to run business and web applications.

The interest in the use of public clouds for HPC increases as their availability,

computational power, price and performance improves. However, previous early

studies [26, 29, 30, 49, 63, 67, 90, 92] have evaluated public clouds and the main

conclusion was that clouds were not designed for running tightly-coupled HPC work-

loads, such as MPI applications. The main reasons are processor sharing and the

poor network performance, mainly caused by the use of commodity interconnection

technologies (e.g., Gigabit Ethernet) and the virtualization network overhead, that

limit severely the scalability of HPC applications in public clouds. To overcome these

constraints, IaaS providers have started to offer some HPC-aimed cloud resources

in the last years. These recent efforts towards HPC-optimized clouds point to a

promising direction to overcome some of the fundamental performance bottlenecks.

Amazon Web Services (AWS) is the leading commercial public cloud provider

in terms of services and number of users, whose Elastic Compute Cloud (EC2) ser-

vice [2] is nowadays among the most used and largest IaaS cloud platform. Amazon

EC2 offers several cloud resources which specifically target HPC environments [3].

These resources are composed of several instance types or Virtual Machines (VM)

which are intended to be well suited for HPC workloads and other demanding

network-bound applications by offering dedicated physical node allocation (a sin-

gle VM per node), powerful and up-to-date multi-core CPU and GPU resources,
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improved network performance via high-speed Ethernet (10 Gbps) and enhanced

storage performance providing high-performance Solid State Drive (SSD) disks. Us-

ing these instance types customers can expedite their HPC workloads on elastic

resources as needed, adding and removing compute resources to meet the size and

time requirements for their specific workloads.

Therefore, the IaaS model in clouds can enable HPC to reach out to a wider

scientific and industrial community. Whether and how this potential can be realized

in practice is a research question that we aim to answer in the second part of this

Thesis. Hence, the main motivation of this part is to examine the feasibility of

using a public cloud infrastructure for HPC and scientific computing. The Amazon

EC2 cloud has been selected as a representative public IaaS provider because it

is currently the most popular one, offering several HPC-aimed resources which are

suitable for this assessment study.

1.2. Objectives of the Thesis

Taking into account the particular motivations for the Thesis that have been

discussed above, the main objectives for each part of this work have been defined.

Thus, among the specific goals of the first part of the Thesis are the design and

implementation of middleware to improve Java communication efficiency on top

of high-speed networks, and the evaluation of the current state of Java for HPC,

particularly for cluster and supercomputer systems. To achieve this, the design

and development of low-level communication middleware that increases Java per-

formance on current HPC systems has been carried out. Hence, the Thesis presents

the design, implementation and evaluation of several low-level Java communication

devices optimized for the following high-speed networks: InfiniBand, RoCE, iWARP,

Myrinet, high-speed Ethernet and Cray Gemini/Aries (Chapters 2 and 4). These

communication devices provide a high-level message-passing API that follows the

MPJ specification, based on the MPI standard widely used in HPC. Moreover, the

Thesis presents an efficient Java message-passing library, FastMPJ (Chapter 3), in

which all these communication devices haven been successfully integrated. Further-

more, the Thesis provides an up-to-date review of Java for HPC (Chapter 5), which

includes an extensive evaluation of the performance of current projects.
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The main goals of the second part of the Thesis include the evaluation of the Java

message-passing middleware, developed in the first part, on the Amazon EC2 IaaS

platform using HPC-aimed cloud resources. This assessment has been conducted

both in terms of performance (Chapters 6 and 7) and cost (Chapter 7), using both

Java and natively compiled codes. Moreover, it is fundamental to measure not only

the raw performance, but also the isolated impact of the virtualization overhead on

the scalability of communication-intensive HPC applications (Chapter 6). In ad-

dition, some techniques to reduce this overhead have been assessed, including the

impact of the use of different process mappings and several levels of parallelism

(Chapter 7). Next, in order to provide a thorough analysis of the state of the art

regarding the use of the Amazon EC2 cloud for HPC, other additional aspects of

this cloud to be a viable alternative in the HPC area have to be considered. Hence,

further assessments of Amazon EC2 have been carried out: the evaluation of the

I/O storage subsystem (Chapter 8), the performance characterization of parallel/dis-

tributed file systems for data-intensive applications (Chapter 9), and the feasibility

of using GPUs as many-core HPC accelerators (Chapter 10).

Finally, all these efforts have served to accomplish the twofold goal of this Thesis:

improving Java communication efficiency for HPC applications on top of high-speed

newtworks, and providing a feasibility study of the use of a public cloud computing

infrastructure for HPC.

1.3. Research and Discussion

This section presents an overview of the whole research carried out in the Thesis.

Basically, we describe how the main goals defined in the previous section have been

accomplished by the different journal articles that make up this work, providing

an overall discussion of the main research results that have been achieved. The

particular research concerning each of the two parts is discussed separately next.
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1.3.1. Part I: Design of Low-Latency Java Communication

Middleware on High-Speed Networks

The first part of the Thesis follows a bottom-up approach. First, it is targeted at

the design and development of low-level Java communication devices on high-speed

networks. These devices provide efficient point-to-point communication primitives

conforming to a low-level message-passing API, which is not aware of higher level

MPI abstractions (e.g., communicators). Next, an MPJ library (FastMPJ) is imple-

mented on top of the previously developed communication middleware, taking ad-

vantage of the more efficient high-speed network support. Additionally, an extensive

evaluation of the FastMPJ performance has been provided, including an up-to-date

review of Java for HPC. A brief summary of this research is next presented.

Design of Scalable Java Communications over InfiniBand (Chapter 2)

The first task of the Thesis has been the design and implementation of ibvdev [38],

a low-level Java message-passing communication device over InfiniBand (IB). The

efficient support of this high-speed network in Java is of great interest, as it is

currently the most widely adopted RDMA networking technology in the TOP500

list [89]. Furthermore, the use of Java sockets on top of the IP over IB emulation

protocol (IPoIB) [48] has shown quite poor performance in the related literature [44].

These facts have motivated this task as our first main goal, in order to explore the

feasibility of implementing efficient Java communications over native IB in a produc-

tion and already existing MPJ library. The MPJ Express (MPJE) middleware [9],

which implements the mpiJava 1.2 API [17] (the most widely extended MPI-like

Java bindings), was selected as it is the most active project in terms of adoption

by the HPC community, presence on academia and production environments, and

available documentation.

The ibvdev device transparently provides Java message-passing applications

with efficient communications over IB thanks to its direct support of the IB Verbs

(IBV) API and the scalable implementation of a lightweight communication proto-

col that is able to take advantage of RDMA operations. This device conforms with

the xdev message-passing API [8], which is provided by MPJ Express to support a
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new transport protocol. More specifically, this device implements an eager and a

rendezvous communication protocol (see Figure 1.1) through the Java Native Inter-

face (JNI). These protocols rely on the Reliable Connection (RC) transport service

defined in the IBV specification, which provides reliability, delivery order and data

loss and error detection. On the one hand, the eager protocol of ibvdev, which is

used for short messages to achieve the lowest latency, is illustrated in Figure 1.2. It

has been implemented using a copy in/out protocol, as the overhead of data copies

is small for short messages. Moreover, the buffer registration and unregistration

overhead is avoided by using a shared pool of pre-registered, fixed size buffers for

communication. Hence, for sending an eager data message, the user data is copied

to one of the available buffers from the pool (step 1 of the figure) and then sent out

from this buffer to the send queue. At the receiving side, a number of buffers from

the pool are pre-posted (step 2). After the message is received, the message payload

is copied to the user destination buffer (step 3).

On the other hand, the rendezvous protocol, used for large messages, negotiates

the buffer availability at the receiving side before the message is actually transferred.

A zero-copy protocol has been implemented by using the RDMA Write operation.

In this implementation (see right part of Figure 1.1), the application buffers are reg-

istered on-the-fly and the buffer addresses are exchanged via control messages. The

sending process first sends a control message to the receiver (RNDZ START). The

receiver replies to the sender using another control message (RNDZ REPLY). This

Figure 1.1: Eager and rendezvous protocols in ibvdev
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Figure 1.2: Eager protocol implementation in ibvdev

reply message contains the information of the receive application buffer along with

the required remote key to access that memory region. The sending process then

sends the large message directly to the receive application buffer by using RDMA

Write. Finally, the sending process issues another control message (RNDZ END)

which indicates to the receiver that the message has been placed in the application

buffer. Additionally, this protocol takes advantage of a cache of registered buffers

that can reduce the buffer registration and unregistration overhead. The effective-

ness of this cache depends heavily on the reuse rate of the buffers.

The experimental evaluation of the ibvdev device on a multi-core IB cluster

has shown significant point-to-point performance benefits (see Figure 1.3), obtain-

ing up to 85% start-up latency reduction and twice the bandwidth compared to

previous Java sockets-based middleware using the IPoIB protocol (i.e., niodev).

Furthermore, the analysis of the impact of the use of ibvdev on representative

message-passing kernels and applications has shown significant performance gains,

as shown in Figure 1.4, which presents the FT kernel of the NAS Parallel Benchmarks

(NPB) [6] as example. Therefore, the efficiency of ibvdev, which is even competitive

with native MPI libraries (Open MPI and MVAPICH) in terms of point-to-point

performance, increases the scalability of communication-intensive parallel Java ap-

plications, which helps to bridge the performance gap between MPJ and MPI.
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FastMPJ: a Scalable Java Message-Passing Library (Chapter 3)

The proof-of-concept implementation of the ibvdev device in the MPJ Express

library showed that it was feasible to obtain efficient Java communications over IB.

However, the overall design of MPJ Express relies on a buffering layer [10] that

is only able to transfer the custom xdev buffer objects. In fact, this layer adds

a noticeable copying overhead that significantly limits performance and scalability

of communications, as shown in previous works [84]. Furthermore, MPJ Express

includes poorly scalable collective algorithms and its bootstrapping mechanism typ-

ically exhibits some issues in specific environments. As a consequence of these

constraints, the ibvdev device was reimplemented to conform with the xxdev API

and then adapted for its integration into the F-MPJ library [83] in order to improve

its performance and scalability.

F-MPJ is our Java message-passing implementation of the mpiJava 1.2 API,

presented as a proof of concept in [83]. The communication support of F-MPJ

is implemented on top of the xxdev device layer, which has been designed as a

simple and pluggable architecture of low-level communication devices. This layer

supports the direct communication of any serializable Java object without data

buffering, whereas xdev, the API that xxdev is extending, does not support this

direct communication, as mentioned before. The avoidance of this intermediate data

buffering overhead is the main benefit of the xxdev device layer with respect to its

predecessor. The xxdev API (see Listing 1.1) is composed of basic operations such

as point-to-point communications, both blocking (send and recv) and nonblocking

(isend and irecv). It also includes synchronous communications (ssend and issend)

and methods to check incoming messages without actually receiving them (probe

and iprobe). Additionally, F-MPJ includes a scalable collective library with more

than 60 topology-aware algorithms, which are implemented on top of point-to-point

communications [80].

Nevertheless, F-MPJ presents several important constraints as it was intended as

a research-oriented and proof-of-concept implementation. In fact, it only implements

a small subset of the communication-related API, which prevents its use in most

real-world applications (e.g., it does not support inter- and intra-communicators,

virtual topologies and group operations). Additionally, it includes a basic bootstrap-
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public abstract class Device
{

public stat ic Device newInstance ( S t r ing dev i ce ) ;
abstract ProcessID [ ] i n i t ( S t r ing [ ] a rgs ) ;
abstract ProcessID id ( ) ;
abstract void f i n i s h ( ) ;

abstract void send ( Object buf , PID dst , int tag , int context ) ;
abstract Status recv ( Objecct buf , PID src , int tag , int context ) ;

abstract Request i s end ( Object buf , PID dst , int tag , int context ) ;
abstract Request i r e c v ( Object buf , PID src , int tag , int context , Status s t t s ) ;

abstract Request i s s end ( Object buf , PID dst , int tag , int context ) ;
abstract void ssend ( Object buf , PID src , int tag , int context ) ;

abstract Status iprobe (PID src , int tag , int context ) ;
abstract Status probe (PID src , int tag , int context ) ;

}

Listing 1.1: API of the xxdev.Device class

ping mechanism based on system-dependent scripts, unable to provide portability

on different platforms. Furthermore, it only includes one communication device

implemented on top of Java IO sockets (iodev), which severely limits its overall

scalability. Although the use of high-performance socket implementations, such as

the Java Fast Sockets (JFS) project [82], can improve performance on shared mem-

ory and high-speed networks, the use of the sockets API still represents an important

source of overhead and lack of scalability in Java communications, especially in the

presence of high-speed networks [44]. Therefore, in addition to the reimplementation

of ibvdev, our main goal has been to overcome the current limitations of F-MPJ in

order to provide a production-quality implementation of the full MPJ specification,

which is now known as FastMPJ [31].

In addition to the integration of ibvdev in FastMPJ, two new communication

devices, mxdev and psmdev, have been included in order to improve its high-speed

network support. On the one hand, mxdev implements the xxdev API on top of the

Myrinet Express (MX) library [62], which runs natively on Myrinet networks. More

recently, the MX API has also been supported in high-speed Ethernet networks

(10/40 Gigabit Ethernet), both on Myricom specialized NICs and on any generic

Ethernet hardware through the Open-MX open-source project [42]. Hence, the

TCP/IP stack can be replaced by mxdev transfers over Ethernet networks providing

higher performance than using standard Java sockets. On the other hand, psmdev
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Figure 1.5: Overview of the FastMPJ layered design and xxdev devices

provides native support for the InfiniPath family of Intel/QLogic IB adapters over

the Performance Scaled Messaging (PSM) interface. PSM is a low-level user-space

messaging library which implements an intra-node shared memory and an inter-

node communication protocol, which are completely transparent to the application.

Although the Intel/QLogic IB adapters are also supported by the ibvdev device,

psmdev usually achieves significantly higher performance than ibvdev, as PSM has

been specifically designed by Intel/QLogic for its hardware. Furthermore, the imple-

mentation of a new device based on Java NIO sockets (niodev), which includes more

scalable non-blocking communication support than iodev by providing select()-

like functionality, has also been included. Nevertheless, these socket-based devices

are only provided for portability reasons, as they rely on the ubiquitous TCP/IP

stack, which introduces high communication overhead and limited scalability for

communication-intensive applications. Figure 1.5 presents a high-level overview of

the FastMPJ layered design and its xxdev communication devices.

Furthermore, FastMPJ has been evaluated comparatively with native MPI li-

braries on five representative testbeds: two IB multi-core clusters, one Myrinet

supercomputer, and two shared memory systems using both Intel- and AMD-based

processors. The comprehensive performance evaluation has revealed that FastMPJ

communication primitives are quite competitive with their MPI counterparts, both
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Figure 1.6: Point-to-point performance on IB, 10 Gigabit Ethernet (10 GbE) and
Myrinet

in terms of point-to-point and collective operations performance (see Figures 1.6

and 1.7). Hence, the use of the FastMPJ library in communication-intensive HPC

codes allows Java to benefit from a more efficient communication support, taking

advantage of the use of a high number of cores and improving significantly the

performance and scalability of parallel Java applications (see results for the NPB

CG and MG kernels in Figure 1.8). In fact, the development of this efficient Java

communication middleware is definitely bridging the gap between Java and native

languages in HPC applications.
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Figure 1.7: Broadcast performance on IB and Myrinet
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Figure 1.8: Performance of NPB CG and MG kernels on IB
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Java Communication Devices on RDMA-enabled Networks (Chapter 4)

RDMA is a well-known mechanism that enables zero-copy and kernel-bypass

features, providing low-latency and high-bandwidth communications with low CPU

utilization. In fact, RDMA has become a key capability of current high-speed net-

works to provide scalable inter-node communications for HPC applications. This

work presents new research results on improving the RDMA network support in

FastMPJ [36], our Java message-passing implementation. Thus, it focuses on pro-

viding efficient low-level communication devices that fully exploit the underlying

RDMA hardware, enabling low-latency inter-node communications for Java message-

passing applications. More specifically, it presents two new xxdev communication

devices, ugnidev and mxmdev, implemented on top of the user-level Generic Network

Interface (uGNI) [22] and MellanoX Messaging (MXM) [60] communication libraries,

respectively. The former device is intended to provide efficient support for the Gem-

ini/Aries RDMA networks used by the Cray XE/XK/XC family of supercomputers.

The latter includes support for the MXM library, which has been developed by

Mellanox for its RDMA adapters. Furthermore, an enhanced version of the ibvdev

device, which extends its current RDMA support to RoCE and iWARP network-

ing hardware and introduces an optimized short-message communication protocol

that takes advantage of the inline feature, is also included. These xxdev devices

(highlighted in italics and red in Figure 1.9) have been integrated transparently

into FastMPJ thanks to its modular structure, allowing current MPJ applications

to benefit transparently from a more efficient support of RDMA networks (depicted

by red arrows at the hardware level).

xxdev

Java Threads

smdevniodev/iodev

JVM

MX/Open−MX TCP/IPPSMuGNI

Java Sockets

MXMVerbs

Gemini/Aries iWARP RoCE InfiniBand Myrinet Ethernet Shared Memory

Hardware

API

JNI

ugnidev psmdev mxdevibvdev mxmdev

MPJ Applications

FastMPJ

Point−to−point Primitives

Figure 1.9: Overview of the FastMPJ communication devices
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These devices have considered several communication protocols in order to pro-

vide scalable support for RDMA networks, enabling 1-µs start-up latencies and up

to 49 Gbps bandwidth for Java message-passing applications, as will be shown in

Figure 1.11. As a representative example of these protocols, the first path of the

eager protocol in ugnidev is briefly described next. In this path (see Figure 1.10),

which is implemented using the Fast Memory Access Short Messaging (FMA SMSG)

facility provided by the Cray Gemini/Aries hardware, each process creates and regis-

ters with the network adapter per-process destination buffers called mailboxes (MB

in the figure). During a message transfer, the sender directly writes data to its des-

ignated mailbox at the receiving side (step 1 in Figure 1.10). Next, the received data

is copied out from the mailbox to the application buffer provided by the user (step

2). SMSG handles the delivery to the remote mailbox and raises both a local and

a remote completion queue event on the sending and receiving sides, respectively,

upon successful delivery. SMSG transactions are a special class of RDMA PUT

operations which require remote buffer memory registration, but not local memory

registration, which allows to send the data directly from the application buffer. How-

ever, using the SMSG facility requires a significant amount of registered memory

resources which scale linearly with the number of processes in the job. To alleviate

this problem, SMSG is only used for communications up to a certain small message

size, which is a configurable runtime option. By default, the maximum message size

that can be sent using SMSG varies with the job size, with smaller mailboxes being

used as the job size increases, in order to decrease the amount of memory used for

SMSG mailboxes for larger jobs (see table in Figure 1.10). Above this message size,

ugnidev switches to a second alternative path. More details about the implemen-

tation of the ugnidev device, as well as about the rest of devices presented in this

work, are described in Chapter 4.
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In order to evaluate the benefits of these devices, their performance has been

analyzed comparatively with other Java communication middleware on representa-

tive RDMA networks (IB, RoCE, iWARP, Cray Gemini) and parallel systems (a

multi-core InfiniBand cluster and a TOP500 Cray supercomputer). The analysis of

the results has demonstrated experimental evidence of significant point-to-point per-

formance improvements when using the developed devices in FastMPJ (see results

for RoCE and Gemini networks in Figure 1.11). In fact, the scalability of parallel

Java codes can benefit transparently from this efficient support on RDMA networks

(see results for the NPB FT kernel in Figure 1.12), allowing to obtain up to 24%

and 40% improvement in application-level performance on 256 and 4096 cores of a

multi-core IB cluster and a Cray XE6 supercomputer, respectively (see Figure 1.13).
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Figure 1.11: Point-to-point performance on RoCE and Cray Gemini
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Java in the HPC Arena: Research, Practice and Experience (Chapter 5)

The final task of the first part of the Thesis has been to provide an up-to-date

review of Java for HPC, both for shared and distributed memory programming [79].

This work shows an important number of past and present research projects which

are the result of the sustained interest in the use of Java for HPC. Despite the

reported advances in the efficiency of Java communications shown by our previous

results, the use of Java in HPC is also being delayed by the lack of analysis of

the existing programming options in Java for HPC and thorough and up-to-date

evaluations of their performance, as well as the unawareness on current research

projects in this field, whose solutions are needed in order to boost the embracement

of Java in HPC.

As a consequence, this work first analyzes the existing programming options in

Java for HPC, which allow the development of both high-level libraries and paral-

lel Java applications. These options are usually classified into: (1) shared memory

programming, such as the use of Java threads, OpenMP-like implementations (e.g.,

JOMP [55]) and Partitioned Global Address Space (PGAS) projects (e.g., Tita-

nium [96]). The OpenMP-like approach has several advantages over the use of Java

threads, such as the higher-level programming model with a code much closer to

the sequential version and the exploitation of the familiarity with OpenMP, thus

increasing programmability. However, current OpenMP-like implementations are

still preliminary works and lack efficiency and portability. Regarding Titanium, [24]

reports that it outperforms Fortran MPI code, but it also presents several limita-

tions, such as the avoidance of the use of Java threads and the lack of portability

as it relies on Titanium and C compilers. (2) Java sockets (IO/NIO), which usually

lack efficient high-speed networks support and so Java has to resort to inefficient

TCP/IP emulations for full networking support (e.g., IPoIB), and high-performance

socket implementations (e.g., Ibis [65], JFS [82]). (3) Java Remote Method In-

vocation (RMI), which allows an object running in one JVM to invoke methods

on an object running in another JVM, providing Java with remote communication

between programs equivalent to Remote Procedure Calls (RPCs). The main ad-

vantage of this approach is its simplicity, although the main drawback is the poor

performance shown by the RMI protocol, whose optimization has been the goal of

several projects (e.g., ProActive [5], Manta [57], KaRMI [68], Opt RMI [81]). And
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(4) efficient MPJ middleware (e.g., mpiJava [7], MPJ Express [9], MPJ/Ibis [13],

FastMPJ [31]). Although the MPI standard declaration is limited to C and Fortran

languages, there have been a number of standardization efforts made towards intro-

ducing an MPI-like Java binding. The two main APIs are the mpiJava 1.2 API [17],

which has been proposed by the mpiJava [7] developers and tries to adhere to the

MPI C++ interface defined in the MPI standard version 2.0, but restricted to the

support of the MPI 1.1 subset; and the JGF MPJ API [18], which is the proposal of

the Java Grande Forum (JGF) [50] to standardize the MPI-like Java API. The main

differences between both APIs lie on naming conventions of variables and methods.

Next, current research efforts in Java for HPC are described, with special empha-

sis on providing scalable communication middleware. These projects can be mainly

classified into: (1) Design and implementation of low-level Java message-passing

devices, such as the ones presented in this Thesis [36, 38]. Message-passing libraries

usually support new transport protocols through the use of pluggable low-level com-

munication devices, such as Abstract Device Interface (ADI) in MPICH, Byte Trans-

fer Layer (BTL) in Open MPI, xdev [8] in MPJ Express and xxdev [83] in FastMPJ.

These communication devices abstract the particular operation of a communication

protocol, such as IBV, MX, TCP or shared memory, conforming to an API on top

of which the message-passing library implements its communications. (2) Improve-

ment of the scalability of Java message-passing collective primitives and automatic

selection of MPJ collective algorithms [80]. (3) Implementation and evaluation of

MPJ benchmarks, such as the JGF benchmarking suite [14] and the implementation

of the NPB kernels for MPJ (NPB-MPJ) [58]. (4) Language extensions in Java for

parallel programming paradigms (Habanero Java [19] and X10 [20] projects). And

(5) Java libraries to support data parallelism on massively parallel architectures

such as GPUs, both for CUDA (e.g., jCuda [51], JCUDA [95]) and OpenCL (e.g.,

JOCL [53]) programming models. These ongoing projects are providing Java with

several evaluations of its suitability for HPC, as well as solutions for increasing its

performance and scalability in HPC systems with high-speed networks and many-

core accelerators such as GPUs. This review has pointed out that the significant

interest in Java for HPC has led to the development of numerous projects, although

usually quite modest, which may have prevented a higher development of Java in

this field.
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Finally, this work includes an extensive performance evaluation that focuses on

message passing due to its scalability and extended use in HPC. Hence, the per-

formance of representative MPJ and MPI libraries has been assessed on two shared

memory environments and two multi-core InfiniBand systems: an x86 64-based clus-

ter and an Itanium supercomputer (Finis Terrae). This comparative evaluation con-

sists of a micro-benchmarking of point-to-point and collectives primitives, as well as

a kernel/application benchmarking using representative parallel codes, both NPB

kernels and the Gadget-2 application [73, 76], in order to analyze the impact of the

use of MPI/MPJ libraries on their overall performance. The main conclusion of the

analysis of these results is that Java can achieve comparable performance to natively

compiled languages, both for sequential and parallel applications (see Figure 1.14

for Gadget results), being an alternative for HPC programming. In fact, the recent

advances in the efficient support of Java communications on high-speed networks,

such as the ones presented in this Thesis, are bridging the gap between Java and

more traditional HPC languages, although there is still room for improvement.
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Figure 1.14: Runtime and scalability of the Gadget parallel application



26 Chapter 1. Introduction

1.3.2. Part II: Evaluation of Communication Middleware

for HPC on a Public Cloud Infrastructure

The second part of the Thesis mainly follows an assessment approach. First, the

performance of representative HPC applications has been evaluated on the Amazon

EC2 cloud using the first generation of cluster instances, both for Java and native

codes. The main performance bottlenecks when running the same benchmarks with

and without different network virtualization technologies on a similar testbed have

also been analyzed. Next, a larger assessment study provides more insight into the

performance of running HPC applications on Amazon EC2, using a higher number of

cores, comparing different cluster instance types and including an analysis in terms

of cost. Moreover, several approaches to reduce the impact of the virtualization

overhead have been explored (e.g., using hybrid MPI+OpenMP codes). Finally,

this part concludes with further works that focus on other important aspects of

the Amazon EC2 platform for HPC: the I/O storage subsystem, the performance

characterization of parallel/distributed file systems for data-intensive applications

and the feasibility of using GPUs as many-core accelerators. A brief summary of

this research is presented below.

Evaluation of Messaging Middleware for Cloud Computing (Chapter 6)

This work presents an evaluation of representative native and Java message-

passing middleware on the Amazon EC2 cloud infrastructure using the first gener-

ation of the HPC-aimed family of cluster instances (CC1) in order to assess their

suitability for HPC applications [33]. These instances provide two powerful quad-

core processors (i.e., up to 8 cores per instance) and they are interconnected via

a high-speed network (10 Gigabit Ethernet), which are the differential characteris-

tics of this resource with respect to previous non-cluster instances. According to

Amazon, this instance type has been specifically designed for HPC applications and

other demanding latency-bound applications.

Xen [11] is the Virtual Machine (VM) monitor or hypervisor used by Amazon

EC2 among other cloud providers. The EC2 cluster instances use Xen Hardware

Virtual Machine (HVM) virtualization with special ParaVirtual (PV) device drivers
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to bypass the emulation for disk and network, which means that the access to the

10 Gigabit Ethernet network is paravirtualized (i.e., not emulated). However, a

direct access to the network hardware is possible using the Xen PCI passthrough

technique [94], which provides an isolation of devices to a given guest operating

system so the device can be used exclusively by that guest, which eventually achieves

near-native performance.

The evaluation carried out in this work consists of a micro-benchmarking of

point-to-point data transfers, both inter-VM (through 10 Gigabit Ethernet) and

intra-VM (shared memory). Moreover, the scalability of representative parallel

codes, the NPB kernels, has been assessed using up to 16 CC1 instances (i.e., 128

cores). Furthermore, in order to analyze the impact of the paravirtualized access to

the network on Amazon EC2, a private cloud testbed (CAG, which stands for Com-

puter Architecture Group) with similar hardware has been set up. This testbed also

uses Xen as hypervisor, but it has been configured to support the direct access to the

same EC2 networking technology using the Xen PCI passthrough technique. The

motivation behind enabling PCI passthrough in this testbed is to analyze its impact

on the efficient support of high-speed networks in virtualized environments. Addi-

tionally, the selected benchmarks have been executed on the same private testbed

running a non-virtualized environment, thus obtaining the native performance of the

system. The evaluated message-passing libraries have been Open MPI and MPICH2

for native codes, and FastMPJ as Java counterpart.

As main conclusion, the analysis of the performance results has shown the sig-

nificant impact that virtualized environments still have on communications perfor-

mance, especially on Amazon EC2, even though cluster instances feature a high-

speed network. Figure 1.15 shows point-to-point latencies and bandwidths results

on Amazon EC2, CAG and CAG native testbeds. It can be observed that Amazon

EC2 (top graph) presents quite poor results, caused by the paravirtualized access to

the network. The results on the private CAG testbed confirm that this communica-

tion overhead can be significantly alleviated through the use of PCI passthrough (see

the middle graph in Figure 1.15), showing an overhead reduction for short messages

of up to 50%. Moreover, the impact of the virtualization overhead can be measured

using the native performance of the CAG testbed, shown by the bottom graph. This

impact is noticeable for short messages but relatively small for long messages. Re-
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Figure 1.15: Message-passing point-to-point performance on 10 Gigabit Ethernet



1.3 Research and Discussion 29

 0

 100

 200

 300

 400

 500

 600

1 2 4 8 16 32 64 128

M
O

P
S

Number of Processes

IS Kernel Xen Performance on Amazon EC2

MPICH2
Open MPI
FastMPJ (niodev)
FastMPJ (smdev)

 0

 100

 200

 300

 400

 500

 600

1 2 4 8 16
M

O
P

S
Number of Processes

IS Kernel Xen Performance on CAG

MPICH2
Open MPI
FastMPJ (niodev)
FastMPJ (smdev)

 0

 100

 200

 300

 400

 500

 600

1 2 4 8 16

M
O

P
S

Number of Processes

IS Kernel Native Performance on CAG

MPICH2
Open MPI
FastMPJ (niodev)
FastMPJ (smdev)

Figure 1.16: Performance of the NPB IS kernel on 10 Gigabit Ethernet

garding FastMPJ results, the niodev device presents poorer performance than MPI

due to the high overhead of the operation of its NIO sockets implementation, which

involves a significant performance penalty. In this scenario, the mxdev device would

have improved these results avoiding the TCP/IP stack through Open-MX (also

available for MPI libraries), but this library did not work on any of the virtualized

environments under evaluation.

The impact of the virtualized network overhead on the scalability of HPC ap-

plications has been analyzed using the NPB suite. As a representative example,

Figure 1.16 shows results for the IS kernel on Amazon EC2, CAG and CAG native

testbeds. IS is a communication-intensive code whose scalability is highly dependent

on communications performance. As can be observed, this kernel is not able to scale

when using more than one node on Amazon EC2, thus when network activity is in-

volved, which occurs for 16 or more processes. This statement has been proved by

analyzing the IS results on CAG, where MPI and FastMPJ take advantage of the use

of the network for 16 processes (2 nodes), both for Xen and native scenarios. Hence,

these results have shown noticeable performance increases when supporting the di-

rect access to the underlying network through the Xen PCI passthrough technique,

reducing the communication processing overhead. This fact demands more efficient

support in the virtualization layer on Amazon EC2, as these cluster instances rely

on a paravirtualized access to the network that significantly limits its performance

and scalability for communication-intensive HPC codes.
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Performance Analysis of HPC Applications in the Cloud (Chapter 7)

This work gives more insight into the performance of running HPC applications

on the Amazon EC2 cloud [35]. The main contributions with respect to the previous

work are: (1) it compares the first generation (CC1) and the more recent second

generation (CC2) of cluster instances both in terms of single instance performance,

scalability and cost-efficiency of its use; (2) it assesses the scalability of the NPB

codes using an important number of cores, up to 512, significantly higher than pre-

vious related works, and running heavier workloads (NPB Class C); and (3) it also

explores alternatives to reduce the impact of the network virtualization overhead,

such as reducing the number of processes per instance or using the combination

of message passing with multithreading (e.g., hybrid MPI+OpenMP codes). The

second generation of cluster instances is a resource that provides improved CPU

power (88 ECUs) with two octa-core processors (i.e., up to 16 cores per instance), a

more modern microarchitecture based on Sandy Bridge and higher memory band-

width and capacity than the first generation. However, these resources also rely on

a paravirtualized access to the 10 Gigabit Ethernet network (see Table 1.1 for more

details on CC1 and CC2 instances).

The main conclusions of this work, which has evaluated the use of up to 64 CC1

and 32 CC2 instances, are the following: (1) it has revealed that CC2 instances,

which provide more computational power and slightly higher performance for point-

to-point communications (see Figure 1.17), present poorer scalability than CC1

CC1 CC2

CPU
2 × Intel Xeon X5570
Nehalem-EP @2.93 GHz

2 × Intel Xeon E5-2670
Sandy Bridge-EP @2.60GHz

ECUs 33.5 88

#Cores 8 (16 with HyperThreading) 16 (32 with HyperThreading)

Memory 23 GB DDR3-1066 60.5 GB DDR3-1600

Storage 1690 GB (2 × HDD) 3370 GB (4 × HDD)

API name cc1.4xlarge cc2.8xlarge

Price (Linux) $1.30 per hour $2.40 per hour

Interconnect 10 Gigabit Ethernet (Full-bisection bandwidth)

Virtualization Xen HVM 64-bit platform (PV drivers for I/O)

Table 1.1: Description of the EC2 cluster compute instances: CC1 and CC2
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instances for collective-based communication-intensive applications (see top graphs

in Figure 1.18), while obtaining better performance for other codes (see bottom

graphs); (2) the use of CC1 instances is generally more cost-effective than relying

on CC2 instances, and therefore it is worth recommending CC2 only for applica-

tions with high memory requirements that cannot be executed on CC1 (see some

productivity results in Figure 1.19); (3) it is possible to achieve higher scalability for

some codes running only a single process per instance, thus reducing the commu-

nications performance penalty in the access to the network, in exchange for higher

costs (see Figure 1.20); (4) finally, we proposed the use of multiple levels of paral-

lelism, combining message passing with multithreading, as the most scalable option

for running HPC applications on Amazon EC2 (see Figure 1.21, where FastMPJ

results are not shown due to the lack of an implementation in Java of the hybrid

code suite NPB-MZ [52]).

Note that FastMPJ results in this work have been obtained using an experimental

communication device (mpidev) that allows to take advantage of native MPI libraries

by implementing the xxdev point-to-point primitives on top of the MPI counterparts.

As a consequence, FastMPJ significantly outperforms the niodev results shown in

the previous work [33] when using CC1 instances, even obtaining quite competitive

performance compared to MPI.
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Figure 1.18: Performance of the NPB FT and MG kernels on Amazon EC2
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Figure 1.20: Performance of NPB IS and FT kernels on Amazon EC2 (ppi = pro-
cesses per instance)
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Analysis of I/O Performance on the Amazon EC2 Cloud (Chapter 8)

In the current era of Big Data, many scientific computing workloads are generat-

ing very large data sets that usually require a high number of computing resources

to perform large-scale experiments into a reasonable time frame. In this scenario,

scientific applications can be sensitive to CPU power, memory bandwidth/capacity,

network bandwidth/latency as well as the performance of the I/O storage subsys-

tem. This work presents a thorough evaluation of the I/O storage subsystem on the

Amazon EC2 cloud to determine its suitability for I/O-intensive applications [32].

Generally, the instance types available in Amazon EC2 can access three types of

storage: (1) the local block storage, known as ephemeral disk, where user data are

lost once the instances are released (non-persistent storage); (2) off-instance Elastic

Block Store (EBS), which are remote volumes accessible through the network that

can be attached to an EC2 instance as block storage devices, and whose content is

persistent; and (3) Simple Storage Service (S3), which is a distributed object stor-

age system accessed through a web service that supports several interfaces such as

Simple Object Access Protocol (SOAP). The ephemeral and EBS storage devices

have different usage and capacity constraints. On the one hand, a CC1 instance can

only mount up to two ephemeral disks of approximately 845 GB each one, whereas

a CC2 instance can mount up to four disks of the aforementioned size. On the other

hand, the number of EBS volumes attached to instances can be almost unlimited,

and the size of a single volume can range from 1 GB to 1 TB. The first generation of

storage-optimized instances (HI1) is a resource intended to provide very high storage

I/O performance. In fact, the two ephemeral devices per HI1 instance are backed

by SSD disks, which is the main differential characteristic of this resource. Addi-

tionally, HI1 provides with high levels of computational power (similar to CC1), a

significant amount of memory (the same as CC2) and 10 Gigabit Ethernet network

(as CC1 and CC2), as shown in Table 1.2.

The evaluation has been carried out at different levels (i.e., local/distributed file

system, I/O interface and application levels) using representative benchmarks in

order to evaluate the available low-level cloud storage devices: ephemeral disks and

EBS volumes. The evaluation of S3 has not been considered since, unlike ephemeral

and EBS devices, it lacks general file system interfaces required by scientific work-

loads so that the use of S3 is not transparent to the applications, and also due to
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HI1

CPU 2 × Intel Xeon E5620 Westmere-EP @2.40 GHz

ECUs 35

#Cores 8 (16 with HyperThreading)

Memory 60.5 GB DDR3-1066

Storage 2 TB (2 × SSD)

API name hi1.4xlarge

Price (Linux) $3.10 per hour

Interconnect 10 Gigabit Ethernet (Full-bisection bandwidth)

Virtualization Xen HVM 64-bit platform (PV drivers for I/O)

Table 1.2: Description of the EC2 storage-optimized instances: HI1

the poor performance shown by previous works [54]. In addition, the performance

of a representative distributed file system, NFS version 3, has been evaluated. NFS

was selected as it is probably the most commonly used network file system, and

it remains as the most popular choice for small and medium-scale clusters, which

are the ones that are worth running in the cloud due to the poor network perfor-

mance shown by our previous works. The evaluated instance types are HI1 and the

HPC-aimed cluster instances (CC1 and CC2). Furthermore, widely extended I/O

interfaces (POSIX, HDF5 [87] and MPI-IO [85]), which are directly implemented on

top of file systems, have also been assessed as scientific workloads usually rely on

them to perform I/O. Finally, the scalability of a representative parallel I/O code

implemented on top of MPI-IO, the BT-IO kernel [93] from the NPB suite, has been

analyzed at the application level both in terms of performance and cost metrics. The

cost analysis has considered the three different purchasing options offered by Ama-

zon EC2: (1) on-demand instances, which allow to access immediately computation

power by paying a fixed hourly rate; (2) spot instances from the spot market, which

allow customers to bid on unused Amazon EC2 capacity and run those instances

for as long as their bid exceeds the current spot price (which changes periodically

based on supply and demand); and (3) reserved instances for one- or three-year

terms, which allow to receive a significant discount on the hourly charge. There are

three reserved instance types: light, medium and heavy, that enable to balance the

amount paid upfront with the effective hourly price.

The analysis of the performance results have shown that the available instance

types and storage devices can present significant performance differences. In fact,
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Figure 1.22: Software RAID 0 performance on CC1, CC2 and HI1 instances

this work has revealed that the use of ephemeral disks (labeled as “EPH” in the

graphs) can provide better write performance than EBS volumes for CC1 and CC2,

especially when software RAID is used (see Figure 1.22), thanks to the avoidance of

additional network accesses to EBS. Obviously, the ephemeral SSD disks of the HI1

instances provide the best performance at the local file system level. Moreover, the

analysis at the distributed file system level has shown that HI1 instances can provide

significantly better NFS write performance than any other instance type, although

the overall performance is ultimately limited by the poor network throughput (see

Figure 1.23). Finally, the analysis of the performance/cost ratio of the BT-IO par-

allel application has shown that, although the use of the HI1 instance type provides

slightly higher raw performance in terms of aggregated bandwidth (see Figure 1.24),

it may not be the best choice when taking into account the incurred costs (see pro-

ductivity results in Figure 1.25), especially when using reserved instances (see the

right graph, labeled as “R”), which usually represents the lowest price that can be

obtained for a particular instance type.
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Figure 1.23: NFS write performance using CC2 and HI1 as server
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Figure 1.24: Performance of the NPB BT-IO kernel on Amazon EC2
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Performance Evaluation of Data-Intensive Applications on a Public Cloud

(Chapter 9)

Data-intensive computing [43] applications usually require a high number of com-

putational resources together with the availability of a high-performance cluster file

system for scalable performance. This work evaluates the full I/O software stack

of data-intensive computing for running HPC and Big Data workloads on Amazon

EC2 [37]. More specifically, the performance and cost-efficiency of four instance

types with 10 Gigabit Ethernet has been characterized at several layers, ranging

from low-level storage devices and cluster file systems up to the application level

using representative data-intensive parallel codes and MapReduce-based workloads.

The main contribution of this work with respect to the previous one presented in [32]

is the evaluation of the more recent second generation of storage-optimized instances

(HS1), whose differential characteristic is the provision of up to 24 ephemeral disks

as local storage for very high storage density and high sequential read and write

performance. In addition, the CR1 instance type has been evaluated, which has ex-

actly the same capabilities as CC2 instances in terms of computational power, but

providing four times more memory and two SSD-based ephemeral devices. More

details on these instances are shown in Table 1.3. Other evaluated instance types

are the first generation of storage-optimized instances (HI1, see Table 1.2) and CC2

instances (see Table 1.1).

The evaluation has been conducted using representative benchmarks and appli-

HS1 CR1

CPU
1 × Intel Xeon E5-2650
Sandy Bridge-EP @2 GHz

2 × Intel Xeon E5-2670
Sandy Bridge-EP @2.60GHz

ECUs 33.5 88

#Cores 8 (16 with HyperThreading) 16 (32 with HyperThreading)

Memory 117 GB DDR3-1600 244 GB DDR3-1600

Storage 48 TB (24 × HDD) 240 GB (2 × SDD)

API name hs1.8xlarge cr1.8xlarge

Price (Linux) $4.60 per hour $3.50 per hour

Interconnect 10 Gigabit Ethernet (Full-bisection bandwidth)

Virtualization Xen HVM 64-bit platform (PV drivers for I/O)

Table 1.3: Description of the HS1 and CR1 instance types
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Figure 1.26: I/O software stacks for data-intensive computing applications

cations at the different levels depicted in Figure 1.26. One of the key contributions of

this work is the performance characterization at the cluster file system level. Regard-

ing the HPC stack, the OrangeFS parallel file system [66], which is a relatively recent

branch of the production-quality and widely extended Parallel Virtual File System

(PVFS) [16], has been evaluated using the IOR benchmark [74] and the MPI-IO

interface as representative I/O middleware. Regarding the Big Data software stack,

the Intel HiBench suite [45] has been used for the evaluation of Apache Hadoop,

selected as the most representative MapReduce computing framework. The Hadoop

Distributed File System (HFDS) [75] has been evaluated using the Enhanced DFSIO

benchmark included in the HiBench suite.

Figure 1.27 presents the aggregated bandwidth of OrangeFS for the write oper-

ation. These results have been obtained using a baseline cluster configuration that

consists of 4 instances acting as I/O servers and multiple instances acting as clients.

In these experiments, the number of physical compute cores in the cluster has been

set to 128, as shown in Table 1.4. Hence, each client instance runs 8 (on HI1) or 16

(on CC2) parallel processes writing collectively a single shared file of 32 GB under

different block sizes. As can be observed, the use of the largest block size is key

to achieve high-performance parallel I/O, mainly using HI1 instances. In fact, the

HI1-HI1 configuration achieves the best results, around 1600 MB/s, whereas the use

of CC2 clients, both for HI1 and HS1 as servers, shows poor results. The CC2-CC2

configuration obtains around 800 MB/s, even outperforming HS1-CC2. The poor

performance of HI1-CC2 and HS1-CC2 configurations, whose local storage devices
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Figure 1.27: OrangeFS results using 4 I/O servers and 128 cores

HPC Cluster #I/O Servers #Clients #Compute Cores Hourly Cost

CC2-CC2 4 × CC2 8 × CC2 128 $24

HI1-CC2 4 × HI1 8 × CC2 128 $28.4

HI1-HI1 4 × HI1 16 × HI1 128 $62

HS1-CC2 4 × HS1 8 × CC2 128 $34.4

Table 1.4: Hourly cost of the EC2-based HPC clusters

are the fastest, is due to the impossibility of locating different instance types in the

same placement group, so when using CC2 clients with HI1 and HS1 servers the

network performance drops severely. Taking costs into account, the HI1-CC2 option

becomes the best configuration from 256 KB on, due to the use of client instances

cheaper than the HI1-HI1 configuration. Even CC2-CC2 seems to be a good choice

instead of HI1-HI1, as it is the cheapest cluster under evaluation.

Figure 1.28 shows the aggregated bandwidth of HDFS for the write operation

using a baseline cluster that consists of one instance acting as master node (running

JobTracker/NameNode) and multiple instances acting as slave nodes (running Task-

Trackers/DataNodes), all connected to the 10 Gigabit Ethernet network. In these

experiments, two different cluster sizes have been evaluated using 8 and 16 slave

instances (see Table 1.5), together with the master node of the same instance type,

and thereby all instances located in the same placement group. The use of 8-slave

clusters shows similar HDFS bandwidths (around 1400 MB/s) and thus the CC2-

based cluster is the most cost-effective in terms of productivity. However, HI1 and

HS1 instances obtain 34% and 44% more aggregated bandwidth, respectively, than



1.3 Research and Discussion 41

 0

 500

 1000

 1500

 2000

 2500

 3000

8 16

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Number of Slave Instances

Hadoop DFS Write Performance

 CC2

 HI1

 HS1

 0

 25

 50

 75

8 16

M
B

/s
 p

e
r 

U
S

$

Number of Slave Instances

Hadoop DFS Write Productivity

 CC2

 HI1

 HS1

Figure 1.28: HDFS results using 8 and 16 slave instances

Hadoop Cluster #M/R tasks per slave (8-16 slaves) Hourly Cost (8-16 slaves)

CC2-based 12/4 (96/32 - 192/64) $18 - $34

HI1-based 6/2 (48/16 - 96/32) $27.9 - $52.7

HS1-based 6/2 (48/16 - 96/32) $41.4 - $78.2

Table 1.5: Number of (M)ap/(R)educe tasks and hourly cost of the Hadoop clusters

CC2 instances when using 16-slave clusters. Nevertheless, CC2 remains as the most

productive choice, although followed closely by HI1, whereas the HS1-based cluster,

which is the most expensive, remains as the least competitive. Note that while the

storage-optimized instances have slightly increased their productivity when doubling

the number of slaves, CC2 has decreased 27%.

Finally, the performance and cost of two I/O-intensive HPC applications (BT-

IO [93] and FLASH-IO [39, 41]) and four MapReduce workloads selected from the

HiBench suite (Sort, WordCount, Mahout PageRank and Hive Aggregation) has

been analyzed at the application level. As a representative example of the Big

Data software stack evaluation, Figure 1.29 shows the results for the Hadoop Sort.

The use of 8-slave clusters shows that CC2 is able to outperform HI1 and HS1

configurations by 20%, thanks to the higher map/reduce capacity of the CC2 cluster

due to the availability of more CPU resources (see Table 1.5), which seem to be of

great importance, especially during data compression. However, CC2 only reduces

its execution time by 22% when doubling the number of slaves, whereas HI1 and HS1

reduce it by 40% and 42%, respectively. This allows storage-optimized instances to
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Figure 1.29: Hadoop Sort performance and execution cost

slightly outperform CC2 when using 16 slaves, due to their higher HDFS bandwidth,

even taking into account that they have half the map/reduce capacity of CC2.

Nevertheless, the cost of the CC2 cluster continues to be the lowest, a pattern that

is maintained in the remaining workloads. If the comparison is done using the same

map/reduce capacity, the 16-slave clusters using HI1 and HS1 instances outperform

the 8-slave CC2 cluster by 24% and 27%, respectively (see Table 1.5 and left graph

in Figure 1.29). However, these improvements are not enough to turn optimized-

storage instances into interesting options when considering the associated costs.

The main results of this work have shown that data-intensive applications can

benefit from tailored Amazon EC2-based virtual clusters, enabling users to obtain

the highest performance and cost-effectiveness in the cloud. The analysis of the

experimental results points out that the unique configurability and flexibility advan-

tage offered by Amazon EC2, almost impossible to achieve in traditional platforms,

can benefit significantly data-intensive applications, and it is critical for increasing

performance and/or reduce costs. In fact, this work has revealed that the suitability

of using EC2 resources for running data-intensive applications is highly workload-

dependent. Furthermore, the most suitable configuration for a given application

heavily depends on whether the main aim is to obtain the maximum performance

or, instead, minimize the cost (or maximize the productivity). Therefore, a key

contribution of this work is an in-depth study that provides guidelines for scientists

and researchers to increase significantly the performance (or reduce the cost) of their

data-intensive applications in the Amazon EC2 cloud.
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General-Purpose Computation on GPUs for Cloud Computing (Chap-

ter 10)

In the last years, General-Purpose computation on GPUs (GPGPU) has gained

much attention from the HPC and scientific community due to its massive parallel

processing power, thus becoming an important programming model in HPC. The

massively parallel GPU architecture, together with its high floating-point perfor-

mance and memory bandwidth is well suited for many workloads, even outperform-

ing multi-core processors. In fact, GPU clusters [56], which are usually programmed

using a hybrid parallel paradigm (MPI+CUDA/OpenCL), are currently gaining high

popularity. The Amazon EC2 cloud infrastructure provides a GPU family of clus-

ter instances (CG1), which are also equipped with a 10 Gigabit Ethernet network.

Instances of this family provide exactly the same hardware capabilities as the CC1

instance type in terms of computational power, memory capacity, storage devices

and network performance. The differential feature of the CG1 instances is the pro-

vision of two NVIDIA Tesla GPUs per instance, which are intended for GPGPU

codes (see description of CG1 in Table 1.6). Note that these instances rely on Xen

PCI passthrough for accessing directly the GPU, while the access to the network is

also paravirtualized as for previous cluster instance types.

This work has evaluated GPGPU on Amazon EC2 using a cluster of up to 32

CG1 instances [34] (i.e., up to 64 GPUs and 256 cores have been used), whose main

CG1

CPU
2 × Intel Xeon X5570 Nehalem-EP @2.93 GHz
(46.88 GFLOPS DP each CPU)

ECUs 33.5

#Cores 8 (16 with HyperThreading)

Memory 22 GB DDR3-1066

GPUs
2 × NVIDIA Tesla “Fermi” M2050 (515
GFLOPS DP each GPU)

Storage 1690 GB (2 × HDD)

API name cg1.4xlarge

Price (Linux) $2.10 per hour

Interconnect 10 Gigabit Ethernet (Full-bisection bandwidth)

Virtualization Xen HVM 64-bit platform (PV drivers for I/O)

Table 1.6: Description of the EC2 cluster GPU instances: CG1
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Number of CG1 instances 32

Interconnect 10 Gigabit Ethernet

Total ECUs 1072

Total CPU cores 256 (3 TFLOPS DP)

Total GPUs 64 (32.96 TFLOPS DP)

Total FLOPS 35.96 TFLOPS DP

Table 1.7: Characteristics of the CG1-based cluster

characteristics are presented in Table 1.7. More especifically, a CG1 instance has 8

cores, each of them capable of executing 4 floating-point operations per clock cycle

in double precision (DP), hence 46.88 GFLOPS per processor, 93.76 GFLOPS per

node and 3 TFLOPS in the 32-node (256-core) cluster. Moreover, each GPU has 3

GB of memory and a peak performance of 515 GFLOPS, hence 32.96 TFLOPS in

the cluster. Aggregating CPU and GPU theoretical peak performances the entire

cluster provides 35.96 TFLOPS. The evaluation has been conducted using repre-

sentative GPGPU benchmarks and applications: 12 synthetic kernels using CUDA

and OpenCL codes, which have been selected from two representative benchmark

suites (SHOC [23] and Rodinia [21]), two real-world distributed applications that

take advantage of GPUs (NAMD [69] and MC-GPU [4]) and the High-Performance

Linpack (HPL) [28], which is the reference benchmark for the TOP500 list [89].

Additionally, the synthetic kernels have been executed on a single GPU of a non-

virtualized testbed (named CAG) with the same GPU model in order to assess the

overhead of the virtualization layer.

The analysis of the results has shown that GPGPU is a viable option for HPC

in the cloud despite the significant impact that virtualized environments still have

on network overhead, which still hampers the adoption of GPGPU communication-

intensive applications. In fact, the peak floating-point benchmark results (see left

graph in Figure 1.30) are very close to the theoretical peak performance on this GPU

model (515 GFLOPS), showing insignificant differences between Amazon and the

non-virtualized testbed (CAG) both for single and double precision tests. Hence,

computationally intensive applications with algorithms that can be efficiently ex-

ploited by the GPU (e.g., MC-GPU) can take full advantage of their execution on

CG1 instances, as shown in the left graph in Figure 1.32. These applications can

benefit from the efficient access to the GPU accelerators without any significant per-

formance penalty, except when accessing memory intensively, where a small penalty
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Figure 1.30: Performance of low-level GPU benchmarks on Amazon EC2 and CAG
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Figure 1.31: Performance of FFT and GEMM kernels on Amazon EC2 and CAG

can be observed as CG1 instances have the Error Correcting Code (ECC) memory

protection enabled, which slightly limits the memory access bandwidth (see right

graph in Figure 1.30). This causes that memory-bound kernels (e.g., FFT) achieve

better performance on the CAG testbed, which has the ECC memory protection

deactivated, as shown in Figure 1.31 (left graph), while compute-bound kernels

(e.g., see GEMM in the right graph) obtain similar performance on both testbeds

(note that the FFT implementation in OpenCL is less optimized than the CUDA

counterpart for the Tesla “Fermi” architecture).
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Figure 1.33: HPL benchmark results on CG1 instances

Nevertheless, communication-intensive codes (e.g., NAMD) still suffer from the

overhead of the paravirtualized network access, which can reduce scalability sig-

nificantly. In fact, this performance bottleneck is especially important for the

CPU+GPU implementation, as it computes faster than the CPU version and there-

fore its communication requirements are even higher. Hence, the CPU+GPU version

of NAMD is not able to scale when using more than one CG1 instance, while the

CPU version obtains moderate scalability using up to 16 instances (see right graph in

Figure 1.32). This overhead has also limited the HPL performance results, especially

when using 32 CG1 instances as the efficiency drops below 40% for the CPU+GPU

benchmark (14.23 out of 35.96 peak TFLOPS, see Figure 1.33). Therefore, a direct

access to the network hardware is key to reduce the communication overhead in vir-

tualized environments and make on-demand HPC in the cloud a widespread option.
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Abstract This paper presents ibvdev a scalable and efficient low-level Java
message-passing communication device over InfiniBand. The continuous increase in
the number of cores per processor underscores the need for efficient communication
support for parallel solutions. Moreover, current system deployments are aggregating
a significant number of cores through advanced network technologies, such as Infini-
Band, increasing the complexity of communication protocols, especially when deal-
ing with hybrid shared/distributed memory architectures such as clusters. Here, Java
represents an attractive choice for the development of communication middleware for
these systems, as it provides built-in networking and multithreading support. As the
gap between Java and compiled languages performance has been narrowing for the
last years, Java is an emerging option for High Performance Computing (HPC).

The developed communication middleware ibvdev increases Java applica-
tions performance on clusters of multicore processors interconnected via InfiniBand
through: (1) providing Java with direct access to InfiniBand using InfiniBand Verbs
API, somewhat restricted so far to MPI libraries; (2) implementing an efficient and
scalable communication protocol which obtains start-up latencies and bandwidths
similar to MPI performance results; and (3) allowing its integration in any Java paral-
lel and distributed application. In fact, it has been successfully integrated in the Java
messaging library MPJ Express.
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The experimental evaluation of this middleware on an InfiniBand cluster of multi-
core processors has shown significant point-to-point performance benefits, up to 85%
start-up latency reduction and twice the bandwidth compared to previous Java mid-
dleware on InfiniBand. Additionally, the impact of ibvdev on message-passing col-
lective operations is significant, achieving up to one order of magnitude performance
increases compared to previous Java solutions, especially when combined with mul-
tithreading. Finally, the efficiency of this middleware, which is even competitive with
MPI in terms of performance, increments the scalability of communications intensive
Java HPC applications.

Keywords Message-Passing in Java (MPJ) · InfiniBand · Multicore architectures ·
High performance computing · Remote Direct Memory Access (RDMA) ·
Performance evaluation

1 Introduction

Java is the leading programming language both in academia and industry environ-
ments, and it is an emerging alternative for High Performance Computing (HPC) [1]
due to its appealing characteristics: built-in networking and multithreading support,
object orientation, automatic memory management, platform independence, portabil-
ity, security, an extensive API, and a wide community of developers. Furthermore, in
the era of multicore processors, the use of Java threads is considered a feasible option
to harness the performance of these processors.

Java initially was severely criticized for its poor computational performance [2],
but the performance gap between Java and native (compiled) languages like C or For-
tran has been narrowing for the last years. The main reason is that the Java Virtual Ma-
chine (JVM), which executes Java applications, is now equipped with Just-in-Time
(JIT) compilers that obtain native performance from Java bytecode. Nevertheless, the
tremendous improvement in its computational performance is not enough for Java to
be a successful language in the area of parallel computing, as the performance of the
communications is also essential to achieve high scalability in Java for HPC.

Message-passing is the most widely used parallel programming paradigm as it
is highly portable, scalable, and usually provides good performance. It is the pre-
ferred choice for parallel programming distributed memory systems such as multi-
core clusters, currently the most popular system deployments due to their scalability,
flexibility, and interesting cost/performance ratio. Here, Java represents an attractive
alternative to languages traditionally used in HPC, such as C or Fortran, for the devel-
opment of applications for these systems as it provides built-in networking and multi-
threading support, key features for taking full advantage of hybrid shared/distributed
memory architectures. Thus, Java can use threads in shared memory (intranode) and
its networking support for distributed memory (internode) communications.

The increasing number of cores per system demands efficient and scalable
message-passing communication middleware. However, up to now Message-Passing
in Java (MPJ) implementations have been focused on providing portable communi-
cation devices, rather than concentrate on developing efficient low-level communi-
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cation devices on high-speed networks. The lack of efficient support for high-speed
networks in Java, due to its inability to control the underlying specialized hardware,
results in lower performance than MPI, especially for short messages. This paper
presents a scalable and efficient Java low-level message-passing communication de-
vice, ibvdev, aiming to its integration in MPJ implementations in order to provide
higher performance on InfiniBand multicore clusters. In fact, it has been already in-
tegrated successfully in the MPJ library MPJ Express [3] (http://mpj-express.org).

The structure of this paper is as follows: Sect. 2 presents InfiniBand background
information. Section 3 introduces the related work. Section 4 describes the design
and implementation of the efficient ibvdev middleware, covering in detail the op-
eration of the communication algorithms that provide the highest performance over
InfiniBand. Section 5 shows the performance results of the implemented library on
an InfiniBand multicore cluster. The evaluation consists of a micro-benchmarking of
point-to-point and collectives primitives, as well as a kernel/application benchmark-
ing in order to analyze the impact of the use of the library on their overall perfor-
mance. Section 6 summarizes our concluding remarks.

2 Java communications over InfiniBand

2.1 InfiniBand architecture

The InfiniBand Architecture (IBA) [4] defines a System Area Network (SAN) for in-
terconnecting processing nodes and I/O nodes. In an InfiniBand network, processing
nodes and I/O nodes are connected to the fabric by Channel Adapters (CA). Channel
Adapters usually have programmable DMA engines with protection features. There
are two kinds of channel adapters: Host Channel Adapter (HCA) and Target Channel
Adapter (TCA). HCAs sit on processing nodes and TCAs connect I/O nodes to the
fabric.

The InfiniBand communication stack consists of different layers. The interface
presented by channel adapters to consumers belongs to the transport layer. A queue-
based model is used in this interface. A Queue Pair (QP) in InfiniBand Architecture
consists of two queues: a send queue and a receive queue. The send queue holds
instructions to transmit data and the receive queue holds instructions that describe
where received data has to be placed. Communication operations are described in
Work Queue Requests (WQR), or descriptors, and submitted to the work queue. Once
submitted, a Work Queue Request becomes a Work Queue Element (WQE). WQEs
are executed by Channel Adapters. The completion of work queue elements is re-
ported through Completion Queues (CQs). Once a work queue element is finished,
a completion entry is placed in the associated completion queue. Applications can
check the completion queue to see if any work queue request has been finished.

2.1.1 Channel and memory semantics

InfiniBand Architecture supports both channel and memory semantics. In channel se-
mantics, send/receive operations are used for communication. To receive a message,
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the programmer posts a receive descriptor which describes where the message should
be put at the receiver side. At the sender side, the programmer initiates the send op-
eration by posting a send descriptor. The send descriptor describes where the source
data is but does not specify the destination address at the receiver side. When the
message arrives at the receiver side, the hardware uses the information in the receive
descriptor to put data in the destination buffer. Multiple send and receive descriptors
can be posted and they are consumed in FIFO order. The completion of descriptors
are reported through CQs.

In memory semantics, Remote Direct Memory Access (RDMA) write and RDMA
read operations are used instead of send and receive operations. These operations are
one-sided and do not incur software overhead at the other side. The sender initiates
RDMA operations by posting RDMA descriptors. A RDMA descriptor contains both
the local data source address and the remote data destination address. At the sender
side, the completion of a RDMA operation can be reported through CQs. The opera-
tion is transparent to the software layer at the receiver side.

Both communication semantics require communication memory to be registered
with InfiniBand hardware and pinned in memory. The registration operation involves
informing the network-interface of the virtual to physical address translation of the
communication memory. The pinning operation requires the operating system to
mark the pages corresponding to the communication memory as non-swappable.
Thus, communication memory stays locked in physical memory, and the network-
interface can access it as desired.

2.1.2 Transport services

There are five transport modes defined by the InfiniBand specification: Reliable Con-
nection (RC), eXtended Reliable Connection (XRC), Reliable Datagram (RD), Un-
reliable Connection (UC), and Unreliable Datagram (UD). All transports provide a
checksum verification.

Reliable Connection (RC) is the most popular transport service for implementing
MPI over InfiniBand. As a connection-oriented service, a QP with RC transport must
be dedicated to communicating with only one other QP. A process that communicates
with N other peers must have at least N QPs created. The RC transport provides
almost all the features available in InfiniBand, most notably reliable send/receive,
RDMA and atomic operations.

RC transport makes no distinction between connecting a process (generally one
per core for MPI) and connecting a node. Thus, the associated resource consumption
increased directly in relation to the number of cores in the system. To address this
problem eXtended Reliable Connection (XRC) was introduced. Instead of having a
per-process cost, XRC was designed to allow a single connection from one process to
an entire node. XRC provides the services of the RC transport, but defines a very dif-
ferent connection model and method for determining data placement on the receiver
in channel semantics. When using the RC transport, the connection model is purely
based on processes. By contrast, XRC allows connection optimization based on the
location of a process. The node of the peer to connect to is now taken into account, so
instead of requiring a new QP for each process, now each process only needs to have
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Table 1 Operations available for each transport service

Operation RC XRC UC RD UD

Send (with immediate) X X X X X

Receive X X X X X

RDMA write (with immediate) X X X X

RDMA read X X X

Atomic X X X

one QP per node to be fully connected. This reduces the number of QPs required by
a factor of the number of cores per node.

Unreliable Connection (UC) provides a connection-oriented service with no guar-
antees of ordering or reliability. It supports RDMA write capabilities and send-
ing messages larger than the Maximum Transmission Unit (MTU) size. Being
connection-oriented in nature, every communicating peer requires a separate QP. In
regard to resources required, it is identical to RC, while no providing reliable service.
Thus, it appears unattractive for implementing MPI over this transport.

Unreliable Datagram (UD) is a connection-less and unreliable transport, the most
basic transport specified for InfiniBand. As a connection-less transport, a single UD
QP can communicate with any number of other UD QPs. However, the UD transport
has a number of limitations. The UD transport does not provide any reliability: lost
packets are not reported and the arrival order is not guaranteed. However, this can
be solved relying on Reliable Datagram (RD). Moreover, UD transport does not en-
able RDMA. All communication must be performed using channel semantics, i.e.,
send/receive.

Table 1 shows the available operations for each transport service, since not all
transport services support all operations, which has to be taken into account for a
message-passing middleware implementation.

2.1.3 Shared receive queues

Shared Receive Queues (SRQs) were introduced in the InfiniBand 1.2 specification
to address scalability issues with InfiniBand memory usage. In order to receive a
message on a QP, a receive buffer must be posted in the Receive Queue (RQ) of that
QP. To achieve high-performance, MPI implementations prepost buffers to the RQ to
accommodate unexpected messages. When using the RC transport of InfiniBand, one
QP is required per communicating peer. However, this task of preposting receives
on each QP can have very high memory requirements for communication buffers.
Recognizing that such buffers could be pooled, SRQ support was added so instead
of connecting a QP to a dedicated RQ, buffers could be shared across QPs. In this
method, a smaller pool can be allocated and then refilled on demand instead of pre-
posting on each connection.

2.2 Message-passing communication devices

Message-passing libraries usually support new transport protocols through the use of
pluggable low-level communication devices, such as Abstract Device Interface (ADI)
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Fig. 1 Communications support of MPJ applications

in MPICH, Byte Transfer Layer (BTL) in OpenMPI, and xdev [5] in MPJ Express.
These communication devices abstract the particular operation of a communication
protocol, such Myrinet eXpress (MX), uDAPL (user Direct Access Programming
Library), InfiniBand Verbs (IBV), Shared Memory, or SCTP (Stream Control Trans-
mission Protocol), conforming to an API on top of which the message-passing library
implements its communications.

Figure 1 presents an overview of the communications support of MPJ applications
on the high-speed Myrinet network, on Gigabit Ethernet, and on shared memory.
From top to bottom, MPJ applications rely on MPJ libraries, whose communication
support is implemented in the device layer. Current Java communication devices are
implemented either on JVM threads (smpdev, a multithreading device), on sockets
over the TCP/IP stack (niodev on Java NIO sockets and iodev on Java IO sock-
ets), or on native communication layers such as Myrinet eXpress (mxdev, a device
on MX).

Regarding InfiniBand, up to now no direct support was made available for MPJ
applications to fully exploit the communication capability of InfiniBand networks.
This lack of direct InfiniBand support in Java requires the use of upper layer protocols
such as IPoIB [6] (IP over InfiniBand) TCP emulation, as shown in Fig. 2, or SDP
(Sockets Direct Protocol), the high performance native sockets library on InfiniBand.
However, the use of IPoIB, the only communication library that fully supports Java
over InfiniBand, shows quite poor performance [7]. Moreover, when relying on SDP
the performance generally improves, but this is not always possible. Regarding MPI
libraries, their direct InfiniBand support has been implemented some years ago on top
of InfiniBand Verbs (IBV) API (see Fig. 2), achieving very high performance results.
Therefore, our objective is the implementation of the direct InfiniBand support in
Java on IBV through the development of a low-level Java communication device that
can take advantage of InfiniBand RDMA transfers, thus outperforming significantly
previous Java support on InfiniBand.

3 Related work

Current research on efficient Java communication libraries over InfiniBand is, to our
knowledge, restricted to Jackal, Aldeia, Java Fast Sockets (JFS), Jdib, and uStream
projects, next presented. Jackal [8] is a Java DSM (Distributed Shared Memory) mid-
dleware for clusters with InfiniBand Verbs support, embracing also RDMA transfers,
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Fig. 2 MPI/MPJ applications support on InfiniBand

but it does not provide any API to Java developers as it only implements data trans-
fers specifically for Jackal. Aldeia [9] is a proposal of an asynchronous sockets com-
munication layer over InfiniBand whose preliminary results were encouraging, but
requires an extra-copy, which incurs an important overhead to provide asynchronous
write operations, whereas the read method is synchronous.

JFS [10] is our high performance Java socket implementation for efficient shared
memory and high-speed networks support. JFS relies on SDP (see Fig. 2) to support
Java communication over InfiniBand. Moreover, JFS avoids the need for primitive
data type array serialization and reduces buffering and unnecessary copies. Neverthe-
less, the use of the sockets API is a significant drawback to support efficient message-
passing communications.

Jdib [11, 12] (Java Direct InfiniBand) is a Java encapsulation of IBV API which
maximizes Java communication performance using directly, through Java Native In-
terface (JNI), the InfiniBand RDMA mechanism. The main contribution of Jdib is
its direct access to RDMA, providing to performance-concerned developers, for the
first time, a Java RDMA API. Thus, Jdib significantly outperforms its alternatives,
currently limited to IPoIB- and SDP-based solutions. The main drawbacks of Jdib
are its low-level API and the JNI overhead incurred for each Jdib operation.

uStream [13] is a user-level stream protocol implemented on top of IBV that pro-
vides a higher level API than Jdib. In fact, uStream abstracts developers from the most
tedious operations in Jdib, such as the buffer management, synchronization and the
use of the IBV API, while fully exploiting InfiniBand RDMA performance. There-
fore, uStream is much more effective and easier to use than Jdib for building parallel
and distributed applications.

4 ibvdev: efficient Java communications over InfiniBand

This section presents the design and implementation of the ibvdev communication
device, the Java message-passing middleware over InfiniBand developed in this pa-
per. Unlike VIA [14, 15], InfiniBand architecture does not specify an API. Instead, it
defines the functionality provided by HCAs to operating systems in terms of Verbs
(a “verb” is a semantic description of a function that must be provided). The Verbs
interface specifies such functionality as transport resource management, multicast,
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work request processing, and event handling. The most important implementation
used today of Verbs interface is the IBV API provided by the OFED (OpenFabrics
Enterprise Distribution) driver distributed by the OpenFabrics Alliance [16]. IBV is
also the lowest level InfiniBand networking API for applications, available only in C
language. Therefore, any Java communication support on IBV must resort to JNI in
order to access IBV API and obtain the best possible performance, the target of the
communication middleware developed, ibvdev.

4.1 Message-passing in Java libraries

There have been several efforts [1] over the last decade to develop a Java message-
passing system since its introduction [17]. Most of these projects were prototype
implementations, without maintaining. Currently, the most relevant ones in terms of
uptake by the HPC community are mpiJava [18], MPJ Express [3], MPJ/Ibis [19] and
F-MPJ [20].

mpiJava [18] is a Java messaging system that uses JNI to interact with the un-
derlying native MPI library. This project has been perhaps the most successful Java
HPC messaging system, in terms of uptake by the community. However, although its
performance is usually high, mpiJava currently only supports some native MPI im-
plementations, as wrapping a wide number of functions and heterogeneous runtime
environments entails an important maintaining effort. Additionally, this implemen-
tation presents instability problems, derived from the native code wrapping (all MPJ
methods are wrapped), and has thread safety issues in the wrapper layer, being unable
to take advantage of multicore systems through multithreading, even if the underlying
MPI library is thread safe.

MPJ Express is an MPJ implementation of the mpiJava 1.2 API [17] specification.
MPJ Express is thread-safe and presents a modular design which includes a pluggable
architecture of communication devices that allows to combine the portability of the
“pure” Java New I/O package (Java NIO) communications (niodev device) with
the high performance Myrinet support (through the native Myrinet eXpress commu-
nication library in the mxdev device).

MPJ/Ibis [19] is an implementation of the JGF MPJ API [21] specification on top
of Ibis [22]. The design philosophy of Ibis is similar to MPJ Express; it is possible to
use 100% pure Java communication or use special HPC hardware like Myrinet. There
are two pure Java devices in Ibis. The first called TCPIbis provides communication
using the traditional java.io package. The second called NIOIbis uses the Java
NIO package. Although TCPIbis and NIOIbis provide blocking and nonblock-
ing communication at the device level, the higher-levels only use blocking versions
of these methods. Nevertheless, MPJ/Ibis does not provide a multithreaded commu-
nication device, unlike MPJ Express, key to harness the performance of multicore
processors.

F-MPJ [20] is our message-passing communication middleware that provides
shared memory and high-speed networks (e.g., InfiniBand, Myrinet, and SCI) com-
munication support through the use of JFS. However, the use of Java IO sockets in its
communication device iodev limits scalability as the progress engine of F-MPJ has
to check every connection for incoming messages, unlike Java NIO sockets whose
support is already implemented in the select method.
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Fig. 3 Overview of the MPJ
Express design including
ibvdev

MPJ Express project is currently the most active project in terms of adoption by
the HPC community, presence on academia and production environments, and avail-
able documentation. This project is also stable and publicly available along with its
source code at http://mpj-express.org. Therefore, MPJ Express has been selected for
the integration of the ibvdev middleware in a production MPJ library.

4.2 MPJ Express communication devices design

MPJ Express has a layered design that enables its incremental development and pro-
vides the capability to update and swap layers in or out as required. Thus, at runtime
end users can opt to use a high performance proprietary network device, or choose a
pure Java device, based either on sockets or threads, for portability.

Figure 3 illustrates an overview of the MPJ Express design and the different levels
of the software. From top to bottom, it can be seen that a message-passing application
in Java (MPJ application) calls MPJ Express point-to-point and collective primitives.
These primitives implement the MPJ communications API on top of the xdev layer,
which has been designed as a pluggable architecture and provides a simple but pow-
erful API. This design facilitates the development of new communication devices in
order to provide custom implementations on top of specific native libraries and HPC
hardware. Thus, xdev is portable as it presents a single API and provides efficient
communication on different system configurations.

Figure 3 also shows the three implementations of the xdev API for networked
communication: niodev on Java NIO, and hence TCP/IP, and mxdev on Myrinet,
as well as the developed xdev middleware for direct InfiniBand support, ibvdev
(depicted in red).

4.2.1 xdev API design

The xdev API, presented in Listing 1, has been designed with the goal of being
simple and small, providing only basic communication methods, in order to ease
the development of xdev devices. An xdev communication device is similar to the
MPI communicator class, but with reduced functionality. The initmethod starts the
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communication device operation. The id method returns the identification (Pro-
cessID) of the device. The finish method is the last method to be called and
completes the device operation.

The xdev communication primitives only include point-to-point communication,
both blocking (send and recv, like MPI_Send and MPI_Recv) and nonblocking
(isend and irecv, like MPI_Isend and MPI_Irecv). Synchronous communications
are also embraced (ssend and issend). These communication methods use PID
(ProcessID) objects instead of using ranks as arguments to send and receive primi-
tives. In fact, the xdev layer is focused on providing basic communication methods
and it does not deal with high level message-passing abstractions such as groups and
communicators. Therefore, a PID object unequivocally identifies a device object.

1 p u b l i c a b s t r a c t c l a s s Device {
2 p u b l i c s t a t i c Device n e w I n s t a n c e ( S t r i n g dev ) ;
3 P r o c e s s I D [ ] i n i t ( S t r i n g [ ] a r g s ) ;
4 P r o c e s s I D i d ( ) ;
5 void f i n i s h ( ) ;
6

7 Reques t i s e n d ( B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x ) ;
8 void send ( B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x ) ;
9 Reques t i s s e n d ( B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x ) ;

10 void s s e n d ( B u f f e r buf , PID d e s t , i n t t ag , i n t c n t x ) ;
11 S t a t u s r e c v ( B u f f e r buf , PID s r c , i n t t ag , i n t c n t x ) ;
12 Reques t i r e c v ( B u f f e r buf , PID s rc , i n t t ag , i n t cn tx , S t a t u s s ) ;
13 S t a t u s p robe ( PID s r c , i n t t ag , i n t c n t x ) ;
14 S t a t u s i p r o b e ( PID s r c , i n t t ag , i n t c n t x ) ;
15 Reques t peek ( ) ;
16 }

Listing 1 API of the xdev.Device class

4.3 Communication device design

Figure 4 presents the overall design of the communication middleware, which con-
sists of three distinct parts. The first is the definition of a new device, ibvdev, in
the xdev layer of MPJ Express (1 in Fig. 4). The analysis of the other high-speed
network support in MPJ Express, the implementation of the mxdev device, reveals
that it also uses native code via JNI to rely on the MX library, thus posing similar
design issues as ibvdev. The MX library [23] provides a set of primitives similar to
those needed to implement xdev interface, so there are a number of functions, such
as mx_isend, mx_issend, mx_irecv, and mx_wait, that are used in the JNI
layer. Therefore, mxdev acts as a Java wrapper layer to MX library, so that the imple-
mentation of a method in xdev generally delegates directly in a native method that
performs the requested operation in MX library. Nevertheless, the design of mxdev
is not directly applicable to ibvdev since InfiniBand lacks an MX-style library that
implements the functionality and operations that must be implemented in xdev. The
available communication layer for ibvdev is the IBV API, which offers low-level
methods for the management of the HCA InfiniBand card.

Therefore, an MX-like library has been defined in order to provide ibvdev with
a set of communication primitives with message-passing semantics on InfiniBand,
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Fig. 4 Overall design of the
communication library

to ease the development of the xdev communication device. This library has been
denominated IBV eXpress (IBVX) (2 in Fig. 4). With this design, a native communi-
cation library has been implemented on top of IBV to provide basic message-passing
communication primitives to higher level layers (either Java or non Java). Thus, the
new communication device ibvdev can rely on IBVX through JNI. The design of
this layer allows the access to IBVX from MPJ Express through its ibvdev device
(3 in Fig. 4).

4.3.1 IBV eXpress library design

The IBVX library is a scalable and high performance low-level C message-passing
middleware for communication on InfiniBand systems. It has been designed using
the same approach as xdev communication devices. In fact, there is a mapping of
xdev methods to IBVX functions, except for methods id, used for process identi-
fication, and getSendOverhead and getRecvOverhead, which are available
only at the Java level as give information about the buffer handling. The IBVX API
is presented in Listing 2. Like xdev API, IBVX includes only point-to-point com-
munication, both blocking and nonblocking, and also synchronous communication
support. In order to support nonblocking operations, IBVX implements IBV_Wait
and IBV_Test functions, which handle nonblocking operation requests.

1 I B V _ I n i t ( char ∗∗pNames , i n t ∗ p L i s t , i n t nProcs , i n t rank , i n t p s l ) ;
2 I B V _ F i n a l i z e ( ) ;
3 IBV_Isend ( void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c tx , Reques t ∗ r ) ;
4 IBV_Issend ( void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c tx , Reques t ∗ r ) ;
5 IBV_Irecv ( void ∗buf , i n t s i z e , i n t s r c , i n t t ag , i n t c tx , Reques t ∗ r ) ;
6 IBV_Send ( void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c t x ) ;
7 IBV_Ssend ( void ∗buf , i n t s i z e , i n t d s t , i n t t ag , i n t c t x ) ;
8 IBV_Recv ( void ∗buf , i n t s i z e , i n t s r c , i n t t ag , i n t c tx , S t a t u s ∗ s ) ;
9 IBV_Wait ( Reques t ∗ r e q u e s t , S t a t u s ∗ s t a t u s ) ;

10 IBV_Test ( Reques t ∗ r e q u e s t , S t a t u s ∗ s t a t u s ) ;
11 IBV_Iprobe ( i n t s r c , i n t t ag , i n t c o n t e x t , S t a t u s ∗ s t a t u s ) ;
12 IBV_Probe ( i n t s r c , i n t t ag , i n t c o n t e x t , S t a t u s ∗ s t a t u s ) ;
13 Reques t ∗ IBV_Peek ( ) ;

Listing 2 Public interface of the IBV eXpress library
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4.3.2 ibvdev JNI layer design

The design of the JNI layer of ibvdev is quite straightforward as it acts as a thin
wrapper over IBVX. Thus, each native method of ibvdev delegates on a native
IBVX function through JNI, implementing a series of three steps: (1) get Java ob-
jects associated parameters required for calling the corresponding library function in
IBVX; (2) call IBVX function; and (3) save the results in the appropriate attributes
of the Java objects involved in the communication. As general rules in the implemen-
tation of the JNI layer, it has been extensively used the caching of object references,
thus minimizing the overhead associated with the JNI calls.

4.4 IBV eXpress library implementation

IBVX library implements nonblocking low-level communication primitives (see List-
ing 2) on top of IBV API. The first decision is the transport service used to create
the queue pairs. Not all transports services support RDMA operations (see Table 1),
whose support is desirable, so these transport services (UC and UD) are discarded.

Moreover, for RD and XRC transport services is not applicable the InfiniBand
end-to-end flow control and this requires the development of a specific flow control
software layer, which can add significant overhead if the implementation is not effi-
cient. Therefore, the RC transport service has been selected as it provides reliability,
delivery order, data loss detection, and error detection.

IBVX implements all communication operations as nonblocking communication
primitives. Then blocking communication support is implemented as a nonblocking
primitive followed by an IBV_Wait call. Therefore, the basic set of functions im-
plemented consists of IBV_Init, IBV_Finalize, and nonblocking communi-
cation functions (IBV_Isend, IBV_Issend, IBV_Irecv), and the function that
checks the completion of a nonblocking operation (IBV_Test). Thus, the opera-
tion that waits for the completion of a nonblocking operation (IBV_Wait) has been
implemented following a strategy of polling (busy loop) as a continuous loop calling
IBV_Test until the test is positive (thus minimizing latency). Blocking communica-
tion functions (IBV_Send, IBV_Ssend, and IBV_Recv) have been implemented
by a call to its corresponding nonblocking function followed by an IBV_Wait call.
Moreover, the probe operation, which checks for incoming messages without ac-
tual receipt of any of them, has been also implemented in the nonblocking version
IBV_Iprobe, whereas the blocking version (IBV_Probe) relies on the nonblock-
ing operation completion.

4.4.1 IBV eXpress communication protocols

Message-passing libraries usually implement two different communication protocols:

1. Eager protocol: the sender process eagerly sends the entire message to the re-
ceiver. In order to achieve this, the receiver needs to provide a sufficient number
of buffers to handle incoming messages. This protocol has minimal startup over-
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Fig. 5 MPI eager and rendezvous protocols

Fig. 6 Message format in
IBVX library

heads and is used to implement low latency message-passing communication for
smaller messages (typically < 128 KB, configurable threshold).

2. Rendezvous protocol: this protocol negotiates (via control messages) the buffer
availability at the receiver side before the message is actually transferred. This
protocol is used for transferring large messages (typically > 128 KB), whenever
the sender is not sure whether the receiver actually has enough buffer space to
hold the entire message.

Figure 5 presents graphically the operation of eager and rendezvous protocols.

4.4.2 Message format

The presence of control messages in the operation of the rendezvous protocol and the
need for a receiving process to unequivocally distinguish a message, has forced the
introduction of a message header before the actual data payload. Thus, a message is
defined as the union of a header of 20 bytes (starting from the beginning), which is
followed by the data payload, as shown in Fig. 6.

The header consists of 5 fields of 4 bytes each representing in this order: the pro-
cess rank that sends the message, the destination process rank, the tag or label of the
message, the context to which it belongs, and the type of message. All header fields
are 4-byte integers, for all types of messages.
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4.4.3 Eager protocol

The overhead of data copies is small for short messages, such as eager protocol trans-
fers and control messages, which are eagerly push through the network to achieve the
lowest latency. This operation matches with the semantic of InfiniBand send/receive
communication.

In IBV_Init a reliable connection is set up between every two processes. For
a single process, the send and receive queues of all connections are associated with
a single CQ (Completion Queue). Through this CQ, the completion of all send and
RDMA operations can be detected at the sender side. The completion of receive op-
erations (or arrival of incoming messages) can also be detected through the CQ (see
Fig. 7).

The InfiniBand Architecture requires the pinning of buffers previous to the com-
munication, thus they must be registered with the hardware. In the eager protocol im-
plementation (shown in Fig. 7), the buffer pinning and unpinning overhead is avoided
by using a pool of prepinned, fixed size buffers for communication. For sending an
eager data message, the data is copied to one of the buffers first and sent out from
this buffer to the send queue (1 in Fig. 7). At the receiver side, a number of buffers
from the pool are preposted (2 in Fig. 7). After the message is received, the payload is
copied to the destination buffer (3 in Fig. 7). The communication of control messages
also uses this buffer pool as they are actually sent using the eager protocol.

Fig. 7 Eager protocol implementation in IBVX
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4.4.4 Rendezvous protocol

When transferring large messages it is extremely beneficial to avoid extra data copies.
A zero-copy rendezvous protocol implementation can be achieved by using RDMA
operations. The rendezvous protocol negotiates the buffer availability at the receiver
side. However, the actual data can be transferred either by using RDMA Write or
RDMA Read. RDMA Write-based approaches can totally eliminate intermediate
copies and efficiently transfer large messages. RDMA Read-based approaches can
enable both zero copy and computation and communication overlap. Similar ap-
proaches have been widely used for implementing MPI communications over dif-
ferent interconnects [24, 25].

The RDMA Write-based protocol is illustrated in Fig. 8 (right). In this imple-
mentation, the buffers are pinned down in memory and the buffer addresses are ex-
changed via control messages. The sending process first sends a control message to
the receiver (RNDZ_START). The receiver replies to the sender using another control
message (RNDZ_REPLY). This reply message contains the receiving application’s
buffer information along with the remote key to access that memory region. The
sending process then sends the large message directly to the receiver’s application
buffer by using RDMA Write (DATA). Finally, the sending process issues another
control message (RNDZ_END) which indicates to the receiver that the message has
been placed in the application buffer.

IBVX uses a progress engine to discover incoming messages and to make progress
on outstanding sends. As can be seen in Fig. 8, the RDMA Write-based rendezvous
protocol generates multiple control messages which have to be discovered by the
progress engine. Since the progress engine operation is based on polling, it requires
a call to the IBVX library.

RDMA Read operation presents a small number of control messages and thus
a reduced set of I/O bus transactions. In addition, since the receiver can progress

Fig. 8 Rendezvous protocol alternatives
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independently of the sender (once the RNDZ_START message is sent), the sender
does not need to call any IBVX progress, the data transfer proceeds with RDMA
Read without direct control of the sender.

The rendezvous protocol over RDMA Read is also illustrated in Fig. 8 (left). Here,
the sending process begins with the RNDZ_START message, which has embedded
the virtual address and memory handle information of the message buffer to be sent.
Thus, upon the receipt of this RNDZ_START message all the information about the
application buffer is available to the receiving process, and no RNDZ_REPLY mes-
sage needs to be sent any more. Upon its discovery, the receiving process issues the
DATA message over RDMA Read. When the operation has been completed, it in-
forms the sending process by a RNDZ_END message. This approach, although sim-
ple, poses several design challenges that have to be addressed before directly utilize
RDMA Read:

– Limited Outstanding RDMA Reads: The number of outstanding RDMA Reads on
any QP is a fixed number (typically 8 or 16), decided during the QP creation.

– Issuing RNDZ_END Message: According to InfiniBand specification [4], Send or
RDMA Write transactions are not guaranteed to finish in order with outstanding
RDMA Reads.

For these reasons, the rendezvous protocol has been implemented with RDMA
Write operation, in order to benefit from a more productive development.

4.4.5 Cache of registered buffers

In rendezvous protocol, data buffers are pinned on-the-fly. However, the buffer pin-
ning and unpinning overhead can be reduced by using the pin-down cache tech-
nique [26]. The idea is to maintain a cache of registered buffers. When a buffer is
first registered, it is put into the cache. When the buffer is unregistered, the actual
unregister operation is not carried out and the buffer stays in the cache. Thus, the
next time when the buffer needs to be registered, we do not need to do anything be-
cause it is already in the cache. The effectiveness of pin-down cache depends on how
often the application reuses its buffers. If the reuse rate is high, most of the buffer
registration and deregistration operations can be avoided.

4.5 JNI layer implementation details

The JNI layer is a wrapper for IBVX library, in order to make it accessible from
Java. Therefore, it implements the functions that the javah utility generated in terms
of native operations contained in communication device Java classes. The develop-
ment of this layer must take into account the design of the MPJ Express buffering
layer [27]. The use of this buffering layer incurs a copying overhead that can be
significant for large messages, and is considered a performance bottleneck for MPJ
Express [28], so the handling of this layer has to be implemented efficiently.

The core class of the buffering layer used for packing and unpacking data is
mpjbuf.Buffer. This class provides two storage options: static and dynamic. Im-
plementations of static storage use the interface mpjbuf.RawBuffer. It is possi-
ble to have alternative implementations of the static section depending on the actual
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Fig. 9 Primary buffering classes in mpjbuf

raw storage medium. In addition, it also contains an attribute of type byte[] that
represents the dynamic section of the message. Figure 9 shows two implementations
of the mpjbuf.RawBuffer interface. The first, mpjbuf.NIOBuffer is an im-
plementation based on ByteBuffers. The second, mpjbuf.NativeBuffer is
an implementation for the native MPI device, which allocates memory in the native
C code. Figure 9 shows the primary buffering classes in the mpjbuf API.

Regarding mpjbuf.Buffer class design, it is necessary to handle at the JNI
layer a second call to the IBVX library when communicating a buffer with data in
the two sections (static and dynamic). To support this operation efficiently, the first 4
bytes of the static buffer indicate the size of the dynamic part of the buffer. Thus, the
overhead of this protocol in terms of buffering space, returned by getSendOver-
head and getRecvOverhead methods, is 4 bytes. These methods, implemented
for every MPJ Express communication device, are used to express the extra space
needed in the static buffer to implement the buffering layer support, and they are
profusely used when handling the buffer contents.

5 Performance evaluation

This section presents a performance evaluation of the developed communication de-
vice ibvdev, compared to native MPI libraries (MVAPICH and OpenMPI) and
the MPJ Express communications devices niodev over InfiniBand (using IPoIB)
and smpdev for shared memory communication. This evaluation consists of a mi-
crobenchmarking of point-to-point data transfers (Sect. 5.2) and collective commu-
nications (Sect. 5.3), as well as an analysis of the impact on the overall performance
of the use of the developed library on several representative MPJ codes (Sect. 5.4).

5.1 Experimental configuration

The evaluation of ibvdev has been carried out in a cluster which consists of 8 nodes,
each of them with 8 GB of RAM and 2 Intel Xeon E5520 quad-core Nehalem pro-
cessors. Although each node has 8 cores, the HyperThreading (HT) is enabled so it is
possible to run 16 processes per node concurrently. The interconnection networks are
InfiniBand (16 Gbps of maximum theoretical bandwidth), with OFED driver 1.5, and
Gigabit Ethernet (1 Gbps). The OS is Linux CentOS 5.3 with kernel 2.6.18 and the
JVM is Sun JDK 1.6.0_13. The evaluated MPJ implementation is MPJ Express [29]
version 0.36 (labeled MPJE in graphs) and the evaluated MPI implementations are
MVAPICH [25] v1.2.0 and OpenMPI [24] v1.3.3. The PSL (Protocol Switch Limit)
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MPJ Express attribute, the threshold between eager and rendezvous send protocols,
has been set to 128 KB message size for all the benchmarks. F-MPJ and MPJ/Ibis
results are not shown for clarity purposes, apart from the fact that ibvdev is only
integrated in MPJ Express. However, as they are sockets-based implementations, their
performance is similar to niodev results.

5.2 Point-to-point micro-benchmarking

In order to micro-benchmark MPJ point-to-point and collectives primitives perfor-
mance our own micro-benchmark suite [30], similar to Intel MPI Benchmarks used
for MPI libraries, has been used due to the lack of suitable micro-benchmarks for MPJ
evaluation. Here, the results shown are the half of the round-trip time of a pingpong
test or its corresponding bandwidth. The transferred data are byte arrays, avoiding the
serialization overhead that would distort the analysis of the results.

Figures 10 and 11 show point-to-point latencies (for short messages) and band-
widths (for long messages) on InfiniBand and shared memory, respectively. The
ibvdev middleware obtains significant point-to-point performance benefits, thus
obtaining 11 µs start-up latency and up to 7.2 Gbps bandwidth. The threshold be-
tween eager and rendezvous send protocols can be observed in the bandwidth graph
at 128 KB, which confirms the efficiency of the implementation of the zero-copy ren-
dezvous protocol with RDMA Write for ibvdev. These results outperform signifi-
cantly niodev over InfiniBand, limited to 65 µs start-up latency and below 3 Gbps
bandwidth.

Compared to native MPI libraries, ibvdev obtains a similar bandwidth than
MVAPICH (7 Gbps) in this testbed, surpassing it even at several points (e.g., 32 KB,
256 KB, and 512 KB message sizes). Nevertheless, OpenMPI shows the best perfor-
mance from 32 KB message size, obtaining up to 9.2 Gbps bandwidth. As for latency,
ibvdev obtains better results than MVAPICH (13 µs) and only slightly worse than
OpenMPI (10 µs), again the best performer.

Regarding shared memory communication performance, ibvdev obtains much
better start-up latency, 6 µs, than the multithreading smpdev middleware, which
achieves 17 µs, which means that ibvdev has implemented a highly efficient com-
munication protocol and that smpdev presents poor start-up latency, caused by an
excess of synchronizations. The native MPI libraries are again the best performers ob-
taining 0.5 µs an 1 µs for MVAPICH and OpenMPI, respectively, due to their efficient
communications support on shared memory. Regarding bandwidth, MPJ devices are
far from native MPI libraries, obtaining worse performance (15.3 Gbps and 22 Gbps
for ibvdev and smpdev, respectively).

5.3 Collective primitives micro-benchmarking

Figure 12 presents the aggregated bandwidth for representative MPJ data movement
operations (broadcast and allgather), and computational operations (reduce and allre-
duce double precision sum operations) with 128 processes. The aggregated band-
width metric has been selected as it takes into account the global amount of data
transferred. The niodev allgather results could not be taken due to flaws in the im-
plementation that hanged its operation. In addition to ibvdev, niodev, and MPI
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Fig. 10 Message-passing point-to-point performance on InfiniBand

Fig. 11 Message-passing point-to-point performance on shared memory

communications it has been evaluated the performance of multithreaded versions of
the MPJ collective operations, running only one process per node, and 16 threads
within each process. Thus, instead of running 128 processes on the cluster, only 8
processes are being used, taking advantage of intranode communications through
multithreading. This hybrid support of network and multithreading communications
is one of the main advantages of Java middleware for scalable and efficient commu-
nication on clusters of multicore processors.

The results confirm that ibvdev outperforms significantly niodev, achieving
up to one order of magnitude higher performance, although generally the perfor-
mance benefit is 2 or 3 times better. Moreover, both ibvdev and niodev take ad-
vantage of the multithreaded collectives. With respect to the MPI libraries, ibvdev
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Fig. 12 Message-passing
collective primitives
performance
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achieves better performance than MPI collectives for short messages, up to 16–
256 KB, thanks to the exploitation of multithreading in collectives implementation
and the use of a high PSL (128 KB), whereas MPI libraries use smaller PSL (8 KB).
However, for longer messages the MPI collectives achieve much better performance
due to the use of better collective algorithms, and the use of pipelined transfers.

5.4 Kernel/application performance analysis

The impact of ibvdev on the scalability of Java parallel codes has been analyzed us-
ing the NAS Parallel Benchmarks (NPB) implementation for MPJ (NPB-MPJ) [31],
selected as the NPB are probably the benchmarks most commonly used in the evalu-
ation of languages, libraries, and middleware for HPC. In fact, there are implementa-
tions of the NPB for MPI, OpenMP, and hybrid MPI/OpenMP.

Four representative NPB codes have been evaluated: CG (Conjugate Gradient),
FT (Fourier Transform), IS (Integer Sort), and MG (Multi-Grid). Moreover, the jGad-
get [32] cosmology simulation application has also been analyzed. These MPJ codes
have been selected as they show very poor scalability with MPJ Express over Infini-
Band. Hence, these are target codes for the evaluation of the impact on performance
of the use of ibvdev in MPJ Express. The results have been obtained using up to 64
processes instead of 128, due to memory constraints on the cluster.

Figure 13 shows the NPB-MPJ CG, IS, FT, and MG results, respectively, for the
Class C workload in terms of MOPS (Millions of Operations Per Second) (left) and
its corresponding scalability, in terms of speedup (right). For CG kernel, ibvdev
doubles the performance of the niodev device over InfiniBand, with almost 9000
MOPS compared to less than 4000 MOPS on 64 processes. With respect to IS ker-
nel, the results for niodev over InfiniBand show a significant slowdown with 64
processes, not taking advantage of the use of 64 processes, while ibvdev keeps on
scaling and gets up to 650 MOPS, significantly outperforming the niodev results.
Regarding FT, ibvdev also doubles the performance of the niodev device over In-
finiBand, with around 17000 MOPS compared to less than 8000 MOPS. Finally, the
impact of ibvdev on MG is smaller than for the remaining codes as this NPB is less
communication intensive, as obtains relatively good speedups, even with niodev
(speedup of 30 with 64 processes).

The performance comparison of ibvdev against MPI libraries has two different
analyses, depending on the metric used. If we take into account the MOPS achieved,
MPI benchmarks obtain always the best performance, around a 50% higher than
ibvdev results. The poorer performance of NPB-MPJ can be attributed to the lower
performance of the JVM compared to native compilers. However, if we have a look at
the speedups, ibvdev outperforms MPI for FT and MG, while obtains slightly lower
scalability for CG and IS, which suggests that ibvdev implements a highly efficient
communication support, even comparable to MPI libraries, and that the use of effi-
cient communication libraries can bridge the gap between Java and natively compiled
languages provided that an efficient communication support is made available.

The jGadget application is the MPJ implementation of Gadget [33], a popular cos-
mology simulation code initially implemented in C and parallelized using MPI that
is used to study a large variety of problems like colliding and merging galaxies or the
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Fig. 13 Performance and scalability of NPB-MPI/MPJ codes

formation of large-scale structures. This application has been selected for the perfor-
mance evaluation of ibvdev, measuring its performance using up to 64 processes
instead of 128, due to memory constraints on the cluster (each Java process is using
its own JVM).

Figure 14 presents the performance results of jGadget running a two million par-
ticles cluster formation simulation. As jGadget is a communication-intensive ap-
plication, with important collective operations overhead, only modest speedups are
obtained. Here, ibvdev can take advantage of the use of 64 processes (speedup
above 22), whereas niodev over IPoIB remains with a speedup of 16. Regarding
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Fig. 14 Scalability of MPI/MPJ
Gadget

MPI results, OpenMPI and MVAPICH achieve around 45% higher speedup than
ibvdev on 64 processes, which suggests that this middleware is bridging the gap
between Java and natively compiled applications in HPC.

6 Conclusions

This paper has presented ibvdev, a scalable and efficient low-level Java message-
passing device for communication on InfiniBand systems. The increase in the number
of cores per system demands languages with built-in multithreading and networking
support, such as Java, as well as scalable and efficient communication middleware
that can take advantage of multicore systems. The developed device transparently
provides Java message-passing applications with efficient performance on InfiniBand
thanks to its direct support on IBV and the efficient and scalable implementation of a
lightweight communication protocol which is able to take advantage of RDMA over
InfiniBand.

The performance evaluation of ibvdev on an InfiniBand multicore cluster has
shown that this middleware obtains start-up latencies and bandwidths similar to
MPI performance results, obtaining in fact up to 85% start-up latency reduction and
twice the bandwidth compared to previous Java middleware on InfiniBand. Addi-
tionally, the impact of ibvdev on message-passing collective operations is signif-
icant, achieving up to one order of magnitude performance increases compared to
previous Java solutions, especially when taking advantage of shared memory intra-
process (multithreading) communication. The analysis of the impact of the use of
ibvdev on MPJ applications shows a significant performance increase compared to
sockets-based middleware (niodev), which helps to bridge the gap between Java
and natively compiled codes in HPC. To sum up, the efficiency of this middleware,
which is even competitive with MPI point-to-point transfers, increments the scala-
bility of communications intensive Java applications, especially in combination with
the native multithreading support of Java.
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Abstract The performance and scalability of communica-
tions are key for high performance computing (HPC) appli-
cations in the current multi-core era. Despite the signifi-
cant benefits (e.g., productivity, portability, multithreading)
of Java for parallel programming, its poor communications
support has hindered its adoption in the HPC community.
This paper presents FastMPJ, an efficient message-passing
in Java (MPJ) library, boosting Java for HPC by: (1) provid-
ing high-performance shared memory communications using
Java threads; (2) taking full advantage of high-speed clus-
ter networks (e.g., InfiniBand) to provide low-latency and
high bandwidth communications; (3) including a scalable
collective library with topology aware primitives, automat-
ically selected at runtime; (4) avoiding Java data buffering
overheads through zero-copy protocols; and (5) implement-
ing the most widely extended MPI-like Java bindings for a
highly productive development. The comprehensive perfor-
mance evaluation on representative testbeds (InfiniBand, 10
Gigabit Ethernet, Myrinet, and shared memory systems) has
shown that FastMPJ communication primitives rival native
MPI implementations, significantly improving the efficiency
and scalability of Java HPC parallel applications.

R. R. Expósito (B) · S. Ramos · G. L. Taboada · J. Touriño · R. Doallo
Computer Architecture Group, Department of Electronics and Systems,
University of A Coruña, La Coruña, Spain
e-mail: rreye@udc.es

S. Ramos
e-mail: sramos@udc.es

G. L. Taboada
e-mail: taboada@udc.es

J. Touriño
e-mail: juan@udc.es

R. Doallo
e-mail: doallo@udc.es

Keywords High performance computing (HPC) ·
Parallel computing · Message-Passing in Java (MPJ) ·
Communication middleware · High-speed networks ·
Performance evaluation

1 Introduction

Java is currently among the preferred programming lan-
guages in web-based and distributed computing environ-
ments, and is an attractive option for high performance com-
puting (HPC) [1]. Java provides some interesting character-
istics of special benefit for parallel programming: built-in
multithreading and networking support in the core of the
language, in addition to its other traditional advantages for
general programming such as object orientation, automatic
memory management, portability, easy-to-learn properties,
an extensive API and a wide community of developers.

Although Java was severely criticized for its poor compu-
tational performance in its beginnings [2], the performance
gap between Java and natively compiled languages (e.g.,
C/C++, Fortran) has been narrowing for the last years [3,1].
The Java Virtual Machine (JVM), which executes Java appli-
cations, is now equipped with just-in-time (JIT) compilers
that can obtain native performance from Java bytecode [4].
Nevertheless, the significant improvement in its computa-
tional performance is not enough to be a successful language
in the area of parallel computing, as the performance of the
communications is also essential to achieve high scalability
in Java for HPC, especially in the current multi-core era.

Message-passing interface (MPI) [5] is the most widely
used parallel programming paradigm and it is highly portable,
scalable and provides good performance. It is the pre-
ferred choice for writing parallel applications on distributed
memory systems such as multi-core clusters, currently the
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most popular system deployments thanks to their interest-
ing cost/performance ratio. Here, Java represents an attrac-
tive alternative to natively compiled languages tradition-
ally used in HPC, for the development of applications for
these systems as it provides built-in networking and multi-
threading support, key features for taking full advantage of
hybrid shared/distributed memory architectures. Thus, Java
can resort to threads in shared memory (intra-node) and to
its networking support for distributed memory (inter-node)
communications.

The increasing number of cores per system demands effi-
cient and scalable message-passing communication middle-
ware in order to meet the ever growing computational power
needs. Moreover, current system deployments are aggregat-
ing a significant number of cores through advanced high-
speed cluster networks such as InfiniBand (IB) [6], which
usually provide interesting features such as remote direct
memory access (RDMA) support, increasing the complexity
of communication protocols. However, up to now message-
passing in Java (MPJ) [7] implementations have been focused
on providing new functionalities, rather than concentrate
on developing efficient communications on high-speed net-
works and shared memory systems. This lack of efficient
communication support in Java, especially in the presence
of high-speed cluster networks, results in lower performance
than native MPI implementations. Thus, the adoption of Java
as a mainstream language on these systems heavily depends
on the availability of efficient communication middleware in
order to benefit from its appealing features at a reasonable
overhead.

This paper presents FastMPJ, our efficient and scal-
able MPJ implementation for parallel computing, which
addresses all these issues. Thus, FastMPJ provides high-
performance shared memory communications, efficient sup-
port of high-speed networks, as well as a scalable collective
library which includes topology aware primitives. The com-
prehensive performance evaluation has shown that FastMPJ
is competitive with native MPI libraries, which increases
the scalability of communication-intensive Java HPC par-
allel applications.

The structure of this paper is as follows: Sect. 2 presents
background information about MPJ. Section 3 introduces
the related work. Section 4 describes the overall design of
FastMPJ. Section 5 details some aspects of the FastMPJ
implementation, including point-to-point and collective com-
munications support. Comprehensive benchmarking results
from FastMPJ evaluation are shown in Sect. 6. Finally, Sect.
7 summarizes our concluding remarks.

2 Message-passing in Java

Soon after the introduction of Java, there have been sev-
eral implementations of MPJ libraries. However, the MPI

standard [5] defines bindings for C, C++ and Fortran pro-
gramming languages. Therefore, as there are no bindings
for the Java language in the standard, most of the initial MPJ
projects have developed their own MPI-like bindings. In con-
trast, most recent projects generally adhere to one of the two
major MPI-like Java bindings which have been proposed by
the community: (1) the mpiJava 1.2 API [8], the most widely
extended, which supports an MPI C++-like interface for the
MPI 1.1 subset, and (2) the JGF MPJ API [7], which is the
proposal of the Java Grande Forum (JGF) [9].

MPJ libraries are usually implemented in three ways:
(1) using some high-level Java messaging API like Remote
Method Invocation (RMI) to implement a “pure” Java
message-passing system (i.e., 100 % Java code); (2) wrap-
ping an underlying native MPI library through the Java Native
Interface (JNI); or (3) following a hybrid layered design,
which includes a pluggable architecture based on an idea of
low-level communication devices. Thus, hybrid libraries pro-
vide Java-based implementations of the high-level features
of MPI at the top levels of the software. Hence, they can
offer a “pure” Java approach through the use of Java-based
communication devices (e.g., via Java sockets), and addi-
tionally a higher performance approach through low-level
native communication devices that use JNI to take advantage
of specialized HPC hardware. Although most of the Java
communication middleware is based on RMI, MPJ libraries
looking for efficient communication have followed the latter
two approaches.

Generally, applications implemented on top of Java mes-
saging systems can have different requirements. Thus, for
some applications the main concern could be portability,
while for others could be high-performance communications.
Each of the above solutions fit with specific situations, but can
present associated trade-offs. On the one hand, the use of RMI
ensures portability, but it may not provide an efficient solu-
tion, especially in the presence of high-speed HPC hardware.
On the other hand, the wrapper-based approach presents
some inherent portability and instability issues derived from
the native code, as these implementations have to wrap all the
methods of the MPJ API. Moreover, the support of multiple
heterogeneous runtime platforms, MPI libraries and JVMs
entails a significant maintenance effort, although usually in
exchange for higher performance than RMI. However, the
hybrid approach minimizes the JNI code to the bare minimum
using low-level pluggable communication devices, being the
only solution that can ensure both requirements. Neverthe-
less, most of the MPJ projects that conform with this hybrid
design rely on Java sockets and inefficient TCP/IP emula-
tions to support current HPC communication hardware (e.g.,
InfiniBand). Although the use of Java sockets usually outper-
forms RMI-based middleware, it requires an important pro-
gramming effort. Furthermore, the use of the sockets API in
a communication device still represents an important source
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of overhead and lack of scalability in Java communications,
especially in the presence of high-speed networks [10].

3 Related work

Multiple MPI native implementations have been developed,
improved and maintained over the last 15 years intended for
cluster, grid and emerging cloud computing environments.
Regarding MPJ libraries, there have been several efforts to
develop a Java message-passing system for HPC since its
introduction [1,11]. However, most of the developed projects
over the last decade were prototype implementations, without
maintenance. Currently, the most relevant ones in terms of
uptake by the HPC community are mpiJava, MPJ Express,
MPJ/Ibis, and FastMPJ, next presented.

mpiJava [12] is a Java message-passing system that con-
sists of a collection of wrapper classes that use JNI to interact
with an underlying native MPI library. This project imple-
ments the mpiJava 1.2 API and has been perhaps the most
successful Java HPC messaging system, in terms of uptake
by the community. However, mpiJava can incur a noticeable
overhead, especially for large messages, and also presents
some portability and instability issues. Thus, it only supports
some native MPI implementations, as wrapping a wide num-
ber of methods and heterogeneous runtime platforms entails
a significant maintenance effort, as mentioned before.

MPJ Express [13] is one of the projects that conforms
with the aforementioned hybrid approach. This library imple-
ments the mpiJava 1.2 API and presents a modular design
which includes a pluggable architecture of communication
devices that allows to combine the portability of the “pure”
Java New I/O (NIO) communications package together with
the native Myrinet support through JNI. Additionally, it pro-
vides shared memory support using Java threads [14]. How-
ever, this project poses several important issues: (1) its over-
all design relies on a buffering layer [15] that significantly
limits performance and scalability of communications; (2) it
lacks efficient support for InfiniBand (IB), the most widely
adopted networking technology in current HPC clusters; (3)
it includes poorly scalable collective algorithms; and (4) its
bootstrapping mechanism typically exhibits some issues in
specific environments.

MPJ/Ibis [16] is another hybrid project that, in this case,
conforms with the JGF MPJ API. Actually, this library is
implemented on top of Ibis [17], a parallel and distrib-
uted Java computing framework. Thus, it can use either
“pure” Java communications, based on Java sockets, or native
communications on Myrinet. However, the Myrinet support
is based on the GM library, an out-of-date low-level API
which has been superseded by the Myrinet Express (MX)
library [18]. Moreover, MPJ/Ibis also lacks efficient IB sup-
port, and additionally, does not provide efficient shared mem-
ory and collective communications. Furthermore, MPJ/Ibis

does not fully implement some high-level features of MPI
(e.g., inter-communicators and virtual topologies).

FastMPJ is our Java message-passing implementation of
the mpiJava 1.2 API, which also presents a hybrid design
approach. The initial prototype implementation was pre-
sented as a proof of concept in [19]. This prototype only
implemented a small subset of the communications-related
API. Furthermore, it only included one communication
device implemented on top of Java IO sockets, which severely
limited its overall scalability and performance. Although the
use of high-performance socket implementations, such as
the Java Fast Sockets (JFS) project [20], can improve per-
formance on shared memory and high-speed networks, the
use of sockets in a communication device can not provide an
efficient and scalable solution, as mentioned in the previous
section.

Currently, FastMPJ has overcome these limitations by: (1)
implementing the remaining of the mpiJava 1.2 API (e.g.,
virtual topologies, inter-communicators and groups oper-
ations are currently available), except part of the derived
data types (e.g., Vector, Struct) since Java can provide any
user-defined structure natively, by using objects, which fits
more straightforwardly into an object-oriented programming
model; (2) providing high-performance shared memory sup-
port; (3) efficiently supporting high-speed cluster networks,
especially IB; and (4) implementing a user friendly and
scalable bootstrapping mechanism to start the Java paral-
lel processes. The overcoming of the previous limitations
of FastMPJ, together with the implementation of an effi-
cient communications support which provides similar per-
formance to native MPI libraries, are the main contributions
of this paper.

Additionally, some previous works have already evaluated
the aforementioned MPJ libraries [19,21]. As main conclu-
sions, these studies have assessed that FastMPJ is the best
performer among them, overcoming some of the previous
performance limitations such as the high buffering penalty
and the JNI overhead. Moreover, most of the MPJ projects,
especially mpiJava and MPJ/Ibis, are currently outdated and
without active development. Due to these drawbacks, mainly
low performance and lack of up-to-date development, the
performance evaluation carried out in Sect. 6 only considers
the comparison of FastMPJ against native MPI libraries, for
clarity purposes.

Finally, there have also been some additional works that
focused on other important aspects of Java to be a success-
ful option in HPC, such as providing high-performance file
I/O [22,23].

4 FastMPJ design

Figure 1 presents an overview of the FastMPJ layered design
and the different levels of the software. The MPJ commu-
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Fig. 1 Overview of the
FastMPJ layered design
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nications API, which includes both collective and point-to-
point primitives, is implemented on top of the xxdev device
layer. The device layer has been designed as a simple and
pluggable architecture of low-level communication devices.
Moreover, this layer supports the direct communication of
any serializable Java object without data buffering, whereas
xdev [24], the API that xxdev is extending, does not sup-
port this direct communication. Thus, the xdev API, which
is used internally by the MPJ Express library, relies on a
buffering layer [15] which is only able to transfer the cus-
tomxdev buffer objects. This fact adds a noticeable copying
overhead [1], especially for large messages, which prevents
MPJ Express to implement zero-copy protocols. The avoid-
ance of this intermediate data buffering overhead on the criti-
cal path of communications is the main benefit of the xxdev
device layer with respect to its predecessor. Thus, this fact
allows xxdev communication devices to implement zero-
copy protocols when communicating primitive data types
using, for instance, RDMA-capable high-speed cluster net-
works. Additional benefits of this API are its flexibility, porta-
bility and modularity thanks to its encapsulated design.

In more detail, the xxdev layer provides a Java low-
level message-passing API (see Listing 1) with basic opera-
tions such as point-to-point blocking (send and recv) and
non-blocking (isend and irecv) communication meth-
ods. Moreover, it also includes synchronous communica-
tions (ssend and issend) and functions to check incom-
ing messages without actually receiving them (probe and
iprobe). Thus, an xxdev device is similar to an MPI
communicator, but with reduced functionality. This sim-
ple design eases significantly the development of xxdev
communications devices in order to provide custom sup-
port of high-speed cluster networks (e.g., High-speed Eth-
ernet and IB) and shared memory systems, while lever-
aging other infrastructure provided by the upper levels of
FastMPJ, such as the runtime system and the layer that pro-
vides the full MPJ semantics (e.g., virtual topologies, inter-

communicators). With this modular design FastMPJ enables
its incremental development and provides the capability to
update and swap layers in or out as required. Thus, end users
can opt at runtime to use a high-performance native network
device, or choose a “pure” Java device, based either on sock-
ets or threads, for portability.

5 FastMPJ implementation

FastMPJ communication support relies on the efficient
implementation of low-level xxdev devices on top of spe-
cific native libraries and HPC communication hardware.
Currently, FastMPJ includes three communication devices
that support high-speed cluster networks: (1) mxdev, for
Myrinet and High-speed Ethernet; (2) psmdev, for Intel/Q-
Logic InfiniBand adapters; and (3) ibvdev, for InfiniBand
adapters in general terms. These devices are implemented on
top of MX/Open-MX, InfiniPath PSM and IB Verbs (IBV)
native libraries, respectively (see Fig. 1). Although these
underlying native libraries have been initially designed for
inter-node network-based communication, in the particular
case of MX/Open-MX and PSM also provide efficient intra-
node shared memory communication, usually implemented
through some Inter-Process Communication (IPC) mecha-
nism. Thus, this fact allows FastMPJ to take full advantage
of hybrid shared/distributed memory architectures, such as
clusters of multi-core nodes, except for the ibvdev device,
as IBV does not support shared memory. Additionally, the
TCP/IP stack (niodev and iodev) and high-performance
shared memory systems (smdev) are also supported through
“pure” Java communication devices, which ensures portabil-
ity.

The user-level methods of the MPJ API related to the col-
lective and point-to-point communication layers are imple-
mented on top of these xxdev communication devices. This
may involve some native code depending on the underly-
ing device being used (e.g., ibvdev and psmdev for IB
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public abstract class Device
{

public static Device newInstance(String device ) ;
abstract ProcessID[] in i t (String [] args ) ;
abstract ProcessID id ( ) ;
abstract void finish ( ) ;

abstract Request isend(Object msg,PID dst , int tag , int context ) ;
abstract Request irecv (Object msg,PID src , int tag , int context , Status status ) ;
abstract void send(Object msg,PID dst , int tag , int context ) ;
abstract Status recv(Objecct msg,PID src , int tag , int context ) ;
abstract Request issend(Object msg,PID dst , int tag , int context ) ;
abstract void ssend(Object msg,PID src , int tag , int context ) ;

abstract Status iprobe(PID src , int tag , int context ) ;
abstract Status probe(PID src , int tag , int context ) ;

}

Listing 1 xxdev API

support). The rest of the high-level abstractions of the MPJ
API (e.g., virtual topologies, intra- and inter-communicators,
groups operations) is implemented in “pure” Java code (i.e.,
100 % Java). Hence, this implementation can ensure both
portability and/or high-performance requirements of Java
message-passing applications, while avoiding some of the
associated problems of the wrapper-based approach through
JNI, as mentioned in Sect. 2 (e.g., instability and portability
issues, high maintenance effort). These issues are derived
from the amount of native code that is involved using a
wrapper-based implementation (note that all the methods
of the MPJ API have to be wrapped). However, FastMPJ
can minimize to the bare minimum the amount of JNI code
needed to support a specific network device, as the xxdev
devices only have to implement a very small number of meth-
ods (see Listing 1). In the next sections, the implementation
of the various MPI features in FastMPJ will be discussed.

5.1 High-speed networks support

FastMPJ provides efficient support for high-speed cluster
networks through mxdev, ibvdev and psmdev commu-
nications devices, next presented.

5.1.1 Myrinet/high-speed Ethernet

The mxdev device implements the xxdevAPI on top of the
Myrinet Express (MX) library [18], which runs natively on
Myrinet networks. More recently, the MX API has also been
supported in high-speed Ethernet networks (10/40 Gigabit
Ethernet), both on Myricom specialized NICs and on any
generic Ethernet hardware through the Open-MX [25] open-
source project. Thus, the TCP/IP stack can be replaced by
mxdev transfers over Ethernet networks providing higher
performance than using standard Java sockets. Moreover, the

mxdev device can also take advantage of the efficient intra-
node shared memory communication protocol implemented
by MX/Open-MX [26] to improve the performance of net-
worked applications in multi-core systems.

In MX messages are exchanged among endpoints, which
are software representations of Myrinet/Ethernet NICs.
Every message operation, either sending or receiving, starts
with a non-blocking communication request (e.g., mx_isend),
which is queued by MX, returning the control to mxdev.
Then, the mxdev device is responsible for checking the
successful completion of the communication operation. The
message matching mechanism at the receiver side is based
on a 64-bit matching field, specified by both communica-
tion peers, in order to deliver incoming messages to the right
receive requests.

The MX API is only available in C, thus themxdev device
implements xxdev methods calling MX functions through
JNI. Moreover, as MX already provides a low-level messag-
ing API which closely matches the xxdev layer, mxdev
deals with the Java objects marshaling and communication,
the JNI transfers and the MX parameters handling. There-
fore, FastMPJ with mxdev provides the user with a higher
level messaging API than MX, also freeing Java developers
from the implementation of JNI calls, which benefits pro-
grammability without trading off much performance.

5.1.2 InfiniBand

The native and efficient InfiniBand (IB) support is also
included in FastMPJ with ibvdev and psmdev devices.
On the one hand, the ibvdev device directly implements its
own communication protocols through JNI on top of the IBV
API, which is part of the OpenFabrics Enterprise Distribution
(OFED [27]), an open-source software for RDMA and kernel
bypass applications. The native support of the IBV API in
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Java is somewhat restricted so far to native MPI libraries, as
previous MPJ libraries relied on the TCP/IP emulation over
IB protocol (IPoIB) [28], which provides significantly poorer
performance, especially for short messages [10].

A previous implementation of the ibvdev device was
firstly integrated into the MPJ Express library [29] as a proof
of concept, but only for internal testing purposes as it was
never part of the official release. Although it was able to pro-
vide higher performance than using the IPoIB protocol, the
buffering layer in MPJ Express significantly limited its per-
formance and scalability. Therefore, the ibvdev device had
to be reimplemented to conform with the xxdev API and
then adapted for its integration into the FastMPJ library in
order to improve its performance. Thus, FastMPJ achieves
start-up latencies and bandwidths similar to native MPI per-
formance results on IB networks thanks to the efficient, light-
weight and scalable communication protocol implemented in
ibvdev, which includes a zero-copy mechanism for large
messages using the RDMA-write operation.

On the other hand, another original contribution of this
paper is the introduction of the psmdev device, which pro-
vides for the first time in Java native support for the Infini-
Path family of Intel/QLogic IB adapters over the Perfor-
mance Scaled Messaging (PSM) interface. PSM is a low-
level user-space messaging library which implements an
intra-node shared memory and inter-node communication
protocol, which are completely transparent to the applica-
tion.

In order to establish the initial connections between end-
points, the psmdev device has to rely on an out-of-band
mechanism, which has been implemented with TCP sock-
ets, to distribute the endpoint identifiers. After initializing
endpoints, a Matched Queue (MQ) interface is created and
can be used to send and receive messages. The MQ interface
semantics are consistent with those defined by the MPI 1.2
standard for message-passing between two processes. Thus,
incoming messages are stored according to their tags to pre-
posted receive buffers. The PSM API is only available in C;
thus, following a similar approach to mxdev, the psmdev
device also implements xxdev methods calling PSM func-
tions through JNI dealing with the Java objects marshaling
and communication, the JNI transfers and the PSM parame-
ters handling. Although the Intel/QLogic adapters are also
supported by the ibvdev device through the IBV API,
psmdev usually achieves significantly higher performance
than using ibvdev, as PSM is specifically designed and
highly tuned by Intel/QLogic for its own IB adapters.

5.2 Socket-based communications devices

Initially, FastMPJ included only one communication device
implemented on top of Java IO sockets (iodev), which
turned out to be the limiting factor in performance and scala-

bility, especially for non-blocking communication. This fact
has motivated the implementation of a new communica-
tion device based on Java NIO sockets (niodev), which
include more scalable non-blocking communication support
by providing select() like functionality. Additionally, a
new socket-based device (sctpdev) implemented on top
of Stream Control Transmission Protocol (SCTP) sockets is
currently work in progress.

Nevertheless, these “pure” Java communication devices
are only provided for portability reasons, as they rely on the
ubiquitous TCP/IP stack, which introduces high communi-
cation overhead and limited scalability for communication-
intensive HPC applications.

5.3 Shared memory communications

FastMPJ includes a “pure” Java thread-based communica-
tion device (smdev) that efficiently supports shared memory
intra-node communication [30], thus being able to exploit the
underlying multi-core architecture replacing inter-process
and network-based communications by Java threads and
shared memory intra-process transfers.

In this thread-based device, there is a single JVM instance
and each MPJ rank in the parallel application (i.e., each
Java process in the case of using a network-based com-
munication device) is represented by a Java thread. Con-
sequently, message-passing communication between these
threads is achieved using shared data structures. Therefore,
the FastMPJ runtime must create a single JVM with as many
Java threads as the number of ranks exist in the global com-
municator (i.e., MPI.COMM_WORLD), which depends on
an input parameter that is specified by the user when starting
the MPJ application.

An obvious advantage of this approach, especially in the
context of Java, is that an application does not compromise
portability. Moreover, the use of a single JVM can take advan-
tage of lower memory consumption and garbage collection
overhead. Furthermore, while multithreading programming
allows to exploit shared memory intra-process transfers, it
usually increases the development complexity due to the
need for thread control and management, task scheduling,
synchronization, and maintenance of shared data structures.
Thus, using the smdev device, the developer does not have
to deal with the issues of the multithreading programming,
as smdev offers a high level of abstraction that supports
handling threads as message-passing processes, providing
similar or even higher performance than native MPI imple-
mentations.

5.3.1 Class loading

The use of threads in the smdev device requires the isolation
of the namespace for each thread, configuring a distributed
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memory space in which they can exchange messages through
shared memory references. While processes from different
JVMs are completely independent entities, threads within a
JVM are instances of the same application class, sharing all
static variables. Thus, this device creates each running thread
with its custom class loader. Therefore, all the non-shared
classes within a thread can be directly isolated in its own
namespace in order to behave like independent processes.
Nevertheless, communication through shared memory trans-
fers requires the access to several shared classes within the
device. When the system loader does not find a class, the cus-
tom class loader is used, following the JVM class loader hier-
archy. This mechanism implies that the system class loader
loads every reachable class that, in consequence, is shared
by all threads. Thus, its classpath has to be bounded in such
a way that it only has access to shared packages that con-
tain the implementation of shared memory transfers among
threads. Consequently, communications are delegated to a
shared class which allocates and manages shared message
queues (a pair of queues per thread) in order to implement
the data transfers as regular data copies between threads, thus
providing a highly efficient zero-copy protocol.

Finally, the use of a pair of queues per thread enables
smdev to include fine-grained synchronizations, combining
busy waits and locks, thus reducing contention in the access
to the shared structures. As an example, MPJ Express shared
memory support [14] uses a global pair of queues with class
lock-based synchronization, which can result in a very inef-
ficient approach in applications that involve a high number
of threads.

5.4 Scalable collective communications

The MPI specification defines collective communication
operations as a convenience to application developers, which
can save significant time in the development of paral-
lel applications. FastMPJ provides a scalable and efficient
collective communication library for parallel computing
on multi-core architectures. This library includes topology
aware primitives which are implemented on top of point-to-
point communications, taking advantage of communications
overlapping and obtaining significant performance benefits
in collective-based communication-intensive MPJ applica-
tions. The library implements up to six algorithms per col-
lective primitive, whereas previous MPJ libraries are usually
restricted to one algorithm. Furthermore, the algorithms can
be selected automatically at runtime, depending on the num-
ber of cores and the message length involved in the collective
operation.

The collective algorithms present in the FastMPJ collec-
tive library can be classified in six types, namely Flat Tree
(FT) or linear, Minimum-Spanning Tree (MST), Binomial
Tree (BT), Four-ary Tree (FaT), Bucket (BKT) or cyclic,

and BiDirectional Exchange (BDE) or recursive doubling,
which have been extensively described in the literature [31].

5.5 Runtime system

Although the runtime system is not part of the MPI speci-
fication, it is an essential element which allows to execute
processes across various platforms. Thus, the FastMPJ run-
time system is in charge of starting the parallel Java processes
across multiple machines, supporting several OSs either
UNIX-based (e.g., GNU/Linux, MAC OS X) or Microsoft
Windows-based (XP/Vista/7/8). In addition, the runtime does
not assume a shared file system and it allows to run MPJ
applications using both class and JAR file formats.

This fully portable runtime system mainly consists of two
modules: (1) an fmpjd module (Java daemon listening on a
configurable TCP port) which executes on compute nodes
and listens for requests to start Java processes in a new JVM;
and (2) an fmpjrun module, client of the Java daemons.
In UNIX-based OSs, a set of Java daemons can be start-
ed/stopped over the network using SSH within the fmpjrun
application, as the OS is automatically detected by FastMPJ.
Moreover, the runtime system is also compatible with tradi-
tional job schedulers such as SGE/OGE, SLURM, LSF and
PBS. Additionally, other modules are provided to start, stop
and trace the status (running/not running) of the daemons.
However, on Windows platforms, the daemons either need
to be: (1) manually started, (2) configured to start automat-
ically on OS startup, or (3) installed as a native service, as
SSH utilities are not usually available in these platforms.

The FastMPJ runtime efficiently supports the handling of
a high number of machines and processes. For instance, a
1024-core “Hello World” MPJ program can be executed in
less than 35 s, including the time needed for starting the Java
daemons and the initialization of the parallel environment.
Figure 2 compares FastMPJ against MPICH-MX, which was
configured with the SLURM PMI process launcher, running
a “Hello World” example application on the MareNostrum
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Fig. 2 MPJ/MPI deployment and initialization
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testbed (see Table 1 in Sect. 6.1 for more details on this
testbed).

6 Performance evaluation

This section presents a comprehensive performance evalua-
tion of the FastMPJ library compared to representative native
MPI libraries: Open MPI [32], MVAPICH2 [33] and MPICH-
MX [34], from point-to-point and collective message-passing
primitives to the assessment of their impact on the scal-
ability of representative parallel codes, using the NASA
Advanced Supercomputing (NAS) Parallel Benchmarks suite
(NPB) [35,36]. The NPB parallel codes have been selected
as it is the benchmarking suite most commonly used in the
evaluation of languages, libraries and middleware for HPC.

As mentioned in Sect. 3, previous works [19,21] have
already characterized the performance of the other popular
MPJ implementations (mpiJava, MPJ/Ibis and MPJ Express)
against native MPI libraries, so for clarity purposes these
MPJ implementations have not been re-evaluated. In fact,
these libraries obtained poor performance, as shown in the
references, and they have not been updated since their last
evaluations.

6.1 Experimental configuration

Table 1 shows the main characteristics of the five repre-
sentative systems used in the performance evaluation. Both
FastMPJ and native MPI libraries have been configured with
the most efficient settings and communication device for each
testbed (e.g., using only the shared memory device in shared
memory systems).

Regarding distributed memory systems, the first testbed
(from now on IB-QDR) is a multi-core cluster [37] that con-
sists of 64 nodes, each of them with 24 GB of memory and
2 Intel Xeon quad-core Westmere-EP processors (hence 8
cores per node) interconnected via IB QDR (Mellanox-based
NICs). The performance results for the collective primitives
micro-benchmarking and the NPB kernels evaluation on this
system have been obtained using 8 processes per node (hence
512 cores in total). The second system (from now on IB-
DDR) is a multi-core cluster that consists of 16 nodes, each
of them with 16 GB of memory and 2 Intel Xeon quad-core
Nehalem-EP processors (hence 8 cores per node) intercon-
nected via IB DDR (QLogic-based NICs). Additionally, two
nodes have also one 10 Gigabit Ethernet (GbE) Intel NIC.
Performance results on this testbed have also been obtained
using 8 processes per node (hence 128 cores in total). The
third system is the MareNostrum supercomputer [38] (from
now on MN), which was ranked #465 in the TOP500 [39]
list (June 2012). This supercomputer consists of 2,560 nodes,
each of them with 8 GB of memory and 2 PowerPC dual- Ta
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core processors (hence 4 cores per node) interconnected via
Myrinet 2000. General user accounts on this supercomputer
are limited to use up to 1,024 cores. Thus, performance results
on this system have been obtained using 256 nodes and 4
processes per node (hence 1,024 cores in total).

Regarding shared memory systems, the Intel-SHM testbed
has 4 Intel Xeon ten-core Westmere-EX processors (hence
40 cores) and 512 GB of memory, whereas the AMD-SHM
testbed provides with 4 AMD Opteron twelve-core Magny-
Cours processors (hence 48 cores) and 128 GB of memory.
The NPB performance results on these systems have been
executed using 1, 2, 4, 8, 16 and 32 cores. Thus, the maximum
number of available cores in each shared memory system
could not be used, as the selected NBP kernels only work for
a number of cores which is a power of two.

The evaluation of message-passing communication prim-
itives (Sects. 6.2 and 6.3) has been carried out using a repre-
sentative micro-benchmarking suite, the Intel MPI Bench-
marks (IMB) [40], and our own MPJ counterpart, which
adheres to the IMB measurement methodology. The trans-
ferred data are byte arrays, avoiding the Java serialization
overhead that would distort the analysis of the results, in
order to present a fair comparison with MPI. In addition,
these benchmark suites have been used without cache inval-
idaton, as it is more representative of a real scenario, where
data to be transmitted is generally in cache.

Finally, the evaluation of representative message-passing
parallel codes (Sect. 6.4) has used the MPI and OpenMP
implementations of the NPB suite (NPB-MPI/NPB-OMP
version 3.3) together with its MPJ counterpart (NPB-
MPJ) [41]. Four representative NPB kernels have been eval-
uated: Conjugate Gradient (CG), Fourier Transform (FT),
Integer Sort (IS) and Multi-Grid (MG), selected as they
present medium to high communication intensiveness. The
performance of two different common scaling metrics has
been analyzed: (1) strong scaling (i.e., fix the problem size
and vary the number of cores); and (2) weak scaling (i.e.,
vary the problem size linearly with the number of cores).

6.2 Point-to-point micro-benchmarking

Figure 3 presents point-to-point performance results obtained
on IB (top graphs), 10 GbE and Myrinet (middle graphs),
and on shared memory systems (bottom graphs). The metric
shown is the half of the round-trip time of a pingpong test
for messages up to 1 KB (left part of the graphs), and the
bandwidth for messages larger than 1 KB (right part).

On the IB-QDR testbed (top left graph), FastMPJibvdev
device obtains 2.2 µs start-up latency, quite close to MPI
results (around 1.9 µs). Regarding bandwidth results,
ibvdev bandwidth is slightly lower than the MPI perfor-
mance up to 64-KB messages. From this point, ibvdev
changes to an RDMA Write-based zero-copy protocol which

is able to obtain similar bandwidths (up to 22.5 Gbps) to MPI
libraries for large messages. On the IB-DDR testbed (top
right graph), the psmdev device and Open MPI obtain the
lowest start-up latency, around 1.9 µs, slightly outperforming
MVAPICH2 (2 µs). The observed bandwidths are identical
up to 128 KB, when MVAPICH2 gets slightly better results
than Open MPI and FastMPJ in the message range (256 KB–2
MB). For messages≥2 MB,psmdevobtains up to 11.5 Gbps
whereas MPI libraries only achieve a 6 % more bandwidth,
around 12.2 Gbps. These results confirm that ibvdev and
psmdev devices implement highly efficient and lightweight
communication protocols, which allows Java applications to
take full advantage of the low-latency and high throughput
provided by IB.

Regarding the 10 GbE testbed (middle left graph),mxdev
gets start-up latencies as low as 15.6 µs, quite competitive
compared to MPI libraries which obtain 11.2 and 11.5 µs for
MVAPICH2 and Open MPI, respectively. Fortunately, this
small gap disappears from 1 KB, when mxdev and MVA-
PICH2 achieve identical bandwidths, whereas Open MPI
results are the worst up to 2 MB. From this point, the network
turns out to be the main performance bottleneck, as the maxi-
mum bandwidth achieved is around 9.4 Gbps for all evaluated
libraries, quite close to the 10 Gbps limit for this networking
technology. Here, the avoidance of the TCP/IP protocol is
key for FastMPJ to obtain competitive results compared to
MPI, especially for short messages, as the use of a socket-
based device (iodev or niodev) would incur a significant
overhead due to the poor performance of Java sockets. The
results on the MN supercomputer over a Myrinet network
(middle right graph) show that mxdev start-up latency gets
even closer to MPI results, obtaining 5.2 and 4.1 µs, respec-
tively. Their observed bandwidths are quite similar from 1
KB, suffering the 2 Gbps limit for this networking technol-
ogy.

Regarding shared memory systems, the performance
results of the smdev device on the Intel-SHM testbed
(bottom left graph) show even below 1 µs start-up laten-
cies, but approximately twice the latency obtained by MPI
libraries (around 0.42–0.48 µs). However, for message sizes
>2 KB, the zero-copy thread-based intra-process protocol
implemented by smdev, which allows direct data trans-
fers between Java threads, clearly outperforms MPI libraries.
Here, MPI libraries usually implement one-copy protocols
since data transfers are IPCs through an intermediate shared
memory structure, using IPC resources, which requires at
least two data transfers. However, the direct communication
in smdev does not show significant benefits in the latency of
very short messages, as MPI libraries achieve lower start-up
latencies for message sizes <2 KB. Thus, the thread synchro-
nization overhead for smdev, which combines busy waits
and locks, seems to be higher than the process synchroniza-
tion overhead for MPI libraries, which usually use only lock-
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Fig. 3 Point-to-point performance on InfiniBand QDR and DDR, 10 Gigabit Ethernet, Myrinet and shared memory

free algorithms. In addition, the high start-up latency over-
head imposed by the JVM in the initialization of the copy
is higher than the cost of the IPC extra copy performed by
MPI when transferring short messages. As the overhead per
byte transferred in MPI, which uses two data transfers, is
higher than the combined overhead for smdev (thread syn-
chronization plus JVM start-up latency), the consequence is
that up to a certain threshold point (message size <2 KB),
short messages have less overhead for MPI, whereas FastMPJ
is the best performer for medium and large messages due
to the avoidance of extra copies in smdev. Moreover, the
smdev device obtains the highest performance (up to 71.2
Gbps) especially when messages are around the L1 cache
size (32 KB). When the message does not fit in the L2 cache

(256 KB), the performance gap between smdev and MPI
reduces, which evidences the impact of the memory hierar-
chy on shared memory performance, as no cache invalidation
is performed in this test, as mentioned before.

The performance results on the AMD-SHM testbed (bot-
tom right graph) show a similar pattern. Thus, MPI obtains
lower start-up latencies than smdev, 0.88 and 1.53 µs,
respectively, but relatively high compared to the Intel-
SHM ones owing to the lower computational power of the
AMD processor core. Regarding large message performance,
smdev again clearly outperforms MPI libraries, obtaining up
to 41.6 Gbps whereas MPI does not even reach 10 Gbps. This
poor performance is explained by the low memory access
throughput and the high copy penalty in this system. In addi-
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tion, the peak bandwidth for smdev now is obtained for 256
KB (the L2 cache size in this system), not taking advantage
of the messages fitting in the L1 cache (64 KB), while in the
Intel testbed the peak was for 32 KB (the L1 cache size for
this system).

The observed point-to-point communication efficiency of
xxdev devices allows FastMPJ to provide low-latency and
high-bandwidth communications for MPJ parallel applica-
tions, both on high-speed networks and high-performance
shared memory systems. Furthermore, the obtained results
are quite close to native MPI results, even outperforming
them in some scenarios (e.g., large message performance in
shared memory).

6.3 Collective primitives micro-benchmarking

Figure 4 presents the aggregated bandwidth for the broad-
cast primitive, a representative data movement operation,
on the IB-QDR, IB-DDR, MN and AMD-SHM testbeds
using all the available cores in each system. The aggregated
bandwidth metric has been selected as it takes into account
the global amount of data transferred (i.e., message si ze ∗
number of processes).

On the IB-QDR testbed (top left graph), the ibvdev
device obtains higher bandwidth than MVAPICH2 in the
message range (2–256 KB). However, Open MPI is the best
performer, especially from 256 KB on. From this point, Open

MPI dramatically increases its performance, which suggests
that it switchs to a highly efficient algorithm for large mes-
sages (the same behaviour has been observed in the remaining
scenarios where Open MPI is also evaluated). The IB-DDR
testbed results (top right graph) show thatpsmdev is the best
performer up to 64-KB messages, from then MVAPICH2
performs slightly better up to 256 KB, but then Open MPI
becomes again the best large message performer. Regard-
ing the MN supercomputer (bottom left graph), mxdev
results are worse than the MPICH-MX ones up to 256 KB,
but it shows quite competitive performance and scalability
from this point on. Finally, on the AMD-SHM testbed (bot-
tom right graph),smdev generally outperforms MVAPICH2
from 2-KB messages and shows results quite close to Open
MPI up to 256 KB, although Open MPI benefits, once again,
from its better large message performance.

The presented results show that FastMPJ is generally able
to obtain performance results for the broadcast operation sim-
ilar to MPI libraries, even outperforming them in some mes-
sage ranges. This supports the fact that the MST-based algo-
rithm implemented in the FastMPJ collective library is very
efficient (e.g., clearly outperforms MVAPICH on the AMD-
SHM testbed) and highly scalable (e.g., large message perfor-
mance using 1,024 cores on the MN supercomputer). There-
fore, these results confirm that FastMPJ is bridging the gap
between MPJ and MPI collectives performance. Neverthe-
less, there is still potential room for improvement, especially
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Fig. 4 Broadcast performance on InfiniBand QDR and DDR, Myrinet and shared memory
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for large message bandwidth, which means that enhanced
collective algorithms and techniques need to be explored in
order to achieve the high performance shown by Open MPI.

6.4 HPC Kernel performance analysis

The performance analysis of representative HPC kernels has
been carried out using both strong (Sect. 6.4.1) and weak
(Sect. 6.4.2) scaling models. The metrics considered for this
evaluation using the NPB suite are Millions of Operations Per
Second (MOPS), which measures the operations performed
in the benchmark (and which differs from the CPU operations
issued), and their corresponding speedups and efficiencies for
the strong and weak scaling models, respectively.

6.4.1 Strong scaling

In this first set of experiments, the problem size is fixed
using the NPB class C workload while the number of cores
is increased, hence applying a strong scaling model. These
experiments have been conducted on the IB-QDR and IB-
DDR testbeds, selected as they are the most representa-
tive distributed memory systems under evaluation. Thus,
both multi-core clusters provide an IB interconnection net-
work from the major current vendors (Mellanox and Intel/Q-
Logic, respectively). Furthermore, in recent years, IB has
become the most widely adopted networking technology in
the TOP500 list. Additionally, both shared memory testbeds
(Intel-SHM and AMD-SHM) have also been included in this
analysis, as they provide with representative Intel- and AMD-
based processors, respectively.

Figure 5 shows the NPB kernels performance on the IB-
QDR testbed in terms of MOPS (left graphs) and its cor-
responding speedups (right graphs) using up to 512 cores.
Regarding CG, FastMPJ and MPI show very similar results
using up to 64 cores, as the scalability of this kernel is strongly
based on point-to-point data transfers where FastMPJ and
MPI achieve comparable performance, as has been observed
before in the point-to-point micro-benchmarking. From 64
cores, ibvdev starts to suffer the current limitation of
not being able to take advantage of intra-node commu-
nications, which seems to aggravate when the number of
cores increases, as more communications have to be per-
formed accessing the NIC instead of using a shared memory
approach. This fact allows MPI libraries to obtain the highest
performance and speedup from 128 cores on, but FastMPJ
results remain competitive at least compared to MVAPICH2.
FT results show that, while FastMPJ performance is on aver-
age 25 % lower than MPI, the reported speedups are quite
similar. In this case, FastMPJ performance is limited by its
poor performance on a single core, as this kernel presents the
largest performance gap between Java and native implemen-
tations (approximately 35 % less performance). In addition,

the FT kernel makes an intensive use of Alltoall collective
operations, which has not prevented FastMPJ scalability. The
performance and scalability of FastMPJ for the IS kernel is
quite similar to Open MPI, although the maximum observed
speedups are significantly low (below 60 on 256 cores for
MVAPICH2). The implementation of this kernel relies heav-
ily on Alltoall and Allreduce primitives, whose overhead is
the main performance penalty, especially when using more
than 256 cores on this testbed (all evaluated middleware drops
in performance from this point). Finally, the MG kernel is
the least communication-intensive code under evaluation; it
shows relatively high speedups (above 300 on 512 cores)
both for FastMPJ and MPI.

Figure 6 shows the NPB kernels performance on the IB-
DDR testbed using up to 128 cores. CG results on this sys-
tem show that FastMPJ is able to match the performance and
speedup of MVAPICH2. In this scenario, all the middleware
relies on the same underlying low-level communication sub-
system (the PSM library). Thus, PSM implements the com-
munication protocols and ultimately determines the point-to-
point performance both for inter-node and intra-node com-
munications, which prevents MPI libraries to use their own
shared memory protocol (PSM already provides efficient
shared memory support). Regarding the FT kernel, FastMPJ
obtains the highest speedup when using 128 cores, although
its performance is around 30 % lower than MVAPICH2 due
to the poor Java serial performance, as mentioned before.
The IS kernel shows again the poorest scalability (below 30
on 128 cores), where FastMPJ is able to achieve the same
performance as MPI libraries using up to 64 cores. For MG,
FastMPJ shows again the highest speedups, especially on 128
cores, motivated by the different serial runtime of the native
and Java implementation (30 % gap in this testbed). This also
causes that FastMPJ obtains lower performance than MPI on
128 cores (around 20 %).

Regarding shared memory systems, Figs. 7 and 8 show the
NPB kernels performance on the Intel-SHM and AMD-SHM
testbeds, respectively, using up to 32 cores. The comparison
on this scenario also includes the results from the OpenMP
implementation of the NPB kernels. On the one hand, Intel-
SHM results show that OpenMP is generally the best per-
former, both in terms of MOPS and scalability, except for
the MG kernel where FastMPJ obtains the highest speedup.
In addition, FastMPJ is able to achieve better performance
than MPI for the CG kernel, taking advantage of the higher
bandwidth obtained by smdev, whereas for the remaining
kernels FastMPJ shows competitive results compared to MPI
using up to 16 cores. On the other hand, results on the AMD-
SHM testbed show that: (1) FastMPJ is able to outperform
all the middleware for the CG kernel using up to 16 cores;
(2) it obtains similar results as Open MPI for FT; and (3)
it outperforms OpenMP and gets comparable performance
to MVAPICH2 for the IS and MG kernels, using up to 16
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Fig. 5 NPB kernel results on
the IB-QDR testbed (strong
scaling)
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cores. However, the AMD system generally obtains lower
performance than the Intel system for all the evaluated mid-
dleware, due to its lower computational power per core and
poorer memory access throughput, which limits the obtained
speedups.

6.4.2 Weak scaling

In the case of weak scaling, the problem size increases with
the number of cores so that the workload per core remains
constant. In our experiments, the NPB Class C are solved
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Fig. 6 NPB kernel results on
the IB-DDR testbed (strong
scaling)
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using a quarter of the number of available cores. Maintain-
ing a fixed workload per core, results are reported from a
workload of Class C divided by 8 up to 4 times Class C.
Thus, the problem size is scaled lineraly with the core count,

as will be shown in the X-axis of the graphs (see Figs. 9,
10). This set of experiments has been conducted on the IB-
QDR and Intel-SHM testbeds, selected as representative dis-
tributed and shared memory systems, respectively, which,
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Fig. 7 NPB kernel results on
the Intel-SHM testbed (strong
scaling)
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according to the previous strong scaling evaluation, have
shown the best performance results. In addition, as the NPB
weak scaling results were, in general, quite similar to the
previous strong scaling counterparts, both in terms of MOPS

and speedups, only results for CG and FT kernels are shown
for clarity purposes.

NPB weak scaling results are shown in MOPS (as in the
case of strong scaling) together with their corresponding scal-
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Fig. 8 NPB kernel results on
the AMD-SHM testbed (strong
scaling)
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ing efficiencies, instead of speedups. Note that the scaling
efficiency metric has not been calculated as a percentage
of the linear speedup, because usually can not be achieved.
Instead, an upper bound on performance has been estimated

for each core count using the serial code with the correspond-
ing problem size. Thus, running multiple serial processes
concurrently (as many processes per node as the number of
cores under evaluation) takes into account the overhead asso-
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Fig. 9 NPB kernel results on
the IB-QDR testbed (weak
scaling)
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Fig. 10 NPB kernel results on
the Intel-SHM testbed (weak
scaling)
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ciated with several processes accessing some shared levels
of cache and memory, which prevents obtaining the linear
speedup. As an example, the upper bound performance for
the FT kernel has achieved a speedup of 458 on 512 cores on
IB-QDR, and 21 on 32 cores on Intel-SHM. Additionally, as
there is no IPC involved in the estimation of this value, it also

represents an upper bound on performance if it were possi-
ble to perform zero-latency communications. Therefore, the
efficiency of the corresponding parallel code calculated as a
percentage of this estimated upper bound value can serve as
a reliable metric to measure the communication efficiency of
message-passing libraries. As there are no explicit communi-
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cation routines in the OpenMP standard, NPB-OMP results
are not shown in the Intel-SHM testbed.

NPB results on the IB-QDR and Intel-SHM testbeds are
presented in Figs. 9 and 10, respectively. On the one hand,
the CG kernel shows that Java can obtain an upper bound per-
formance quite similar to Fortran when no communication
is involved, especially in the Intel-SHM testbed. In this sce-
nario, FastMPJ is able to almost match the performance of at
least one of the MPI libraries on both testbeds (MVAPICH2
on IB-QDR and OpenMPI on Intel-SHM). Consequently, the
communication efficiency of FastMPJ is in tune with MPI
libraries, as shown in the right graphs, especially for the
higher core counts. On the other hand, the FT kernel results
show that in this case the upper bound performance for Java
is limited by its poor performance on a single core, which
is on average around 60 % of Fortran’s performance. The
main performance penalty is the lack of a high-performance
numerical library in Java that would implement the Fourier
transform, which is the most computationally intensive part
of this kernel. However, while FastMPJ performance is on
average 20 % lower than MPI for the higher core counts, the
reported efficiencies are quite similar. Thus, this fact confirms
that the underlying communication support implemented by
FastMPJ is able to achieve comparable performance to MPI.

To sum up, the NPB results using both scaling metrics have
shown that FastMPJ is able to rival native MPI performance
and scalability, even outperforming MPI in some scenarios
(e.g., CG kernel on IB-DDR and shared memory systems).
This allows Java to take advantage of the use of a high number
of cores, especially on shared memory and hybrid shared/dis-
tributed memory architectures, widely extended nowadays.

7 Conclusions

The continuous increase in the number of cores per system
underscores the need for scalable parallel solutions both in
shared and distributed memory architectures, where the effi-
ciency of the underlying communication middleware is fun-
damental. In fact, the scalability of Java message-passing
parallel applications depends heavily on the communications
performance. However, current Java communication middle-
ware lacks efficient communication support, especially in the
presence of high-speed cluster networks and shared memory
systems.

This paper has presented FastMPJ, a scalable and efficient
Java message-passing library for parallel computing, which
overcomes these performance constraints by: (1) providing
thread-based high-performance shared memory communica-
tions which obtains sub-microsecond start-up latencies and
up to 71.2 Gbps bandwidth; (2) enabling low-latency (less
than 2 µs) and high bandwidth communications (higher than
22 Gbps) on RDMA-capable high-speed cluster networks

(e.g., InfiniBand); (3) including a scalable collective library
with more than 60 topology aware algorithms, which are
automatically selected at runtime; (4) avoiding Java data
buffering overheads through efficient zero-copy protocols;
and (5) implementing the mpiJava 1.2 API, the most widely
extended MPI-like Java bindings, for a highly productive
development of MPJ parallel applications.

FastMPJ has been evaluated comparatively with native
MPI libraries on five representative testbeds: two InfiniBand
multi-core clusters, one Myrinet supercomputer, and two
shared memory systems using both Intel- and AMD-based
processors. The comprehensive performance evaluation has
revealed that FastMPJ communication primitives are quite
competitive with MPI results, both in terms of point-to-point
and collective operations performance. Thus, the use of our
message-passing library in communication-intensive HPC
codes allows Java to benefit from a more efficient communi-
cation support, taking advantage of the use of a high number
of cores and improving significantly the performance and
scalability of Java parallel applications. In fact, the develop-
ment of this efficient Java communication middleware is def-
initely bridging the gap between Java and native languages
in HPC applications. Further information of this project is
available at http://torusware.com.
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SUMMARY

Providing high-performance inter-node communication is a key capability for running High Performance
Computing (HPC) applications efficiently on parallel architectures. In fact, current systems deployments are
aggregating a significant number of cores interconnected via advanced networking hardware with Remote
Direct Memory Access (RDMA) mechanisms, that enable zero-copy and kernel-bypass features. The use
of Java for parallel programming is becoming more promising thanks to some useful characteristics of
this language, particularly its built-in multithreading support, portability, easy-to-learn properties and high
productivity, along with the continuous increase in the performance of the Java Virtual Machine (JVM).
However, current parallel Java applications usually suffer from inefficient communication middleware,
mainly based on protocols with high communication overhead (e.g., sockets-based) that do not take full
advantage of RDMA-enabled networks. This paper presents efficient low-level Java communication devices
that overcome these constraints by fully exploiting the underlying RDMA hardware, providing low-latency
and high-bandwidth communications for parallel Java applications. The performance evaluation conducted
on representative RDMA networks and parallel systems has shown significant point-to-point performance
increases compared to previous Java communication middleware, allowing to obtain up to 40% improvement
in application-level performance on 4096 cores of a Cray XE6 supercomputer.

KEY WORDS: Parallel systems; Remote Direct Memory Access (RDMA); RDMA-enabled networks;
Java communication middleware; Message-Passing in Java (MPJ)

1. INTRODUCTION

Java is a highly portable and flexible programming language, enjoying a dominant position in
a wide diversity of computing environments. Some of the interesting features of Java are its
built-in multithreading support in the core of the language, object orientation, automatic memory
management, type-safety, platform independence, portability, easy-to-learn properties and thus
higher productivity. Furthermore, Java has become the leading programming language both in
academia and industry.

The Java Virtual Machine (JVM) is currently equipped with efficient Just-in-Time (JIT) compilers
that can obtain near-native performance from the platform independent bytecode [1]. In fact, the
JVM identifies sections of the code frequently executed and converts them to native machine code
instead of interpreting the bytecode. This significant improvement in its computational performance
has narrowed the performance gap between Java and natively compiled languages (e.g., C/C++,
Fortran). Thus, Java is currently gaining popularity in other domains which usually make use of
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High Performance Computing (HPC) infrastructures, such as the area of parallel computing [2, 3] or

in Big Data analytics, where the Java-based Hadoop distributed computing framework [4] is among

the preferred choices for the development of applications that follow the MapReduce programming

model [5].

With the continuously increasing number of cores in current HPC systems to meet the

ever growing computational power needs, it is vitally important for communication middleware

to provide efficient inter-node communications on top of high-performance interconnects.

Modern networking hardware provides Remote Direct Memory Access (RDMA) capabilities that

enable zero-copy and kernel-bypass features, key mechanisms for obtaining scalable application

performance. However, it is usually difficult to program directly with RDMA hardware. In this

context, it is fundamental to fully harness the power of the likely abundant processing resources and

take advantage of the interesting features of RDMA networks with still ease-to-use programming

models. The Message-Passing Interface (MPI) [6] remains as the de-facto standard in the area of

parallel computing, being the most widely extended programming model for writing C/C++ and

Fortran parallel applications, but remains out of the scope of Java. The main reason is that current

parallel Java applications usually suffer from inefficient communication middleware, mainly based

on protocols with high overhead (e.g., sockets-based) that do not take full advantage of RDMA-

enabled networks [7]. The lack of efficient RDMA hardware support in current Message-Passing in

Java (MPJ) [8] implementations usually results in lower performance than natively compiled codes,

which has prevented the use of Java in this area. Thus, the adoption of Java as a mainstream language

on these systems heavily depends on the availability of efficient communication middleware in order

to benefit from its appealing features at a reasonable overhead.

This paper focuses on providing efficient low-level communication devices that overcome these

constraints by fully exploiting the underlying RDMA hardware, enabling low-latency and high-

bandwidth communications for Java message-passing applications. The performance evaluation

conducted on representative RDMA networks and parallel systems has shown significant point-

to-point performance improvements compared to previous Java message-passing middleware, in

addition to higher scalability for communication-intensive HPC codes. These communication

devices have been integrated seamlessly in the FastMPJ middleware [9], our Java message-passing

implementation, in order to make them available for current MPJ applications. Therefore, this paper

presents our research results on improving the RDMA network support in FastMPJ, which would

definitely contribute to increase the use of Java in parallel computing. More specifically, the main

contributions of this paper are:

• The design and implementation of two new low-level communication devices, ugnidev and

mxmdev. The former device is intended to provide efficient support for the RDMA networks

used by the Cray XE/XK/XC family of supercomputers. The latter includes support for the

recently released messaging library developed by Mellanox for its RDMA adapters.

• An enhanced version of the ibvdev communication device for InfiniBand systems [10],

which now includes new support for RDMA networks along with an optimized

communication protocol to improve short-message performance.

• The transparent integration of these communication devices in the FastMPJ middleware in

order to allow existing MPJ applications to take full advantage of them without any source

code modification. Additionally, this also makes it possible their performance evaluation at

the MPJ level.

• An experimental comparison of representative MPJ middleware, which includes a micro-

benchmarking of point-to-point primitives on several RDMA networks, and an application-

level performance analysis conducted on two parallel systems: a multi-core InfiniBand cluster

and a large Cray XE6 supercomputer.

The remainder of this paper is organized as follows. Section 2 presents background information

about RDMA networks and their software support. Section 3 introduces the related work. Section

4 presents the overall design of xxdev, the low-level communication device layer included in

FastMPJ. This is followed by Sections 5, 6 and 7, which describe the design and implementation of
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the new xxdev communication devices presented in this paper: ugnidev, ibvdev and mxmdev,

respectively. Section 8 shows the performance results of the developed devices gathered from a

micro-benchmarking of point-to-point primitives on several RDMA networks. Next, this section

analyzes the impact of their use on the overall performance of representative Java HPC codes.

Finally, our concluding remarks are summarized in Section 9.

2. OVERVIEW OF RDMA-ENABLED NETWORKS

Most high-performance clusters and custom supercomputers are deployed with high-speed

interconnects. These networking technologies typically rely on scalable topologies and advanced

network adapters that provide RDMA-capable specialized hardware to enable zero-copy and kernel-

bypass facilities. Some of the main benefits of using RDMA hardware are low-latency and high-

bandwidth inter-node communication with low CPU overhead.

In recent years, the InfiniBand (IB) architecture [11] has become the most widely extended

RDMA networking technology in the TOP500 list [12], especially for multi-core clusters. In

addition, two other popular RDMA implementations, the Internet Wide Area RDMA Protocol

(iWARP) [13] and RDMA over Converged Ethernet (RoCE) [14], have also been proposed to

extend the advantages of RDMA technologies to ubiquitous Internet Protocol (IP)/Ethernet-based

networks. On the one hand, iWARP defines how to perform RDMA over a connection-oriented

transport such as the Transmission Control Protocol (TCP). Thus, iWARP includes a TCP Offload

Engine (TOE) to offload the whole TCP/IP stack onto the hardware, while the Direct Data Placement

(DDP) protocol [15] implements the zero-copy and kernel-bypass mechanisms. On the other hand,

RoCE takes advantage of the more recent enhancements to the Ethernet link layer. The IEEE

Converged Enhanced Ethernet (CEE) is a set of standards, defined by the Data Center Bridging

(DCB) task group [16] within IEEE 802.1, which are intented to make Ethernet reliable and

lossless (like IB). This allows the IB transport protocol to be layered directly over the Ethernet

link layer. Hence, RoCE utilizes the same transport and network layers from the IB stack and swaps

the link layer for Ethernet, providing IB-like performance and efficiency to ubiquitous Ethernet

infrastructures. Compared to iWARP, RoCE is a more natural extension of message-based transfers,

and therefore usually offers better efficiency than iWARP. However, one disadvantage of RoCE is

that it does not operate with standard Ethernet switches, as it requires DCB-capable ones.

Although the current market is dominated by clusters, many of the most powerful computing

installations are custom supercomputers [12] that usually rely on specifically designed Operating

Systems (OS) and proprietary RDMA-enabled interconnects. Some examples are the IBM Blue

Gene/Q (BG/Q) and the Cray XE/XK/XC family of supercomputers. On the one hand, the compute

nodes of the IBM BG/Q line are interconnected via a custom 5D torus network [17]. On the other

hand, Cray XE/XK architectures include the Gemini interconnect [18] based on a 3D torus topology,

while the XC systems provide the Aries interconnect that uses a novel network topology called

Dragonfly [19].

2.1. Software support

The IB architecture has no standard Application Programming Interface (API) within the

specification, as it only defines the functionality provided by the RDMA adapter in terms of an

abstract and low-level interface called Verbs†. The de-facto standard has been the implementation

of the Verbs interface developed by the OpenFabrics Alliance (OFA) [20], which includes both

user- and kernel-level APIs. This open-source software stack has been adopted by most vendors

and is released as the OpenFabrics Enterprise Distribution (OFED). As a software stack, OFED

spans both the OS kernel, providing hardware-specific drivers, and the user space, implementing

the Verbs interface. Although OFED was originally developed to work over IB networks, currently

†A verb is a semantic description of a function that must be provided.
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Figure 1. Overview of the RDMA software stack

also includes support for iWARP and RoCE. Hence, it offers a uniform and transport-independent

low-level API for the development of RDMA and kernel-bypass applications on IB, iWARP and

RoCE interconnects. In addition to the OFED stack, some vendors provide additional user-space

libraries that are specifically designed for their RDMA hardware. Examples of these libraries are

the Performance Scaled Messaging (PSM) and MellanoX Messaging (MXM), which are currently

available for Intel/QLogic and Mellanox adapters, respectively. These libraries can offer a higher

level API than Verbs, usually also matching some of the needs of upper level communication

middleware (e.g., message-passing libraries). Regarding supercomputer systems, vendors provide

a specific interface to their custom interconnects intended to be used for user-space communication.

These interfaces are usually low-level APIs that directly expose the RDMA capabilities of the

hardware (like Verbs), on top of which the communication middleware and applications can be

implemented. For instance, IBM includes the System’s Programming Interface (SPI) to program

the torus-based interconnect of the BG/Q system, while Cray provides two different interfaces for

implementing communication libraries targeted for Gemini/Aries interconnects: Generic Network

Interface (GNI) and Distributed Memory Application (DMAPP). It is worth noting that all these

programming interfaces are only available in C and therefore any communication support from Java

must resort to the Java Native Interface (JNI).

Finally, existing sockets-based middleware and applications are usually able to run over RDMA

networks without rewriting, using additional extensions known as Upper Layer Protocols (ULP).

Examples of ULPs are the IP emulation over IB (IPoIB) [21] and the IP over Gemini Fabric

(IPoGIF) modules. However, these ULPs are unable to take full advantage of the RDMA hardware,

introducing additional TCP/IP processing overhead and performance penalties (e.g., multiple data

copies, high CPU utilization) compared to native RDMA interfaces. In order to overcome these

issues, some high-performance sockets implementations are available as additional ULPs. For

instance, the Sockets Direct Protocol (SDP) [22] provides a user-space preloadable library and

kernel module that bypasses the TCP/IP stack to take advantage of the IB/iWARP/RoCE hardware

features. However, SDP has limited utility as only applications relying on the TCP/IP sockets API

can use it, and other IP stack uses or TCP layer modifications (e.g., IPSec, UDP) cannot benefit

from it. In addition, because of the restrictions of the socket interface, SDP can not provide the

low latencies of native RDMA. Furthermore, OpenFabrics has recently ended the support for SDP

and now is considered deprecated. Figure 1 provides a graphical overview of the described RDMA

software support.
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3. RELATED WORK

There have been several early works about Java for HPC soon after its release that have identified its

potential for scientific computing [23, 24]. Moreover, some projects have been focused particularly

on Java communication efficiency. These related works can be classified into: (1) Java over the

Virtual Interface Architecture (VIA) [25]; (2) Java sockets implementations; (3) Java Remote

Method Invocation (RMI) protocol optimizations; (4) Java Distributed Shared Memory (DSM)

projects; (5) low-level Java libraries on RDMA networks; and (6) efficient MPJ middleware.

Javia [26] and Jaguar [27] provide access to high-speed cluster networks through VIA. The VIA

architecture is one of the several approaches for user-level networking developed in the 90s, which

has served as basis for IB. More specifically, Javia reduces data copying using native buffers, and

Jaguar acts as a replacement of the JNI layer in the JVM, providing an API to access VIA. Their

main drawbacks are the use of particular APIs, the need of modified Java compilers that ties the

implementation to a certain JVM, and the lack of non-VIA communication support. Additionally,

Javia exposes programmers to buffer management and uses a specific garbage collector.

The socket API is widely extended and can be considered the standard low-level communication

layer. Thus, sockets have been the choice for implementing in Java the lowest level of network

communication. However, Java sockets lack efficient high-speed network support and HPC

tailoring, so they have to resort to inefficient TCP/IP emulations (e.g., IPoIB) for full networking

support [7]. Ibis sockets partly solve these issues adding Myrinet support and being the base of

Ibis [28], a parallel and distributed Java computing framework. However, Ibis lacks support for

current RDMA networks, and its implementation on top of JVM sockets limits the performance

benefits to serialization improvements. Aldeia [29] is a proposal of an asynchronous sockets

communication layer over IB whose preliminary results were encouraging, but requires an extra-

copy to provide asynchronous write operations, which incurs an important overhead, whereas the

read method is synchronous. Java Fast Sockets (JFS) [30] is our high-performance Java sockets

implementation that relies on SDP (see Figure 1) to support Java communications over IB. JFS

avoids the need for primitive data type array serialization and reduces buffering and unnecessary

copies. Nevertheless, the use of the socket API still represents an important source of overhead and

lack of scalability in Java communications, especially in the presence of high-speed networks [7].

Other related work about performance optimization of Java communications included many

efforts in RMI, which is a common communication facility for Java applications. ProActive [31] is a

fully portable “pure” Java (i.e., 100% Java) RMI-based middleware for parallel, multithreaded and

distributed computing. Nevertheless, the use of RMI as its default transport layer adds significant

overhead to the operation of this middleware. Therefore, the optimization of the RMI protocol

has been the goal of several projects, such as KaRMI [32], Manta [33], Ibis RMI [28] and Opt

RMI [34]. However, the use of non-standard APIs, the lack of portability and the insufficient

overhead reductions, still significantly larger than socket latencies, have restricted their applicability.

Therefore, although Java communication middleware used to be based on RMI, current middleware

use sockets due to their lower overhead.

Java DSM projects are usually based on sockets and thus benefit from socket optimizations,

but their performance on top of high-speed networks still suffers from significant communication

overheads. In order to reduce their impact, two DSM projects have implemented their

communications relying on low-level libraries: CoJVM [35] uses VIA, whereas Jackal [36]

includes RDMA support through the Verbs API [37]. Nevertheless, these projects share unsuitable

characteristics such as the use of modified JVMs, the need of source code modification and limited

interoperability and portability (e.g., Jackal is a Java-to-native compiler that does not provide any

API to Java developers, implementing data transfers specifically for Jackal).

Other approaches are low-level Java libraries restricted to specific RDMA networks. For instance,

Jdib [38, 39] is a Java encapsulation of the Verbs API through JNI, which increases Java

communication performance using directly RDMA mechanisms. The main drawbacks of Jdib are

its low-level API (like Verbs) and the JNI call overhead incurred for each Jdib operation (i.e., each

function of the Verbs interface has to be wrapped through JNI). jVerbs [40] is a networking API
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and library for the JVM that offers RDMA semantics and exports the Verbs interface to Java. jVerbs

maps the RDMA hardware resources directly into the JVM, allowing Java applications to transfer

data without OS involvement. Although jVerbs is able to achieve almost bare-metal performance,

its low-level API demands a high programming effort (as with Jdib). Additionally, jVerbs requires

specific user drivers for each supported RDMA adapter, as the access to hardware resources in the

data path is device specific. Currently, it only supports some models and vendors (e.g., Mellanox

ConnectX-2).

Regarding MPJ libraries, there have been several efforts to develop a message-passing framework

since the inception of Java. Although the current MPI standard declaration is limited to C and

Fortran languages, there have been a number of standardization efforts made towards introducing

an MPI-like Java binding. The most widely extended API set has been proposed by the mpiJava [41]

developers, known as the mpiJava 1.2 API [42]. Currently, the most relevant implementations of this

API are Open MPI Java, MPJ Express and FastMPJ, next presented.

mpiJava [41] consists of a collection of wrapper classes that use JNI to interact with an underlying

native MPI library. However, mpiJava can incur a noticeable JNI overhead [43] and presents some

inherent portability and interoperability issues derived from the amount of native code that is

involved in a wrapper-based implementation (all the methods of the MPJ API have to be wrapped).

Moreover, the support of multiple heterogeneous runtime platforms, MPI libraries and JVMs entails

a significant maintenance effort, which has led to a non-active development and maintenance for

years. More recently, Open MPI [44] has revamped this project and included Java support in the

developer code trunk. The Open MPI Java interface is based on the original mpiJava code and

integrated as a set of bindings on top of the Open MPI core [45].

MPJ Express [46] presents a modular design which includes a pluggable architecture of low-

level communication devices that allows to combine the portability of the “pure” Java shared

memory device (smpdev) and New I/O (NIO) sockets communications (niodev), along with the

native Myrinet support (mxdev) through JNI, implemented on top of the Myrinet eXpress (MX)

library [47]. Additionally, the recently included hybrid device allows to use simultaneously the

niodev and smpdev devices for inter- and intra-node communications, respectively. However,

the overall design of MPJ Express relies on an internal buffering layer that significantly limits

performance and scalability [43]. Moreover, it lacks efficient support for current RDMA networks

and includes poorly scalable collective algorithms.

Finally, FastMPJ [9] is our Java message-passing implementation that includes a layered design

approach similar to MPJ Express, but avoiding its data buffering overhead by supporting direct

communication of any serializable Java object. In addition, FastMPJ includes a scalable collective

library which implements up to six algorithms per collective primitive. More details about FastMPJ

design and communications support are next presented in Section 4.

4. OVERVIEW OF THE FASTMPJ COMMUNICATION DEVICE LAYER

Figure 2 presents a high-level overview of the FastMPJ design, whose point-to-point communication

support relies on the xxdev device layer for interaction with the underlying hardware. This layer

is designed as a simple and pluggable architecture of low-level communication devices that enables

its incremental development. Additionally, it also eases the development of new xxdev devices

reducing their implementation effort, and minimizing the amount of native code needed to support

a specific network through JNI, as only a very small number of methods must be implemented.

Hence, it allows to combine the portability of “pure” Java communication devices with high-

performance network support wrapping native communication libraries through JNI. These xxdev

devices abstract the particular operation of a communication protocol conforming to an API on

top of which FastMPJ implements its communications. Therefore, FastMPJ communication devices

must conform with the API provided by the abstract class xxdev.Device. The low-level xxdev

API only provides basic point-to-point communication methods and is not aware of higher level MPI

abstractions like communicators. Thus, it is composed of basic message-passing operations such

as point-to-point blocking and non-blocking communication methods, including also synchronous
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Figure 2. Overview of the FastMPJ communication devices

communications. The use of pluggable low-level devices for implementing the communication

support is widely extended in native message-passing libraries, such as the Byte Transfer Layer

(BTL) and Matching Transport Layer (MTL), both included in Open MPI [44].

Currently, FastMPJ includes three xxdev devices that support RDMA networks (see Figure 2):

(1) mxdev, for Myrinet adapters and additionally for generic Ethernet hardware; (2) psmdev, for

the InfiniPath family of IB adapters from Intel/QLogic; and (3) ibvdev, for IB adapters in general

terms. These devices are implemented on top of MX/Open-MX, InfiniPath PSM and Verbs native

communication layers, respectively. Furthermore, the TCP/IP stack support is included through Java

NIO (niodev) and IO (iodev) sockets, whereas high-performance shared memory systems can

benefit from the thread-based device (smdev).

As mentioned before, this paper presents two new xxdev communication devices, ugnidev

and mxmdev, implemented on top of the user-level GNI (uGNI) and MXM native communication

layers, respectively. The mxmdev device also includes efficient intra-node shared memory

communication provided by MXM. An enhanced version of the ibvdev device, which extends

its current support to RoCE and iWARP networking hardware and introduces an optimized short-

message communication protocol, is also included. These communication devices (highlighted in

italics and red in Figure 2) have been integrated transparently into FastMPJ thanks to its modular

structure. Therefore, the developed devices allow current MPJ applications to benefit transparently

from a more efficient support of RDMA networks (depicted by red arrows at the hardware level).

5. SCALABLE COMMUNICATIONS ON CRAY SUPERCOMPUTERS: UGNIDEV

The Cray XE/XK/XC family is nowadays an important class of custom supercomputers for running

highly computationally intensive applications, with several systems ranked in the TOP500 list [12].

A critical component in realizing this level of performance is the underlying network infrastructure.

As mentioned in Section 2, the Cray XE/XK architectures include the Gemini interconnect, whereas

the newer XC systems are equipped with the Aries interconnect, both providing RDMA capabilities.

Cray provides two low-level interfaces for implementing communication libraries targeted for these

interconnects: Generic Network Interface (GNI) and Distributed Memory Application (DMAPP).

In particular, the GNI API is mainly designed for applications whose communication patterns

are message-passing in nature, while the DMAPP interface is geared towards Partitioned Global

Address Space (PGAS) languages. Therefore, GNI would be the preferred interface on top of which

a message-passing communication device as ugnidev should be implemented.

5.1. GNI API overview

The GNI interface exposes a low-level API that is primarily intended for: (1) kernel-space

communication through a Linux device driver and the kernel-level GNI (kGNI) implementation; and

(2) direct user-space communication through the user-level GNI (uGNI) library, where the driver is

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

104 Chapter 4. Java Communication Devices on RDMA-enabled Networks



8 ROBERTO R. EXPÓSITO ET AL.

used to establish communication domains and handle errors, but can be bypassed for data transfer.

Hence, the ugnidev device has been layered over the uGNI API, which provides two hardware

mechanisms for initiating RDMA transactions using either Fast Memory Access (FMA) or Block

Transfer Engine (BTE).

On the one hand, the FMA hardware provides in-order RDMA as a low-overhead, kernel-bypass

pathway for injecting messages into the network, achieving the lowest latencies and highest message

rates for short messages. Several forms of FMA transactions are available:

• FMA Short Messaging (SMSG) and FMA Shared Message Queue (MSGQ) provide a reliable

messaging protocol with send/receive semantics that can be used for short point-to-point

messages. These facilities are implemented using a specialized RDMA PUT operation with

remote notification.

• FMA Distributed Memory (FMA DM) is used to execute RDMA PUT, GET, and Atomic

Memory Operations (AMOs), moving user data between local and remote memory.

On the other hand, the BTE hardware offloads the work of moving bulk data from the host

processor to the network adapter, also providing RDMA PUT and GET operations. The BTE

functionality is intended primarily for large asynchronous data transfers between nodes. More

time is required to set up data for a transfer than for FMA, but once initiated, there is no further

involvement by the CPU. However, the FMA hardware can give better results than BTE for medium

size RDMA operations (2-8 KB), whereas BTE transactions can achieve the best computation-

communication overlap because the responsibility of the transaction is completely offloaded to the

network adapter, providing an essential component for realizing independent progress of messages.

To achieve maximum performance, it is important to properly combine FMA and BTE mechanisms

in the ugnidev implementation.

The memory allocated by an application must be registered with the network adapter before

it can be given to a peer as a destination buffer or used as a source buffer for most uGNI

transactions. Thus, in order to directly access a memory region on a remote node, the region

must have been previously registered at that node. uGNI provides memory registration interfaces

for the applications that allow to specify access permissions and memory ordering requirements.

uGNI returns an opaque Memory Handle (MH) structure upon successful invocation of one of

the memory registration functions. The MH can then be used for FMA/BTE RDMA transactions

and SMSG/MSGQ messaging protocols. The registration and unregistration operations can be

very expensive, which is an important performance factor that must be taken into account in the

implementation of the ugnidev communication protocols.

Finally, uGNI also provides Completion Queues (CQ) management, as a lightweight event

notification mechanism for applications. For example, an application may use the CQ to track the

progress of local FMA/BTE transactions, or to notify a remote node that data have been delivered

to its memory. An application can check for presence of CQ Events (CQE) on a CQ in either

polling or blocking mode. A CQE includes application-specific data, information about what type

of transaction is associated with the CQE, and whether the transaction associated with the CQE was

successfully completed or not. More specific details of the uGNI API can be found in [48].

5.2. FastMPJ support for Cray ALPS

Current Cray systems utilize the Cray Linux Environment (CLE), which is a suite of HPC tools

that includes a Linux-based OS designed to run large applications and scale efficiently to a high

number of cores. Hence, compute nodes run a lightweight Linux called Compute Node Linux (CNL)

which ensures that OS services do not interfere with application scalability. Two separate execution

environments for running jobs on the compute nodes of a Cray machine are currently available:

Extreme Scalability Mode (ESM) and Cluster Compatibility Mode (CCM).

On the one hand, ESM is the high-performance and native execution environment specifically

designed to run large applications at scale, which dedicates compute nodes for each user job and

sets up the appropriate parallel environment automatically. This mode is required in order to access

the underlying interconnect via the native uGNI API, thus allowing to obtain the highest network
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performance. However, ESM does not provide the full set of Linux services (e.g., ssh) needed to

run standard cluster-based applications, which requires the implementation of specific support for

this mode, as will be shown below. On the other hand, the CCM execution environment allows

standard applications to run without modifications. Thus, users can request the CNL on compute

nodes to be configured with CCM through the use of a special queue at job submission. This mode

comes with a standardized communication layer (e.g., TCP/IP) and emulates a Linux-based cluster

which provides the services needed to run most cluster-based third-party applications on Cray

machines. However, this feature is generally site dependent and may not be available. In addition,

it poses important constraints such as that the number of cores that can be used under this mode

is usually very limited and there is no support for core specialization. Furthermore, the uGNI API

can not be used to access directly the underlying interconnect, which prevents the implementation

of ugnidev. Therefore, a mandatory prerequisite for this device is the implementation of the ESM

mode support in FastMPJ, which basically involves modifying the FastMPJ runtime to work in

conjunction with the specific Cray scheduler, as described next.

The Application Level Placement Scheduler (ALPS) [49] is the Cray supported mechanism for

placing and launching applications under the ESM mode. More specifically, “aprun” is the user

command that must be used to launch a parallel application to a set of compute nodes reserved

through ALPS. The FastMPJ support for Cray ALPS mainly consists of two distinct parts. The first

one is the “alps-spawner” utility, a small C program (< 400 source lines) intended to be launched

with the “aprun” command that acts as a bridge between ALPS and FastMPJ. This utility uses the

C-based implementation of the Process Management Interface (PMI) [50], which is provided by

Cray to interact with ALPS. The PMI library allows to obtain the necessary data from ALPS to

properly set up the parallel environment of FastMPJ (e.g., rank of each process in the application).

After setting this information via environment variables, “alps-spawner” executes a new JVM using

the execvp() function. Each JVM represents one of the Java processes of the MPJ application

running a specific Java class of the FastMPJ runtime. This Java class, which is the second part

of the implemented support, initializes the FastMPJ runtime with the information gathered from the

environment and then invokes the main method of the MPJ application using the Java reflection

facility. The MPJ application to be executed is one of the input parameters that are accepted by the

“alps-spawner” utility, which can be specified using both class and JAR file formats. Once the main

method is running, the application will call at some point the Init method of the MPJ API in order

to initialize the FastMPJ execution environment, and hence the ugnidev device initialization takes

place.

5.3. Initialization

Since the uGNI interface allows for user-space RDMA communication, there is a hardware

protection mechanism to validate all RDMA requests generated by the applications. To utilize

this mechanism, uGNI provides applications with a Communication Domain (CDM), which is

essentially a software construct that must be attached to a network adapter in order to enable data

transfers. Hence, processes must use a previously agreed upon protection tag (ptag) to define and

join a CDM. For user-space applications, ALPS supplies a ptag value for each job together with the

network adapter that the processes on the local node can use. This information is available in the

ugnidev device initialization as part of the procedure described in the previous section, in which

the required data is first obtained from ALPS/PMI and then is set up by the FastMPJ runtime.

Therefore, ugnidev first creates a CDM using the ptag value provided by the FastMPJ runtime,

and then attaches the CDM to the available network adapter. All the processes of the job must sign

on to the CDM, as any attempt to communicate with a process outside of the CDM generates an

error. In addition, each process must supply a 32-bit instance identifier which is unique within the

CDM. The rank of the process within the global MPJ communicator (i.e., MPI.COMM WORLD)

is used for this purpose. After this step, ugnidev is able to create the CQs and register memory

with the CDM. Having completed this sequence of steps, all processes can initiate communications.

These operations are all asynchronous, with CQEs being generated when an operation or sequence

of operations has been completed.
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5.4. Communication protocols

The ugnidev device implements all communication operations as non-blocking primitives through

native methods in JNI. Blocking communication support is therefore implemented as a non-blocking

primitive followed by a wait-like call. A message in ugnidev consists of a header plus user data

(or payload). The message header includes the source identifier, the message size, the message tag

and control information (e.g., message type).

As mentioned in Section 5.1, two mechanisms are provided to transfer data using uGNI: FMA

and BTE. It is clear that efficiently transferring message data requires to select the best mechanism

based on the message size and the overhead associated with each one. Thus, the ugnidev device

implements two different communication protocols, which are widely extended in message-passing

libraries:

1. Eager protocol: the sending process eagerly sends the entire message to the receiver, on the

assumption that the receiver has available storage space. This protocol is used to implement

low-latency message-passing communications for short messages (see Section 5.5).

2. Rendezvous protocol: this protocol negotiates, via special control messages, the buffer

availability at the receiving side before the message is actually transferred. This protocol

is used for transferring long messages, whenever the sender is not sure whether the receiver

actually has enough buffer space to hold the entire message (see Section 5.6).

The maximum message size that can be sent using the eager protocol is a configurable runtime

option of ugnidev that serves as a threshold for switching from one protocol to another. By default,

the value of this threshold is set to 16 KB. The benefits of these protocols on the performance

of MPJ applications can be significant. On the one hand, the eager protocol reduces the start-up

latency, allowing Java applications with intensive short-message communications to increase their

scalability. On the other hand, the rendezvous protocol maximizes communication bandwidth, thus

reducing the overhead of message buffering and network contention.

5.5. Eager protocol

The eager protocol of ugnidev has been implemented using two different paths depending on the

message size. The first path uses the FMA SMSG facility, as it provides the highest performance in

terms of latency and short-message rates, but comes at the expense of memory usage. Although

the FMA MSGQ messaging protocol can be more scalable in terms of memory usage, it was

discarded because provides lower performance than SMSG, particularly in terms of short-message

rate. Additionally, the maximum message size that can be sent using MSGQ is limited to 128 bytes.

In theory, SMSG can be used to deliver messages up to 64 KB, but owing to memory footprint

constraints and performance considerations, the practical upper limit is usually lower.

Figure 3 shows the operation of the FMA SMSG path. In this path, each process creates and

registers with the network adapter per-process destination buffers called mailboxes (MB in the

figure). During a message transfer, the sender directly writes data to its designated mailbox at the

receiving side (step 1 in Figure 3). Next, the received data is copied out from the mailbox to the

application buffer provided by the user (step 2). SMSG handles the delivery to the remote mailbox

and raises both a local and remote CQE on the sending and receiving sides, respectively, upon

successful delivery. SMSG transactions are a special class of RDMA PUT operations which require

remote buffer memory registration, but not local memory registration, which allows to send the

data directly from the application buffer. Additionally, SMSG allows to specify a header separately

from the message payload to be sent. Every send request of ugnidev has been defined with a

small buffer (16 bytes) that contains the message header, which is not shown in the figure for clarity

purposes. However, using the SMSG protocol requires a significant amount of registered memory

resources which scale linearly with the number of processes in the job. To alleviate this problem,

SMSG is only used for communications up to a certain small message size, which is a configurable

runtime option. By default, the maximum message size that can be sent using SMSG varies with

the job size, with smaller mailboxes being used as the job size increases, in order to decrease the
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Figure 3. First path of the eager protocol in ugnidev

amount of memory used for SMSG mailboxes for larger jobs (see table in Figure 3). Above this

size, but below the rendezvous limit (16 KB by default), ugnidev switches to the second path that

is implemented using both FMA DM and BTE mechanisms, which require the memory addresses

and handles of the send and receive buffers. Therefore, this path uses a small shared pool of pre-

registered buffers as opposed to the per-process mailboxes of the FMA SMSG path. Each buffer is

large enough to contain an entire eager message. These buffers are used in a copy in/out fashion

(from/to application buffer), as the overhead of data copies is small for short messages. Since the

entire pool is pre-registered during the initialization of the ugnidev device, there is no additional

registration overhead for each message.

Figure 4 illustrates the operation of the second path. As can be seen in the left part of the figure,

the sending process reserves one buffer from the pool and copies the user data in it (step 1). Next,

a control message (EAGER GET INIT) that includes buffer information is sent to the receiver

through the FMA SMSG path (step 2). All control messages of ugnidev are small enough to

be sent using the SMSG path. Once the receiving side has processed the control message, a buffer

is reserved from the pool and, based on the message size, either FMA DM or BTE is used to initiate

an RDMA GET of the message data from the sender’s memory (step 3). Once the receiving process

completes the GET operation, it sends an EAGER GET END message to the sender to complete the

message transfer (step 4). Upon receipt of this message, the sender marks the message as complete

and puts the buffer back to the pool. The receiver will copy the data out from the buffer in the pool

to the application buffer when a recv operation matches the corresponding send (step 5). The choice

between using FMA DM or BTE is also configurable via a runtime option. By default, messages up

to 2 KB are sent using the FMA DM hardware, while BTE is more suitable for longer transfers, as

mentioned in Section 5.1.

However, current Gemini/Aries network adapters impose some buffer size or alignment

restrictions for GET operations. Specifically, data transfers using GET require that the data buffer

at both sides be a multiple of 4 and 4-byte aligned. When buffer size and alignment restrictions are

not met, ugnidev uses a PUT-based eager protocol (see right part of Figure 4). If the alignment

violation occurs at the sending side, an EAGER PUT INIT message is used after step 1 to express

the intent to send an eager message using this protocol (step 2). When the receiver has processed this

message and has taken a buffer from the pool, it replies to the sender with an EAGER PUT RTR

message to express that is ready to receive the data (step 3). Upon receiving this message, the sender

uses the buffer information that is included in the control message to send the data using an RDMA

PUT operation (step 4). If the alignment violation occurs at the receiving side, the receiver sends an

EAGER PUT RTR message to the sender in response to the initial EAGER GET INIT, including

information of the receive buffer. Next, the sender proceeds as before and uses RDMA PUT to send

the data. Once the PUT operation is complete, the sender sends an EAGER PUT END message in

both cases to indicate the completion of the message transfer at the receiving side (step 5). Thus,

the receiver is ready to copy the data out from the buffer in the pool to the application buffer if the

corresponding recv operation has been called (step 6).

One clear advantage of the GET-based eager protocol over the PUT-based is that the latter

requires one extra control message, which increases the protocol overhead. Additionally, the GET-

based protocol can offer better computation-communication overlap since the receiver can progress

independently of the sender once the EAGER GET INIT message is sent. In order to achieve the

lowest latency for short messages, the GET-based protocol is always used when possible, whereas
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Figure 4. Second path of the eager protocol in ugnidev

the PUT-based path only acts as a fallback protocol due to the alignment restrictions of GET

operations.

5.6. Rendezvous protocol

The rendezvous protocol is used for delivering messages exceeding the eager message size

threshold. When transferring long messages it is extremely beneficial to avoid extra data copies

through a zero-copy protocol. The zero-copy protocol of ugnidev first negotiates the buffer

availability at the receiving side using control messages. Thus, the application buffers are registered

on-the-fly and the buffer addresses are exchanged via control messages. However, the actual data

can be transferred by using either RDMA GET or PUT. The efficiency of the RDMA GET operation

in Gemini/Aries is sensitive to the alignment of the send and receive buffers, and better performance

is obtained when these buffers start at the same relative offset into a cache line. However, RDMA

PUT operations are much less sensitive to alignment and thus usually provide higher bandwidth

than RDMA GET, especially for the long messages used in the rendezvous protocol. Hence,

ugnidev employs a GET-based path up to a certain message size in order to benefit from its

better computation-communication overlap capabilities, and a PUT-based path for longer transfers.

The threshold for switching from using RDMA GET to PUT is also a configurable runtime option,

set to 64 KB by default. Additionally, the PUT-based path must also be used when buffer size and

alignment restrictions of GET operations are not met, as occurred in the eager protocol.

In the GET-based path (left part of Figure 5), when a sending process is ready to send a long

message, it first registers the application buffer (step 1) and then sends a RNDZV GET INIT

message to the receiving process (step 2). This control message, in addition to expressing the intent

to send the message, also provides the receiver with information of the send application buffer for

performing an RDMA GET operation. Once the receiver is prepared to receive the message (i.e., the

corresponding recv operation has been issued and the receive buffer has been registered in step 3),

an RDMA GET operation is initiated to access the message data directly from the send buffer (step

4). As occurred in the eager protocol, this GET operation can be done using either FMA DM or

BTE, depending on the value of the corresponding threshold. However, with the default settings all

the rendezvous transactions will use the BTE hardware, as it is the highest performance option for

long messages. Next, a RNDZV GET END message is sent to the sending process once the GET

operation has finished at the receiving side (step 5). Finally, buffers are unregistered at both sides

(step 6).

The PUT-based path (right part of Figure 5) is implemented as a seven-step protocol which starts

when the sending process sends a RNDZV PUT INIT message to the receiver after the registration

of the send buffer (steps 1 and 2). Once the receiver is prepared to receive the message, it registers

the application buffer (step 3) and replies with a RNDZV PUT RTR message to express that is ready

to receive the data (step 4). This reply message contains the information of the receive application

buffer to access that memory region. Upon receiving this control message, the sender directly writes

data to the target receive buffer by using a PUT operation (step 5). After this operation is finished,

a RNDZV PUT END message is sent to indicate the completion of the message transfer at the

receiving side (step 6), and finally buffers can be unregistered (step 7).
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5.7. Registration cache

When using the rendezvous protocol, application buffers are registered/unregistered on-the-fly

causing a performance penalty, especially for very long-message transfers. However, the overhead

of the memory registration/unregistration can be hidden or at least reduced by using the pin-down

cache technique [51]. The idea is to maintain a cache of registered buffers; thus, when a buffer

is first registered it is put into the cache, and when the buffer is unregistered the actual unregister

operation is not carried out and the buffer stays in the cache. Hence, the next time the buffer needs

to be registered, no operation is performed because it is already in the cache. The effectiveness

of this technique heavily depends on how often the application reuses its buffers. If the reuse rate

is high, most of the buffer registration and unregistration operations can be avoided. By default,

the ugnidev device uses the registration cache, which can be disabled via a configurable runtime

option.

6. EFFICIENT SUPPORT FOR RDMA ADAPTERS BASED ON VERBS: IBVDEV

The ibvdev device is a low-level message-passing device for communication on InfiniBand (IB)

systems. This device directly implements its communication protocols on top of the Verbs interface

through JNI. An initial proof of concept implementation of ibvdev was first integrated into the

MPJ Express library [10] for internal testing purposes, as it was never part of the official release.

Although it was able to provide higher performance than using the IPoIB protocol, the buffering

layer in MPJ Express significantly limited its performance and scalability. Next, the ibvdev device

was reimplemented to conform with the xxdevAPI and adapted for its integration into the FastMPJ

middleware in order to improve its performance.

However, the ibvdev device still presents two important limitations: (1) it does not include

support for the RDMA Communication Manager (RDMA CM), relying instead on TCP sockets

to exchange the necessary information for establishing the initial connections between processes

during the initialization method. This causes ibvdev to only work on IB adapters, thus not

supporting the remaining RDMA-compliant adapters based on the Verbs interface: iWARP and

RoCE; and (2) it does not take advantage of the inline feature that is provided by some RDMA

adapters to improve the latency of short messages. Currently, ibvdev has overcome these

constraints by establishing initial connections through RDMA CM and implementing a more

efficient eager protocol that uses the inline feature. The new connection setup using RDMA

CM allows ibvdev to support iWARP and RoCE networks while avoiding any TCP processing

overhead during the initialization method. These new features in ibvdev will be discussed in the

next sections.

6.1. Eager protocol optimization

The ibvdev device implements both the eager and rendezvous protocols relying on the Reliable

Connection (RC) transport service defined in Verbs, which provides reliability, delivery order and
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data loss and error detection. The eager protocol of ibvdev is illustrated in Figure 6. In the original

implementation, the buffer registration/unregistration overhead is avoided by using a shared pool of

pre-registered, fixed size buffers for communication. For sending an eager message, the user data

along with the message header are first copied to one of the available buffers from the pool (step

1 of the figure). Next, it is sent out from this buffer to the Send Queue (SQ) of the corresponding

Queue Pair (QP). This is done by using the ibv post send() function (step 2), which posts a Work

Request (WR) to the SQ. At the receiving side, a number of buffers from the pool are pre-posted in

the Receive Queue (RQ) using ibv post recv() (step 0). This function, which posts a WR to the RQ,

is the receiving counterpart of ibv post send(). Once the message is received through the network

(step 3), the message payload is copied out to the user destination buffer (step 4) and the receive

buffer is returned back to the pool.

However, this implementation does not take advantage of sending data as inline, a feature that is

supported by some modern RDMA adapters. Using this feature, the memory buffer that holds the

message is placed inline in the WR posted to the SQ. This means that the CPU (i.e., not the RDMA

adapter) will read the data from the buffer. Therefore, the data is transferred to the adapter at the

same time that ibv post send() transfers the WR. The main benefit is that sending short messages as

inline provides lower latency since it eliminates the need of the RDMA device to perform an extra

read over the PCIe bus in order to read the message payload. In addition, the memory buffer used

for communication at the sending side does not have to be registered with the RDMA adapter.

The inline feature is an implementation extension not defined in the RDMA specification. Hence,

there is not any defined verb that specifies the maximum message size that can be sent inline in

the SQ of a QP. In some RDMA adapters with this feature, creating a QP will set the value of the

max inline data attribute to the message size that can be sent as inline (usually less than 1 KB). In

other adapters, the message size to be sent inline must be explicitly specified before the creation of

a QP. In the latter case, the maximum value supported by the RDMA adapter is calculated during

the initialization method of ibvdev following an iterative approach, which first creates a dummy

QP specifying a high initial value, and then continues to decrease if the QP creation fails. When the

QP creation is successful, the inline size of the dummy QP is used to create all the QPs needed for

establishing the connections between processes.

In the original implementation of ibvdev, when a WR is posted to the SQ, the buffer that holds

the message can not be modified since it is not possible to know when the RDMA adapter will

stop reading from it. That is to say, the WR is considered outstanding until a completion event

is raised, which means that the buffer can now be reused. However, when using inline data the

buffer can be reused immediately after ibv post send() is finished, since the data has been already

transferred to the RDMA adapter. This allows to have a single dedicated buffer to send inline data

to all processes. Therefore, the pool of pre-registered buffers can be bypassed when using the new

implemented path: if the message is small enough to be sent inline, the message header and payload

are now copied to a dedicated buffer (step 1’ in Figure 6) and then sent out from this buffer to

the SQ using ibv post send() with the appropriate flags (step 2’). As mentioned before, this path

reduces the latency of short messages, between 15-20% according to our tests, although the actual

latency reduction heavily depends on the underlying RDMA adapter and CPU used. Additionally,
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it allows more buffers to be available to send messages through the original path if the message

size is above the inline value, but below the rendezvous limit. Furthermore, all control messages of

the rendezvous protocol can take advantage of this optimization, as they are small enough to be sent

inline. This also contributes to increase the number of outstanding WRs that can be posted to the SQ

at a time, which improves the overall efficiency of the RDMA adapter while memory consumption

remains almost the same (only one additional buffer is needed). Note that this optimized path is only

relevant at the sending side, as the receiver is not aware of the fact that a WR is sent inline.

6.2. RDMA CM-based connection setup

The basic communication in ibvdev is achieved over connected QPs using the RC transport

service. In the initialization method, an RC-based QP connection is established between every

two processes (see Figure 6). To enable data transfers, each QP needs to be set up and must be

transitioned through an incremental sequence of states. In order to transition into the final connected

state, some information from the remote process is required: (1) the number of the remote QP

to connect with (this value is returned at QP creation); and (2) the Local IDentifier (LID) of the

remote process, which is a unique 16-bit address assigned to end nodes by the subnet manager.

This information needs to be exchanged through some out-of-band mechanism. As a first step,

the original initialization method of ibvdev uses sockets to set up a TCP connection between

every two processes. Second, the necessary information is exchanged through TCP sockets. Third,

the QPs are transitioned and connected to each other. Finally, the TCP connection is closed. The

described connection setup works perfectly on IB adapters, which was the main goal of the original

implementation of the device. However, it poses an important drawback: the iWARP protocol

requires RDMA CM to establish connections, which prevents ibvdev from working on iWARP

adapters. Another drawback is the additional TCP connection that is established in advance to

initialize the device, which can add a noticeable delay and TCP processing overhead on IB adapters

when using a high number of processes. These issues have been overcome by implementing an

alternative connection method using RDMA CM.

RDMA CM is an abstraction layer for connection management defined by the OpenFabrics

Alliance (OFA) [20], designed to establish connections between the QPs of a pair of processes.

In fact, it is an event-driven connection manager based on a high-level IP address/port number

abstraction that can set up connections over the multiple RDMA networks supported by Verbs, but is

only mandatory for iWARP. The main responsibilities of RDMA CM include exchanging necessary

connection information and transitioning the QPs through their states into the connected state, thus

avoiding the additional TCP connection of ibvdev. It is to be noted that RDMA CM sets up

the connections in a traditional client-server mechanism. Therefore, the API is based on sockets, but

adapted for QP-based semantics: communication is over a specific RDMA device, and data transfers

are message-based. RDMA CM provides only the communication management functionality (i.e.,

connection setup and teardown), and works in conjunction with the Verbs interface for data transfers.

The initialization method of ibvdev has been modified to use the RDMA CM manager in

order to automate and simplify the connection setup. As mentioned before, RDMA CM uses the

traditional TCP style, client-server mechanism to set up connections. Due to this, all the process

pairs need to be separated into client-server pairs before any setting up of connections. For every

pair of processes, the process with the lower rank takes the role of server (passive side or responder),

and the process with the higher rank takes the role of client (active side or initiator). The main

steps to complete the connection setup using RDMA CM are shown in Figure 7, as follows.

(1) Each process identifies the port and IP address based on the RDMA adapter to use. This is

accomplished via the information provided by the FastMPJ runtime to the ibvdev device. (2) Both

sides allocate a communication identifier via rdma create id(), which is conceptually equivalent to

a socket for RDMA communication. (3) The server must bind the RDMA identifier to a source

address and listen for incoming connection requests. In the case of a client, it first resolves the

server address and then allocates a new RDMA connection (i.e., a QP) via the rdma resolve addr()

and rdma create qp() functions, respectively. (4) The client sends a connection request to the server

using rdma connect() after having resolved the destination route. (5) When the request is received
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at the server side, the responder then allocates a new RDMA connection and uses rdma accept()

to confirm the connection to the client. (6) The connections are established internally by RDMA

CM, exchanging the necessary information and transitioning the corresponding QPs through their

sequence of states. (7) The final transition into the connected state is detected via an event at both

sides, which completes the establishment of the RDMA connection. (8) At this point, the processes

synchronize with a barrier to make sure that all the peer processes are ready for communication.

These steps are repeated for the setup of each of the QPs between a pair of processes. The overall

procedure can be done concurrently due to the event-driven nature of the connection manager.

As mentioned before, the RDMA CM-based connection setup allows ibvdev to provide

support for iWARP adapters while leveraging the existing communication protocols of the device.

Additionally, as RDMA CM is also valid for RoCE adapters, ibvdev now supports all RDMA-

compliant adapters based on Verbs: IB, iWARP and RoCE. The original TCP-based connection

setup is still interesting to be supported as it serves as a fallback option in case of any issue with

RDMA CM or even if it is not available in the system. Although the TCP-based approach can not

work on iWARP since RDMA CM is mandatory for this network, its support for RoCE has also

been implemented, as described next.

The OFA specifies that Verbs applications which run over IB/iWARP should work on RoCE

as long as the Global Routing Header (GRH) information is provisioned when creating Address

Handles (AH). The GRH is required for routing between subnets and is optional within IB/iWARP

subnets. However, RoCE encapsulates the IB transport and GRH headers in Ethernet packets bearing

a dedicated ether type. In this case, the GRH is used for routing inside the subnet and therefore

is mandatory. The GRH information can be provisioned in the AH of a QP when using the RC

transport. The AH describes the path to the remote QP and is needed to make the transition from the

initial state to the ready-to-receive state. This is the reason why using RDMA CM works seamlessly

on RoCE without any change (QPs are transitioned and set up automatically). However, using the

original TCP-based method the GRH information must be specified manually using the Global

IDentifier (GID) of the remote process, which is a unique 128-bit address used to identify a port on

a network adapter that is assigned by the subnet manager. Hence, this method has been modified

as follows. First, each process has to query its GID via ibv query gid(). Next, this value needs to

be exchanged with the remote process along with the previously required information (LID and QP

number). Once the TCP communication phase has been completed, the required GRH information

for RoCE can be provisioned in the AH of each QP using the remote GID value. Finally, each QP

can be transitioned through the required sequence of states as occurred in the original TCP-based

implementation.

To sum up, the ibvdev device currently provides full support for IB, iWARP and RoCE through

the new RDMA CM-based connection setup and, as a fallback option, IB and RoCE are also

supported using the TCP-based approach.
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7. A SPECIFIC DEVICE FOR MELLANOX RDMA ADAPTERS: MXMDEV

Another contribution of this paper is the introduction of the mxmdev device, which provides

native support for the networking infrastructure provided by Mellanox RDMA hardware over

the MellanoX Messaging (MXM) accelerator. MXM is a user-space messaging library that

implements intra-node shared memory and inter-node communication protocols, which are

completely transparent to the application. It includes a variety of enhancements that take advantage

of Mellanox IB/RoCE adapters including proper management of resources and memory structures,

efficient memory registration, handling of transport services and a tag matching mechanism at the

receiving side. Hence, many of the low-level network features are built-in in MXM, which allows

developers to work at a higher level and the main effort to be spent on the overall application

development.

Therefore, the most important benefit of MXM is that it provides the developer with a higher level

API than Verbs, based on a set of communication primitives with messaging semantics that eases

the development of applications on top of the Mellanox RDMA hardware. However, MXM is not

primarily intended for use by end-user applications. Instead, portable communication middleware

(e.g., message-passing libraries) usually provide specific support for MXM, which allows the user

to benefit from a higher level of abstraction without source code modifications. This fact has

motivated the implementation of mxmdev, a new xxdev device layered on top of the MXM library.

FastMPJ with mxmdev provides the programmer with all the high-level features of the MPJ layer

(e.g., collective communications, virtual topologies, intra- and inter-communicators) while taking

advantage of the infrastructure provided by FastMPJ, such as the runtime system. Additionally, it

frees Java developers from the implementation of JNI calls, which is usually a cumbersome and time

consuming development task. Hence, the mxmdev device allows the developer to benefit from the

MPJ programmability, which greatly enhances productivity without trading off much performance.

7.1. Connection setup

The MXM library is initialized using the mxm init() method. Next, the connection setup must

be carried out in order to enable communications. In MXM, messages are exchanged between

endpoints, which are software representations of the Mellanox IB/RoCE adapters. At present, MXM

does not include any communication manager to ease the connection setup. Thereby, in order to

establish the initial connections between endpoints, the mxmdev device has to rely on an out-

of-band mechanism to distribute the endpoint addresses between all the processes. Hence, each

process first creates and sets up an endpoint using the mxm ep create() function. After initializing

endpoints, a Matched Queue (MQ) interface is created via mxm mq create(). Basically, an MQ is

a specific context of sending and receiving messages which maintains ordering between requests.

It exposes a simplified messaging interface that resembles an MPI communicator, but supporting

only basic point-to-point communications. Next, the endpoint addresses are exchanged between all

processes relying on TCP sockets, selected as the ubiquitous out-of-band mechanism. Finally, the

mxm ep connect() function must be used to establish the endpoint connections with the information

gathered from the TCP communication phase, thus enabling data transfers.

7.2. Basic communication operation

The MXM library provides a C-based API which includes a small set of point-to-point

communication primitives similar to those needed to implement the xxdev interface (see

Section 4). Thus, mxmdev acts as a thin wrapper over the MXM library, so that the implementation

of a method in xxdev generally delegates directly in a native method that performs the requested

operation in MXM through JNI. Therefore, mxmdev deals with the marshaling and communication

of Java objects, the JNI transfers and the handling of MXM parameters, by implementing a series

of three steps: (1) get the associated parameters of the Java objects that are required for calling

the corresponding function in MXM; (2) call the MXM function; and (3) save the results in the

appropriate attributes of the Java objects involved in the communication. As a general rule, the
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caching of object references has been extensively used in the implementation of the JNI layer, thus

minimizing the overhead associated with the JNI calls.

Every message operation in MXM, either sending or receiving, starts with a non-blocking

communication request (e.g., mxm req send()). This request is queued by MXM, returning the

control to mxmdev. Next, the mxmdev device is responsible for checking the successful completion

of the communication operation using one of the supported mechanisms in MXM (e.g., mxm wait(),

mxm req test()). The MXM tag matching mechanism at the receiving side is based on a 32-bit

value (mxm tag t), which must be specified by both communication peers in order to deliver

incoming messages to the right receive requests. The tag value specified by the programmer at

the corresponding MPJ-level method (e.g., MPI.COMM WORLD.Send()) is used for this purpose.

Hence, incoming MXM messages are stored according to their MPJ tags to pre-posted receive

buffers. In this case note that, unlike the ugnidev and ibvdev devices, the underlying

communication protocols are implemented internally by MXM. Currently, MXM includes both

intra-node (via shared memory) and inter-node communication protocols, which allows MPJ

applications to take full advantage of hybrid shared/distributed memory architectures, widely

extended nowadays.

8. PERFORMANCE EVALUATION

This section presents a performance evaluation of the FastMPJ communication devices presented

in this paper: ugnidev, ibvdev and mxmdev. The experimental results have been obtained

at the MPJ API level in order to analyze the impact of their use on the overall middleware

performance. Hence, FastMPJ (labeled as FMPJ in the graphs) has been evaluated comparatively

with representative MPJ middleware: Open MPI Java [45] and MPJ Express [46]. First, this section

includes a micro-benchmarking of point-to-point communication primitives on several RDMA

networks (Section 8.1). Next, the impact of the communication devices on the overall application

performance of representative parallel Java codes is analyzed (Section 8.2).

8.1. Micro-benchmarking of point-to-point primitives

The goal of this micro-benchmarking is the comparative performance evaluation of Java point-to-

point communications between two nodes across different RDMA networks (i.e., inter-node latency

and bandwidth). This evaluation has been carried out using our own MPJ micro-benchmark suite.

This suite is the MPJ counterpart of the Intel MPI Benchmarks (IMB) [52], widely used for MPI

libraries, and tries to adhere to its measurement methodology. Here, the metric shown is the half

of the round-trip time of a ping-pong test for short messages (up to 1 KB), and the corresponding

bandwidth for longer messages (up to 16 MB). In order to obtain optimized JIT compiled bytecode

results, 20,000 warm-up iterations have been executed before the actual measurements. The results

shown are the average of 10,000 iterations, although the observed standard deviations were not

significant. The transferred data are byte arrays, avoiding the Java serialization overhead that would

distort the analysis of the results.

As most Java communication middleware (e.g., RMI) is based on sockets, the standard Java

socket implementation of the JVM has also been evaluated for comparison purposes (labeled as

JVM Sockets in the graphs). The NetPIPE benchmark suite [53] has been selected since its Java

socket implementation performs a ping-pong test similar to the one used for the MPJ point-to-point

benchmarking, and so the results are directly comparable.

8.1.1. Experimental configuration. Two different systems have been used in the evaluation of point-

to-point primitives. The first testbed consists of two nodes, each of them with one Intel Xeon E5-

2643 quad-core Sandy Bridge-EP processor at 3.3 GHz and 32 GB of memory. These nodes have

been used to evaluate three different RDMA networks: IB (Mellanox MT27500 4x FDR, 56 Gbps),

RoCE (Mellanox MT27500, 40 Gbps) and iWARP (Intel NetEffect NE020, 10 Gbps). Hence, this

testbed allows the evaluation of the ibvdev device on IB, RoCE and iWARP, while mxmdev can
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be assessed on IB and RoCE. Regarding software configuration, the OS is Linux CentOS 6.4 with

kernel 2.6.32-358 and the JVM is OpenJDK 1.7.0 25. Finally, the native communication layers are

OFED driver 3.5-2 and MXM version 1.5.

The second testbed is the Hermit supercomputer installed at the High Performance Computing

Center Sttutgart (HLRS), ranked #39 in the November 2013 TOP500 list [54]. This system is a

petaflop Cray XE6 supercomputer with 113,664 cores and 126 TB of memory. More specifically,

Hermit consists of 3552 compute nodes, each of them with 2 AMD Opteron 6276 16-core Interlagos

processors at 2.3 GHz and 32/64 GB of memory. The nodes are connected via the custom Gemini

interconnect [18], which allows the evaluation of the ugnidev device. This network has a 3D

torus topology built from Gemini Application-Specific Integrated Circuits (ASICs) that provide 2

network adapters and a 48-port router. Hence, each ASIC connects two nodes to the network. In the

ping-pong test, two adjacent nodes (i.e., connected to the same ASIC) have been used in order to

report the lowest latencies and highest bandwidths for inter-node communications (i.e., results are

shown using the minimum hop network count). Regarding software settings, this system runs CLE

version 4.1.UP01 with kernel 2.6.32.59, which is an OS based on SUSE Linux Enterprise Server.

The JVM is Oracle JDK 1.7.0 45 and the uGNI library version is 4.0-1. This supercomputer is also

one of the systems selected for the analysis of performance scalability of parallel Java applications

(shown in Section 8.2).

Regarding the Java middleware under comparison, MPJ Express has been evaluated using the

NIO-socket device (niodev) over the corresponding TCP/IP transport layer on each testbed (e.g.,

IPoIB, IPoGIF). Furthermore, its results on the Cray supercomputer have been obtained under the

CCM execution environment, as MPJ Express lacks native support for Cray ALPS in order to run

under the ESM mode (see Section 5.2). Open MPI Java has been configured with the openib

BTL, which is implemented over Verbs on IB, RoCE and iWARP networks. The results using the

mxm MTL, implemented over MXM, are not shown for clarity purposes, as we have checked that

the openib BTL generally obtains better performance than the mxm MTL. Unlike MPJ Express,

Open MPI Java can benefit from its specific support for the Cray machine, which allows to use the

ESM mode and the uGNI library via the ugni BTL. Finally, the evaluation of Java sockets has also

been assessed at the corresponding TCP/IP layer, as occurred with MPJ Express, due to the lack of

RDMA network support in the JVM.

8.1.2. Analysis of the results. Figure 8 shows point-to-point latencies and bandwidths on IB,

RoCE, iWARP and Gemini networks. The latency graphs (at the left) serve to compare short-

message performance (up to 1 KB), whereas the bandwidth graphs (at the right) show long-message

performance (up to 16 MB).

The performance results on IB reveal that both FastMPJ devices (i.e., ibvdev and mxmdev)

obtain the lowest start-up latencies, around 1 µs, as compared to 2.7 µs for Open MPI Java, showing

an overhead reduction of approximately 62%. JVM sockets show significantly poorer latencies

than FastMPJ and Open MPI Java, around 10 µs, as they rely on the IPoIB layer. MPJ Express

presents the poorest performance (18 µs), incurring a significant overhead of 8 µs over the JVM

performance. Regarding bandwidth, the FastMPJ ibvdev device obtains the best performance with

up to 47 Gbps, whereas the maximum bandwidth for mxmdev is around 43 Gbps. FastMPJ clearly

outperforms the other middleware for long messages, achieving up to 5 times higher performance

than MPJ Express (8.8 Gbps), which suffers significantly from the lack of specialized support on IB

and from the high overhead of its buffering layer. In fact, JVM sockets show approximately twice

the bandwidth (16.1 Gbps) obtained by MPJ Express, whereas Open MPI Java incurs a noticeable

wrapping overhead from 256 KB, showing a long-message bandwidth similar to JVM sockets.

The analysis of the performance results on RoCE shows a very similar pattern. On the one hand,

FastMPJ devices obtain slightly higher latencies than on IB, around 1.15 µs, outperforming Open

MPI Java (2.8 µs), while the sockets-based approaches (i.e., JVM and MPJ Express) do not show

any significant difference compared to IB results. On the other hand, the maximum bandwidths

obtained by ibvdev and mxmdev are 36.6 and 35.7 Gbps, respectively, up to 2 times higher

performance than JVM sockets (19.1 Gbps) and quite close to the 40 Gbps limit for this networking
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Figure 8. Performance of Java point-to-point communications on RDMA-enabled networks
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technology. In fact, these results confirm that RoCE is able to provide IB-like latencies on the

Ethernet infrastructure, while the maximum bandwidth of the RoCE adapters is increasing and

approaching IB. Both Open MPI Java and MPJ Express incur once again a high wrapping overhead

and buffering penalty, respectively, which penalizes especially long-message performance.

The start-up latencies obtained on iWARP are relatively high, at least compared with those

on IB and RoCE. This fact suggests that the TCP/IP processing overhead seems to be the main

performance bottleneck for short-message performance, even though it is offloaded onto the

iWARP hardware. In fact, FastMPJ using ibvdev and Open MPI Java achieve similar latencies,

around 8 µs, while the sockets-based approaches obtain 15 and 24 µs for JVM and MPJ Express,

respectively. Regarding bandwidths, FastMPJ presents the best performance, achieving up to 9.2

Gbps, although followed closely by JVM sockets (8.8 Gbps). Here, the iWARP network, with a

theoretical maximum bandwidth of 10 Gbps, turns out to be the main performance bottleneck for

long-message performance on this scenario.

Finally, the performance results on the Cray Gemini interconnect show that the start-up latencies

of the ugnidev device are around 1.45 µs, followed by Open MPI Java (4.9 µs) and JVM sockets

(10.4 µs). This means that FastMPJ is able to provide a reduction of the communication overhead

for short messages of up to 70% compared to Open MPI Java. MPJ Express, which obtains 30.5 µs,

imposes an overhead on the start-up latency of around 20 µs over the JVM performance, a value even

higher than on the previous scenarios. It can be observed that the performance increase of ugnidev

for long-message bandwidth is up to 275% with respect to the second-best option, a result obtained

for 4 MB messages, where FastMPJ achieves 49.2 Gbps and Open MPI Java is limited to around

13.1 Gbps. Furthermore, both sockets-based approaches present the poorest bandwidth results, up to

9.3 and 4.4 Gbps for JVM sockets and MPJ Express, respectively. Noted that, as mentioned before,

both approaches must resort to the CCM mode in order to be executed on the Cray machine.

The micro-benchmarking of point-to-point communications has shown significant performance

improvements using the communication devices presented in this paper. However, their usefulness

depends on their impact on the overall application performance, as will be analyzed next.

8.2. Performance analysis of parallel Java codes

This section presents the analysis of the performance scalability of representative Java HPC kernels

and applications. On the one hand, two kernels from the NAS Parallel Benchmarks (NPB) [55]

implementation for MPJ (NPB-MPJ) [56] have been evaluated (Section 8.2.2): FT (Fourier

Transform), and MG (Multi-Grid). On the other hand, the scalability of an MPJ version of the

Finite-Difference Time-Domain (FDTD) method [57], which is a widely used numerical technique

in computational electromagnetics, has been analyzed at the application level (Section 8.2.3). The

selection of these parallel codes has been motivated by their high communication intensiveness,

which allows the assessment of the impact of the developed communication devices on their

scalability.

8.2.1. Experimental configuration. The experimental results have been conducted on two systems.

The first testbed is Pluton, a 16-node multi-core cluster. Each node has 2 Intel Xeon E5-2660 octa-

core Sandy Bridge-EP processors at 2.2 GHz (hence 16 cores per node) and 64 GB of memory. The

performance results have been obtained using 16 processes per node (i.e., 256 cores in total), since

we have checked that the use of 32 processes per node when resorting to Hyperthreading does not

provide any performance benefit for the evaluated codes. The nodes of Pluton are interconnected

via IB (Mellanox MT27500 4x FDR, 56 Gbps), which allows the assessment of the ibvdev and

mxmdev devices. Regarding software configuration, the OS is Linux CentOS 6.4 with kernel 2.6.32-

358 and the JVM is OpenJDK 1.7.0 25. Finally, the native communication layers are OFED driver

3.5-1 and MXM version 2.0.

The second testbed is Hermit, the Cray XE6 supercomputer described in Section 8.1.1. The AMD

processor of Hermit has a quite complex architecture that provides up to 16 integer cores and 8 256-

bit Floating Point Units (FPUs) per chip. A dual-processor node can provide up to 32 integer cores

that access the half of the FPU executing 128-bit instructions, or 16 integer cores accessing the entire
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(b) NPB-MPJ class C results on the Cray XE6 supercomputer (Hermit)

Figure 9. Scalability of Java HPC kernels

FPU with 256-bit instructions. This is because each FPU is shared between the two integer cores of a

Bulldozer module, which is the building block of this architecture. Therefore, the results are shown

using 16 processes per node (i.e., one process per Bulldozer module) in order to maximize the FPU

performance on this system. We have experimentally checked that this configuration obtains the

best performance for the evaluated codes, which carry out extensive double-precision floating-point

operations, and thus the results using 32 processes per node are not shown for clarity purposes.

Moreover, the reported results for a given application and core count were obtained within a single

resource allocation to minimize timing differences due to node placement.

Regarding the Java middleware, the MPJ Express results have been obtained on both systems

using the hybrid device, which allows to combine simultaneously the NIO-socket device

(niodev) for inter-node communications and the multithreaded device (smpdev) for intra-node

communications. Regarding Open MPI Java, it has been configured on Pluton with the openib

BTL for inter-node communications and the sm BTL for intra-node communications, whereas the

ugni and vader BTLs have been used on Hermit for inter- and intra-node communications,

respectively.

8.2.2. MPJ Kernel Performance Analysis. Figure 9 presents the performance results in terms of

speedups for the NPB-MPJ FT and MG kernels (with class C workload) on Pluton and Hermit

using up to 256 and 2048 cores, respectively. Regarding the results on Pluton (see Figure 9(a)),

FastMPJ using ibvdev shows the highest speedups for the FT kernel from 32 cores on, obtaining a

speedup above 130 on 256 cores and outperforming Open MPI Java up to 30%. Regarding FastMPJ

with the mxmdev device, it achieves very similar speedups to Open MPI Java: 102 and 99 on 256

cores, respectively. MPJ Express presents poor scalability from 32 cores, as a direct consequence of
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(a) MPJ FDTD results on the multi-core cluster (Pluton)
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(b) MPJ FDTD results on the Cray XE6 supercomputer (Hermit)

Figure 10. Scalability of the FDTD parallel Java application

its current limitations (e.g., the use of sockets and IPoIB in its communication layer, among others).

The reported speedups for MG are quite similar for FastMPJ and Open MPI Java, around 133 on 256

cores. This fact suggests that the memory access bandwidth turns out to be the main performance

bottleneck for this kernel on Pluton. MPJ Express shows again the poorest speedups, below 60 on

256 cores (around 2 times lower than FastMPJ).

The analysis of the results on Hermit (see Figure 9(b)) shows that the use of the ugnidev

device allows FastMPJ to become the best performer for both kernels. Regarding FT results, it can

be observed that FastMPJ outperforms Open MPI Java especially from 256 cores on, obtaining a

speedup increase of up to 28% on 2048 cores. The peak speedup values for the MG kernel are

achieved on 1024 cores both for FastMPJ and Open MPI Java, where ugnidev provides FastMPJ

with a speedup increase of 32%. As can be observed, the scalability of the MG kernel degrades from

2048 cores. The results for MPJ Express are shown only up to 512 cores due to the limited number

of cores that can be used under the CCM mode on Hermit. Nevertheless, this limitation is irrelevant

due to the low scalability obtained by MPJ Express, around 4 times lower than FastMPJ on 512

cores.

8.2.3. Performance Analysis of the MPJ FDTD application. Figure 10 shows the runtime and

speedup results for the MPJ FDTD application on Pluton (Figure 10(a)) and Hermit (Figure 10(b))

using up to 256 and 4096 cores, respectively. This application simulates a Ricker wavelet

propagating in free space surrounded by perfectly electrically conducting walls that reflect

impinging electromagnetic waves. The parallel code is based on a domain decomposition approach

that divides the workload equally among the cores, requiring frequent data transfers between
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processes (mainly point-to-point communications) during the entire simulation. The results are

shown for a simulation of 2,500 time steps using a 16384x8192 grid.

According to the performance results, FastMPJ achieves the highest speedups for the FDTD

code, as shown in the right graphs, especially when using a high number of cores. In particular,

the performance improvements compared to Open MPI Java when using the maximum number of

cores are 24% on Pluton and 40% on Hermit. Note also that the ibvdev and mxmdev devices

achieve very similar scalability results on Pluton. Compared to MPJ Express, FastMPJ increases

speedup up to 151% on Pluton (for 256 cores) and up to 176% on Hermit (for 512 cores). Therefore,

these results reinforce that the use of the developed low-level communication devices can improve

transparently the scalability of parallel Java applications.

9. CONCLUSIONS

RDMA is a well-known mechanism that enables zero-copy and kernel-bypass features, providing

low-latency and high-bandwidth communications with low CPU utilization. However, RDMA-

enabled networks also pose some important challenges (e.g., high programming effort) that

require appropriate middleware support for the development of scalable parallel applications with

underlying hardware transparency. In order to take full advantage of the abundant hardware

resources due to the current trend of increasing the number of cores, applications have to resort

to efficient middleware. Nevertheless, current Java communication middleware is usually based on

protocols with high communication overhead (e.g., sockets-based protocols) which do not provide

scalable communications on RDMA networks.

This paper has described in detail the implementation of several low-latency communication

devices, which have been successfully integrated in our Java message-passing implementation,

FastMPJ. These devices have considered several communication protocols in order to provide

scalable support for RDMA networks, enabling 1-µs start-up latencies and up to 49 Gbps bandwidth

for Java message-passing applications, thanks to the efficient exploitation of the underlying RDMA

hardware. In order to evaluate their benefits, the performance of these devices has been analyzed

comparatively with other Java communication middleware on representative RDMA networks

(IB, RoCE, iWARP, Cray Gemini) and parallel systems (a multi-core InfiniBand cluster and a

TOP500 Cray supercomputer). The analysis of the results has demonstrated experimental evidence

of significant performance improvements when using the developed devices in FastMPJ. In fact,

the scalability of parallel Java codes can benefit transparently from this efficient support on RDMA

networks, reducing the latency by up to 70% and 90%, and increasing the bandwidth by up to 3.6

and 5.1 times compared to Open MPI Java and JVM sockets, respectively. Therefore, the reported

advances in Java communication efficiency can contribute to increase the benefits of the adoption

of Java for parallel computing, in order to achieve higher programming productivity.
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a b s t r a c t

The rising interest in Java for High Performance Computing (HPC) is based on the appealing
features of this language for programming multi-core cluster architectures, particularly
the built-in networking and multithreading support, and the continuous increase in
Java Virtual Machine (JVM) performance. However, its adoption in this area is being
delayed by the lack of analysis of the existing programming options in Java for HPC and
thorough and up-to-date evaluations of their performance, as well as the unawareness on
current research projects in this field, whose solutions are needed in order to boost the
embracement of Java in HPC.

This paper analyzes the current state of Java for HPC, both for shared and distributed
memory programming, presents related research projects, and finally, evaluates the
performance of current Java HPC solutions and research developments on two shared
memory environments and two InfiniBand multi-core clusters. The main conclusions are
that: (1) the significant interest in Java for HPC has led to the development of numerous
projects, although usually quite modest, which may have prevented a higher development
of Java in this field; (2) Java can achieve almost similar performance to natively compiled
languages, both for sequential and parallel applications, being an alternative for HPC
programming; (3) the recent advances in the efficient support of Java communications on
shared memory and low-latency networks are bridging the gap between Java and natively
compiled applications in HPC. Thus, the good prospects of Java in this area are attracting
the attention of both industry and academia, which can take significant advantage of Java
adoption in HPC.

1. Introduction

Java has become a leading programming language soon after its release, especially in web-based and distributed
computing environments, and it is an emerging option for High Performance Computing (HPC) [1,2]. The increasing interest
in Java for parallel computing is based on its appealing characteristics: built-in networking and multithreading support,
object orientation, platform independence, portability, type safety, security, it has an extensive API and a wide community
of developers, and finally, it is themain training language for computer science students.Moreover, performance is no longer
an obstacle. The performance gap between Java and native languages (e.g., C and Fortran) has been narrowing for the past
years, thanks to the Just-in-Time (JIT) compiler of the Java Virtual Machine (JVM) that obtains native performance from Java
bytecode. However, the use of Java in HPC is being delayed by the lack of analysis of the existing programming options in

∗ Corresponding author.
E-mail addresses: taboada@udc.es (G.L. Taboada), sramos@udc.es (S. Ramos), rreye@udc.es (R.R. Expósito), juan@udc.es (J. Touriño), doallo@udc.es

(R. Doallo).

0167-6423/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.06.002

126 Chapter 5. Java in the HPC Arena: Research, Practice and Experience



426 G.L. Taboada et al. / Science of Computer Programming 78 (2013) 425–444

this area and thorough and up-to-date evaluations of their performance, as well as the unawareness on current research
projects in Java for HPC, whose solutions are needed in order to boost its adoption.

Regarding HPC platforms, new deployments are increasing significantly the number of cores installed in order to meet
the ever growing computational power demand. This current trend to multi-core clusters underscores the importance of
parallelism and multithreading capabilities [3]. In this scenario Java represents an attractive choice for the development of
parallel applications as it is a multithreaded language and provides built-in networking support, key features for taking full
advantage of hybrid shared/distributed memory architectures. Thus, Java can use threads in shared memory (intra-node)
and its networking support for distributed memory (inter-node) communication. Nevertheless, although the performance
gap between Java and native languages is usually small for sequential applications, it can be particularly high for parallel
applications when depending on inefficient communication libraries, which has hindered Java adoption for HPC. Therefore,
current research efforts are focused on providing scalable Java communication middleware, especially on high-speed
networks commonly used in HPC systems, such as InfiniBand or Myrinet.

The remainder of this paper is organized as follows. Section 2 analyzes the existing programming options in Java for
HPC. Section 3 describes current research efforts in this area, with special emphasis on providing scalable communication
middleware for HPC. A comprehensive performance evaluation of representative solutions in Java for HPC is presented in
Section 4. Finally, Section 5 summarizes our concluding remarks.

2. Java for High Performance Computing

This section analyzes the existing programming options in Java for HPC, which can be classified into: (1) shared memory
programming; (2) Java sockets; (3) Remote Method Invocation (RMI); and (4) message-passing in Java. These programming
options allow the development of both high-level libraries and Java parallel applications.

2.1. Java shared memory programming

There are several options for shared memory programming in Java for HPC, such as the use of Java threads, OpenMP-like
implementations, and Titanium.

As Java has built-in multithreading support, the use of Java threads for parallel programming is quite extended due
to its high performance, although it is a rather low-level option for HPC (work parallelization and shared data access
synchronization are usually hard to implement). Moreover, this option is limited to sharedmemory systems, which provide
less scalability than distributed memory machines. Nevertheless, its combination with distributed memory programming
models can overcome this restriction. Finally, in order to partially relieve programmers from the low-level details of threads
programming, Java has incorporated from the 1.5 specification the concurrency utilities, such as thread pools, tasks, blocking
queues, and low-level high performance primitives for advanced concurrent programming like CyclicBarrier.

The project Parallel Java (PJ) [4] has implemented several high-level abstractions over these concurrency utilities,
such as ParallelRegion (code to be executed in parallel), ParallelTeam (group of threads that execute a ParallelRegion)
and ParallelForLoop (work parallelization among threads), allowing an easy thread-base shared memory programming.
Moreover, PJ also implements the message-passing paradigm as it is intended for programming hybrid shared/distributed
memory systems such as multi-core clusters.

There are two main OpenMP-like implementations in Java, JOMP [5] and JaMP [6]. JOMP consists of a compiler (written
in Java, and built using the JavaCC tool) and a runtime library. The compiler translates Java source code with OpenMP-like
directives to Java source codewith calls to the runtime library, which in turn uses Java threads to implement parallelism. The
whole system is ‘‘pure’’ Java (100% Java), and thus can be run on any JVM. Although the development of this implementation
stopped in 2000, it has been used recently to provide nested parallelism onmulti-core HPC systems [7]. Nevertheless, JOMP
had to be optimized with some of the utilities of the concurrency framework, such as the replacement of the busy-wait
implementation of the JOMP barrier by the more efficient java.util.concurrent.CyclicBarrier. The experimental evaluation
of the hybrid Java message-passing + JOMP configuration (being the message-passing library thread-safe) showed up to 3
times higher performance than the equivalent puremessage-passing scenario. Although JOMP scalability is limited to shared
memory systems, its combination with distributed memory communication libraries (e.g., message-passing libraries) can
overcome this issue. JaMP is the Java OpenMP-like implementation for Jackal [8], a software-based Java Distributed Shared
Memory (DSM) implementation. Thus, this project is limited to this environment. JaMP has followed the JOMP approach,
but taking advantage of the concurrency utilities, such as tasks, as it is a more recent project.

The OpenMP-like approach has several advantages over the use of Java threads, such as the higher-level programming
modelwith a codemuch closer to the sequential version and the exploitation of the familiaritywithOpenMP, thus increasing
programmability. However, current OpenMP-like implementations are still preliminary works and lack efficiency (busy-
wait JOMP barrier) and portability (JaMP).

Titanium [9] is an explicitly parallel dialect of Java developed at UC Berkeley which provides the Partitioned Global
Address Space (PGAS) programming model, like UPC and Co-array Fortran, thus achieving higher programmability. Besides
the features of Java, Titanium adds flexible and efficient multi-dimensional arrays and an explicitly parallel SPMD control
model with lightweight synchronization. Moreover, it has been reported that it outperforms Fortran MPI code [10], thanks
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to its source-to-source compilation to C code and the use of native libraries, such as numerical and high-speed network
communication libraries. However, Titanium presents several limitations, such as the avoidance of the use of Java threads
and the lack of portability as it relies on Titanium and C compilers.

2.2. Java sockets

Sockets are a low-level programming interface for network communication, which allows sending streams of data
between applications. The socket API is widely extended and can be considered the standard low-level communication layer
as there are socket implementations on almost every network protocol. Thus, sockets have been the choice for implementing
in Java the lowest level of network communication. However, Java sockets usually lack efficient high-speed networks
support [11], so it has to resort to inefficient TCP/IP emulations for full networking support. Examples of TCP/IP emulations
are IP over InfiniBand (IPoIB), IPoMX on top of the Myrinet low-level library MX (Myrinet eXpress), and SCIP on SCI.

Java has two main sockets implementations, the widely extended Java IO sockets, and Java NIO (New I/O) sockets which
provide scalable non-blocking communication support. However, both implementations do not provide high-speed network
support nor HPC tailoring. Ibis sockets partly solve these issues adding Myrinet support and being the base of Ibis [12], a
parallel and distributed Java computing framework. However, their implementation on top of the JVM sockets library limits
their performance benefits.

Java Fast Sockets (JFS) [11] is our high performance Java socket implementation for HPC. As JVM IO/NIO sockets do not
provide high-speed network support nor HPC tailoring, JFS overcomes these constraints by: (1) reimplementing the protocol
for boosting shared memory (intra-node) communication; (2) supporting high performance native sockets communication
over SCI Sockets, Sockets-MX, and Socket Direct Protocol (SDP), on SCI,Myrinet and InfiniBand, respectively; (3) avoiding the
need of primitive data type array serialization; and (4) reducing buffering and unnecessary copies. Thus, JFS is able to reduce
significantly JVM sockets communication overhead. Furthermore, its interoperability and user and application transparency
through reflection allow for its immediate applicability on a wide range of parallel and distributed target applications.

2.3. Java Remote Method Invocation

The Java Remote Method Invocation (RMI) protocol allows an object running in one JVM to invoke methods on an object
running in another JVM, providing Java with remote communication between programs equivalent to Remote Procedure
Calls (RPCs). The main advantage of this approach is its simplicity, although the main drawback is the poor performance
shown by the RMI protocol.

ProActive [13] is an RMI-based middleware for parallel, multithreaded and distributed computing focused on Grid
applications. ProActive is a fully portable ‘‘pure’’ Java (100% Java)middlewarewhose programmingmodel is based on aMeta-
Object protocol. With a reduced set of simple primitives, this middleware simplifies the programming of Grid computing
applications: distributed on Local Area Network (LAN), on clusters of workstations, or for the Grid. Moreover, ProActive
supports fault-tolerance, load-balancing, mobility, and security. Nevertheless, the use of RMI as its default transport layer
adds significant overhead to the operation of this middleware.

The optimization of the RMI protocol has been the goal of several projects, such as KaRMI [14], RMIX [15], Manta [16],
Ibis RMI [12], and Opt RMI [17]. However, the use of non-standard APIs, the lack of portability, and the insufficient
overhead reductions, still significantly larger than socket latencies, have restricted their applicability. Therefore, although
Java communication middleware (e.g., message-passing libraries) used to be based on RMI, current Java communication
libraries use sockets due to their lower overhead. In this case, the higher programming effort required by the lower-level
API allows for higher throughput, key in HPC.

2.4. Message-passing in Java

Message-passing is the most widely used parallel programming paradigm as it is highly portable, scalable and usually
provides good performance. It is the preferred choice for parallel programming distributedmemory systems such as clusters,
which can provide higher computational power than shared memory systems. Regarding the languages compiled to native
code (e.g., C and Fortran), MPI is the standard interface for message-passing libraries.

Soon after the introduction of Java, there have been several implementations of Java message-passing libraries (eleven
projects are cited in [18]). However, most of them have developed their ownMPI-like binding for the Java language. The two
main proposed APIs are the mpiJava 1.2 API [19], which tries to adhere to the MPI C++ interface defined in the MPI standard
version 2.0, but restricted to the support of theMPI 1.1 subset, and the JGFMPJ (message-passing interface for Java) API [20],
which is the proposal of the Java Grande Forum (JGF) [21] to standardize the MPI-like Java API. The main differences among
these two APIs lie on naming conventions of variables and methods.

The message-passing in Java (MPJ) libraries can be implemented: (1) using Java RMI; (2) wrapping an underlying native
messaging library like MPI through Java Native Interface (JNI); or (3) using Java sockets. Each solution fits with specific
situations, but presents associated trade-offs. The use of Java RMI, a ‘‘pure’’ Java (100% Java) approach, as base for MPJ
libraries, ensures portability, but it might not be the most efficient solution, especially in the presence of high-speed
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Table 1
Java message-passing projects overview.

Pure Java Impl. Socket impl. High-speed network support API
Java IO Java NIO Myrinet InfiniBand SCI mpiJava 1.2 JGF MPJ Other APIs

MPJava [23] X X X

Jcluster [24] X X X

Parallel Java [4] X X X

mpiJava [22] X X X X

P2P-MPI [25] X X X X

MPJ Express [7] X X X X

MPJ/Ibis [26] X X X X

JMPI [27] X X X

F-MPJ [28] X X X X X X

communication hardware. The use of JNI has portability problems, although usually in exchange for higher performance.
The use of a low-level API, Java sockets, requires an important programming effort, especially in order to provide scalable
solutions, but it significantly outperforms RMI-based communication libraries. Although most of the Java communication
middleware is based on RMI, MPJ libraries looking for efficient communication have followed the latter two approaches.

ThempiJava library [22] consists of a collection of wrapper classes that call a nativeMPI implementation (e.g., MPICH2 or
OpenMPI) through JNI. This wrapper-based approach provides efficient communication relying on native libraries, adding a
reduced JNI overhead. However, although its performance is usually high, mpiJava currently only supports some native MPI
implementations, as wrapping a wide number of functions and heterogeneous runtime environments entails an important
maintaining effort. Additionally, this implementation presents instability problems, derived from the native codewrapping,
and it is not thread-safe, being unable to take advantage of multi-core systems through multithreading.

As a result of these drawbacks, the mpiJava maintenance has been superseded by the development of MPJ Express [7], a
‘‘pure’’ Java message-passing implementation of the mpiJava 1.2 API specification. MPJ Express is thread-safe and presents
a modular design which includes a pluggable architecture of communication devices that allows to combine the portability
of the ‘‘pure’’ Java shared memory (smpdev device) and New I/O package (Java NIO) communications (niodev device) with
the high performance Myrinet support (through the native Myrinet eXpress (MX) communication library in mxdev device).

Currently, MPJ Express is the most active project in terms of uptake by the HPC community, presence on academia and
production environments, and available documentation. This project is also stable and publicly available along with its
source code.

In order to update the compilation of Java message-passing implementations presented in [18], this paper presents the
projects developed since 2003, in chronological order:

• MPJava [23] is the first Java message-passing library implemented on Java NIO sockets, taking advantage of their
scalability and high performance communications.

• Jcluster [24] is a message-passing library which provides both PVM-like and MPI-like APIs and is focused on automatic
task load balance across large-scale heterogeneous clusters. However, its communications are based on UDP and it lacks
high-speed networks support.

• Parallel Java (PJ) [4] is a ‘‘pure’’ Java parallel programming middleware that supports both shared memory programming
(see Section 2.1) and an MPI-like message-passing paradigm, allowing applications to take advantage of hybrid
shared/distributed memory architectures. However, the use of its own API makes its adoption difficult.

• P2P-MPI [25] is a peer-to-peer framework for the execution of MPJ applications on the Grid. Among its features are:
(1) self-configuration of peers (through JXTA peer-to-peer technology); (2) fault-tolerance, based on process replication;
(3) a data management protocol for file transfers on the Grid; and (4) an MPJ implementation that can use either Java
NIO or Java IO sockets for communications, although it lacks high-speed networks support. In fact, this project is tailored
to grid computing systems, disregarding the performance aspects.

• MPJ/Ibis [26] is the only JGF MPJ API implementation up to now. This library can use either ‘‘pure’’ Java communications,
or native communications on Myrinet. Moreover, there are two low-level communication devices available in Ibis for
MPJ/Ibis communications: TCPIbis, based on Java IO sockets (TCP), andNIOIbis,which provides blocking andnon-blocking
communication through Java NIO sockets. Nevertheless, MPJ/Ibis is not thread-safe, and its Myrinet support is based on
the GM library, which shows poorer performance than the MX library.

• JMPI [27] is an implementationwhich can use either Java RMI or Java sockets for communications. However, the reported
performance is quite low (it only scales up to two nodes).

• Fast MPJ (F-MPJ) [28] is our Java message-passing implementation which provides high-speed networks support, both
direct and through Java Fast Sockets (see Section 3.1). F-MPJ implements the mpiJava 1.2 API, the most widely extended,
and includes a scalable MPJ collectives library [29].

Table 1 serves as a summary of the Java message-passing projects discussed in this section.
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3. Java for HPC: current research

This section describes current research efforts in Java for HPC,which can be classified into: (1) design and implementation
of low-level Javamessage-passing devices; (2) improvement of the scalability of Javamessage-passing collective primitives;
(3) automatic selection of MPJ collective algorithms; (4) implementation and evaluation of efficient MPJ benchmarks;
(5) language extensions in Java for parallel programming paradigms; and (6) Java libraries to support data parallelism. These
ongoing projects are providing Java with several evaluations of their suitability for HPC, as well as solutions for increasing
their performance and scalability in HPC systems with high-speed networks and hardware accelerators such as Graphics
Processing Units (GPUs).

3.1. Low-level Java message-passing communication devices

The use of pluggable low-level communication devices for high performance communication support is widely extended
in native message-passing libraries. Both MPICH2 and OpenMPI include several devices on Myrinet, InfiniBand and shared
memory. Regarding MPJ libraries, in MPJ Express the low-level xdev layer [7] provides communication devices for different
interconnection technologies. The three implementations of the xdev API currently available are niodev (over Java NIO
sockets),mxdev (overMyrinetMX), and smpdev (sharedmemory communication),which has been introduced recently [30].
This latter communication device has two implementations, one thread-based (pure Java) and the other based on native IPC
resources.

F-MPJ communication devices conform with the xxdev API [28], which supports the direct communication of any
serializable object without data buffering, whereas xdev, the API that xxdev is extending, does not support this direct
communication, relying on a buffering layer (mpjbuf layer). Additional benefits of the use of this API are its flexibility,
portability and modularity thanks to its encapsulated design.

The xxdev API (see Listing 1) has been designed with the goal of being simple and small, providing only basic
communication methods in order to ease the development of xxdev devices. In fact, this API is composed of 13 simple
methods, which implement basic message-passing operations, such as point-to-point communication, both blocking (send
and recv, like MPI_Send and MPI_Recv) and non-blocking (isend and irecv, like MPI_Isend and MPI_Irecv). Moreover,
synchronous communications are also embraced (ssend and issend). However, these communicationmethods use ProcessID
objects instead of using ranks as arguments to send and receive primitives. In fact, the xxdev layer is focused on providing
basic communication methods and it does not deal with high-level message-passing abstractions such as groups and
communicators. Therefore, a ProcessID object unequivocally identifies a device object.

Listing 1
API of the xxdev.Device class

public class Device {
s ta t i c public Device newInstance ( Str ing deviceImplementation ) ;
ProcessID [ ] i n i t ( Str ing [ ] args ) ;
ProcessID id ( ) ;
void f i n i sh ( ) ;

Request isend ( Object message , ProcessID dstID , int tag , int context ) ;
Request i recv ( Object message , ProcessID srcID , int tag , int context , Status status ) ;
void send ( Object message , ProcessID dstID , int tag , int context ) ;
Status recv ( Objecct message , ProcessID srcID , int tag , int context ) ;
Request issend ( Object message , ProcessID dstID , int tag , int context ) ;
void ssend ( Object message , ProcessID srcID , int tag , int context ) ;

Status iprobe ( ProcessID srcID , int tag , int context ) ;
Status probe ( ProcessID srcID , int tag , int context ) ;
Request peek ( ) ;

}

Fig. 1 presents an overview of the F-MPJ communication devices on shared memory and cluster networks. From top to
bottom, the communication support of MPJ applications run with F-MPJ is implemented in the device layer. Current F-MPJ
communication devices are implemented either on JVM threads (smpdev, a thread-based device), on sockets over the TCP/IP
stack (iodev on Java IO sockets), or on native communication layers such as Myrinet eXpress (mxdev) and InfiniBand Verbs
(IBV) (ibvdev), which are accessed through JNI.

The initial implementation of F-MPJ included only one communication device, iodev, implemented on top of Java IO
sockets, which therefore can rely on top of JFS and hence obtain high performance on shared memory and Gigabit Ethernet,
SCI,Myrinet, and InfiniBand networks. However, the use of sockets in a communication device, despite the high performance
provided by JFS, still represents an important source of overhead in Java communications. Thus, F-MPJ is including the direct
support of communications on high performance native communication layers, such as MX and IBV.
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Fig. 1. F-MPJ communication devices on shared memory and cluster networks.

Themxdev device implements the xxdev API onMX, which runs natively onMyrinet and high-speed Ethernet networks,
such as 10 Gigabit Ethernet, relying on MXoE (MX over Ethernet) stack. As MX already provides a low-level messaging
API, mxdev deals with the Java Objects marshaling and communication, the JNI transfers and the MX parameters handling.
The ibvdev device implements the xxdev API on IBV, the low-level InfiniBand communication driver, in order to take full
advantage of the InfiniBand network. Unlike mxdev, ibvdev has to implement its own communication protocols, as IBV API
is quite close to the InfiniBand Network Interface Card (NIC) operation. Thus, this communication device has implemented
two communication protocols, eager and rendezvous, on RDMA (Remote Direct Memory Access) Write/Send operations.
This direct access of Java to InfiniBand network was somewhat restricted so far to MPI libraries. Like mxdev, this device
has to deal with the Java Objects communication and the JNI transfers, and additionally with the communication protocols
operation. Finally, bothmxdev and ibvdev, although they have beenprimarily designed for network communication, support
sharedmemory intra-node communication. However, smpdev device is the thread-based communication device that should
support more efficiently shared memory transfers. This device isolates a naming space for each running thread (relying on
customclass loaders) and allocates sharedmessage queues in order to implement the communications as regular data copies
between threads.

3.2. MPJ collectives scalability

MPJ application developers use collective primitives for performing standard data movements (e.g., Broadcast, Scatter,
Gather and Alltoall or total exchange) and basic computations among several processes (reductions). This greatly simplifies
code development, enhancing programmers productivity together with MPJ programmability. Moreover, it relieves
developers from communication optimization. Thus, collective algorithms, which generally consist of multiple point-
to-point communications, must provide scalable performance, usually through overlapping communications in order to
maximize the number of operations carried out in parallel. An unscalable algorithm can easily waste the performance
provided by an efficient communication middleware.

The design, implementation and runtime selection of efficient collective communication operations have been exten-
sively discussed in the context of native message-passing libraries [31–34], while there is little discussion in MPJ, except for
F-MPJ, which provides a scalable and efficient MPJ collective communication library [29] for parallel computing on multi-
core architectures. This library provides multi-core aware primitives, implements several algorithms per collective opera-
tion, and explores thread-based communications, obtaining significant performance benefits in communication-intensive
MPJ applications.

The collective algorithms present inMPJ libraries can be classified in six types, namely Flat Tree (FT) or linear, Minimum-
Spanning Tree (MST), Binomial Tree (BT), Four-ary Tree (FaT), Bucket (BKT) or cyclic, and BiDirectional Exchange (BDE) or
recursive doubling, which are extensively described in [32]. Table 2 presents a complete list of the collective algorithms
used in MPJ Express and F-MPJ (the prefix ‘‘b’’ means that only blocking point-to-point communication is used, whereas
‘‘nb’’ refers to the use of non-blocking primitives). It can be seen that F-MPJ implements up to six algorithms per collective
primitive, allowing their selection at runtime, as well as it takes more advantage of communications overlapping, achieving
higher performance scalability. Regarding the memory requirements of the collective primitives, some algorithms require
morememory than others (e.g., theMST algorithm for the Scatter andGather demandsmorememory than the FT algorithm).
Thus, when experiencing memory limitations the algorithms with less memory requirements must be selected in order to
overcome the limitation.

3.3. Automatic selection of MPJ collective algorithms

The F-MPJ collectives library allows the runtime selection of the collective algorithm that provides the highest perfor-
mance in a given multi-core system, among the several algorithms available, based on the message size and the number
of processes. The definition of a threshold for each of these two parameters allows the selection of up to four algorithms
per collective primitive. Moreover, these thresholds can be configured for a particular system by means of an autotuning
process, which obtains an optimal selection of algorithms, based on the particular performance results on a specific system
and taking into account the particularities of the Java execution model.

The information of the selected algorithms is stored in a configuration file that, if available in the system, is loaded at MPJ
initialization, otherwise the default algorithms are selected, thus implementing a portable and user transparent approach.

131



G.L. Taboada et al. / Science of Computer Programming 78 (2013) 425–444 431

Table 2
Algorithms implemented in MPJ collectives libraries.
Primitive MPJ Express collectives library F-MPJ collectives library

Barrier Gather+Bcast nbFTGather+bFaTBcast, Gather+Bcast, BT
Bcast bFaTBcast bFT, nbFT, bFaTBcast, MST
Scatter nbFT nbFT, MST
Scatterv nbFT nbFT, MST
Gather nbFT bFT, nbFT, nb1FT, MST
Gatherv nbFT bFT, nbFT, nb1FT, MST
Allgather nbFT, BT nbFT, BT, nbBDE, bBKT, nbBKT, Gather+Bcast
Allgatherv nbFT, BT nbFT, BT, nbBDE, bBKT, nbBKT, Gather+Bcast
Alltoall nbFT bFT, nbFT, nb1FT, nb2FT
Alltoallv nbFT bFT, nbFT, nb1FT, nb2FT
Reduce bFT bFT, nbFT, MST
Allreduce nbFT, BT nbFT, BT, bBDE, nbBDE, Reduce+Bcast
Reduce-Scatter Reduce+Scatterv bBDE, nbBDE, bBKT, nbBKT, Reduce+Scatterv
Scan nbFT nbFT, linear

Table 3
Example of configuration file for the selection of collective algorithms.

Primitive Short message/
small number of processes

Short message/
large number of processes

Long message/
small number of processes

Long message/
large number of processes

Barrier nbFTGather+bFatBcast nbFTGather+bFatBcast Gather+Bcast Gather+Bcast
Bcast nbFT MST MST MST
Scatter nbFT nbFT nbFT nbFT
Gather nbFT nbFT MST MST
Allgather Gather+Bcast Gather+Bcast Gather+Bcast Gather+Bcast
Alltoall nb2FT nb2FT nb2FT nb2FT
Reduce nbFT nbFT MST MST
Allreduce Reduce+Bcast Reduce+Bcast Reduce+Bcast Reduce+Bcast
Reduce-Scatter bFTReduce+nbFTScatterv bFTReduce+nbFTScatterv BDE BDE
Scan Linear Linear Linear Linear

The autotuning process consists of the execution of our own MPJ collectives micro-benchmark suite [18], the gathering
of their experimental results, and finally the generation of the configuration file that contains the algorithms that maximize
performance. The performance results have been obtained on a number of processes power of two, up to the total number
of cores of the system, and for message sizes power of two. The parameter thresholds, which are independently configured
for each collective, are those that maximize the performance measured by the micro-benchmark suite. Moreover, this
autotuning process is required to be executed only once per system configuration in order to generate the configuration
file. After that MPJ applications would take advantage of this information.

Table 3 presents the information contained in the optimum configuration file for the x86-64 multi-core cluster used
in the experimental evaluation presented in this paper (Section 4). The thresholds between short and long messages, and
between small and large number of processes are specific for each collective, although in the evaluated testbeds their values
are generally 32 Kbytes and 16 processes, respectively.

3.4. Implementation and evaluation of efficient HPC benchmarks

Java lacks efficient HPC benchmarking suites for characterizing its performance, although the development of efficient
Java benchmarks and the assessment of their performance is highly important. The JGF benchmark suite [35], the most
widely used Java HPC benchmarking suite, presents quite inefficient codes, as well as it does not provide the native language
counterparts of the Java parallel codes, preventing their comparative evaluation. Therefore, we have implemented the NAS
Parallel Benchmarks (NPB) suite for MPJ (NPB-MPJ) [36], selected as this suite is themost extended in HPC evaluations, with
implementations for MPI (NPB-MPI), OpenMP (NPB-OMP), Java threads (NPB-JAV) and ProActive (NPB-PA).

NPB-MPJ allows, as main contributions: (1) the comparative evaluation of MPJ libraries; (2) the analysis of MPJ
performance against other Java parallel approaches (e.g., Java threads); (3) the assessment of MPJ versus native MPI
scalability; (4) the study of the impact on performance of the optimization techniques used in NPB-MPJ, from which Java
HPC applications can potentially benefit. The description of the NPB-MPJ benchmarks implemented is next shown in Table 4.

In order to maximize NPB-MPJ performance, the ‘‘plain objects’’ design has been chosen as it reduces the overhead of
the ‘‘pure’’ object-oriented design (up to 95% overhead reduction). Thus, each benchmark uses only one object instead of
defining an object per each element of the problemdomain. Thus, complex numbers are implemented as two-element arrays
instead of complex numbers objects.

The inefficientmulti-dimensional array support in Java (ann-dimensional array is defined as an array ofn−1-dimensional
arrays, so data is not guaranteed to be contiguous inmemory) imposed a significant performance penalty in NPB-MPJ, which
handles arrays of up to five dimensions. This overheadwas reduced through the array flattening optimization,which consists
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Table 4
NPB-MPJ benchmarks description.
Name Operation Communicat. intensiveness Kernel Applic.
CG Conjugate Gradient Medium X
EP Embarrassingly Parallel Low X
FT Fourier Transformation High X
IS Integer Sort High X
MG Multi-Grid High X
SP Scalar Pentadiagonal Low X

of the mapping of a multi-dimensional array in a one-dimensional array. Thus, adjacent elements in the C/Fortran versions
are also contiguous in Java, allowing the data locality exploitation.

Finally, the implementation of the NPB-MPJ takes advantage of the JVM JIT (Just-in-Time) compiler-based optimizations.
The JIT compilation of the bytecode (or even its recompilation in order to apply further optimizations) is reserved to heavily
used methods, as it is an expensive operation that increases significantly the runtime. Thus, the NPB-MPJ codes have been
refactored toward simpler and independent methods, such as methods for mapping elements from multi-dimensional to
one-dimensional arrays, and complex number operations. As these methods are invoked more frequently, the JVM gathers
more runtime information about them, allowing a more effective optimization of the target bytecode.

The performance of NPB-MPJ significantly improved using these techniques, achieving up to 2800% throughput increase
(on SP benchmark). Furthermore, we believe that other Java HPC codes can potentially benefit from these optimization
techniques.

3.5. Language extensions in Java for parallel programming paradigms

Regarding language extensions in Java to support various parallel programming paradigms, X10 and Habanero Java
deserve to be mentioned. X10 [37,38] is an emerging Java-based programming language developed in the DARPA program
on High Productivity Computer Systems (HPCS). Moreover, it is an APGAS (Asynchronous Partitioned Global Address Space)
language implementation focused on programmability which supports locality exploitation, lightweight synchronization,
and productive parallel programming. Additionally, an ongoing project based on X10 is Habanero Java [39], focused on
supporting productive parallel programming on extreme scale homogeneous and heterogeneous multi-core platforms. It
allows to take advantage of X10 features in shared memory systems together with the Java Concurrency framework. Both
X10 and Habanero Java applications can be compiled with C++ or Java backends, although looking for performance the use
of the C++ one is recommended. Nevertheless, these are still experimental projects with limited performance, especially for
X10 arrays handling, although X10 has been reported to rival Java threads performance on shared memory [40].

3.6. Java libraries to support data parallelism

There are several ongoing efforts in the support in Java of data parallelism using hardware accelerators, such as GPUs,
once they have emerged as a viable alternative for significantly improving the performance of appropriate applications.
On the one hand this support can be implemented in the compiler, at language level such as for JCUDA [41]. On the other
hand, the interface to these accelerators can be library-based, such as the following Java bindings of CUDA: jcuda.org [42],
jCUDA [43], JaCuda [44], Jacuzzi [45], and java-gpu [46].

Furthermore, the bindings are not restricted to CUDA as there are several Java bindings for OpenCL: jocl.org [47],
JavaCL [48], and JogAmp [49].

This important number of projects is an example of the interest of the research community in supporting data parallelism
in Java, although their efficiency is lower than using directly CUDA/OpenCL due to the overhead associated to the Java data
movements to and from the GPU, the support of the execution of user-written CUDA code from Java programs and the
automatic support for data transfer of primitives and multi-dimensional arrays of primitives. An additional project that
targets these sources of inefficiency is JCudaMP [50], an OpenMP framework that exploits more efficiently GPUs. Finally,
another approach for Java performance optimization on GPUs is the direct generation of GPU-executable code (without JNI
access to CUDA/OpenCL) by a research Java compiler, Jikes, which is able to automatically parallelize loops [51].

4. Performance evaluation

This paper presents an up-to-date comparative performance evaluation of representative MPJ libraries, F-MPJ and MPJ
Express, on two shared memory environments and two InfiniBand multi-core clusters. First, the performance of point-
to-point MPJ primitives on InfiniBand, 10 Gigabit Ethernet and shared memory is presented. Next, this section evaluates
the results gathered from a micro-benchmarking of MPJ collective primitives. Finally, the impact of MPJ libraries on the
scalability of representative parallel codes, both NPB-MPJ kernels and the Gadget2 application [52], has been assessed
comparatively with MPI, Java threads and OpenMP performance results.
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4.1. Experimental configuration

Two systems have been used in this performance evaluation, a multi-core x86-64 Infiniband cluster and the Finis Terrae
supercomputer [53]. The first system (from now on x86-64 cluster) is a 16-node cluster with 16 Gbytes of memory and 2
x86-64 Xeon E5620 quad-core Nehalem-based ‘‘Gulftown’’ processors at 2.40 GHz per node (hence 128 physical cores in
the cluster). The interconnection network is InfiniBand (QLogic IBA7220 4x DDR, 16 Gbps), although 2 of the nodes have
additionally a 10 Gigabit Ethernet NIC (Intel PRO/10GbE NIC). As each node has 8 physical cores, and 16 logical cores when
hyperthreading is enabled, shared memory performance has been also evaluated on one node of the cluster, using up to 16
processes/threads. The performance results on this system have been obtained using one core per node, except for 32, 64
and 128 processes, for which 2, 4 and 8 cores per node, respectively, have been used.

The OS is Linux CentOS 5.3, the C/Fortran compilers are the Intel compiler (used with -fast flag) version 11.1.073 and the
GNU compiler (used with -O3 flag) version 4.1.2, both with OpenMP support, the native communication libraries are OFED
(OpenFabrics Enterprise Distribution) 1.5 and Open-MX 1.3.4, for InfiniBand and 10 Gigabit Ethernet, respectively, and the
JVM is Oracle JDK 1.6.0_23. Finally, the evaluated message-passing libraries are F-MPJ with JFS 0.3.1, MPJ Express 0.35, and
OpenMPI 1.4.1.

The second system used is the Finis Terrae supercomputer (14 TFlops), an InfiniBand cluster which consists of 142 HP
Integrity rx7640 nodes, each of them with 16 Montvale Itanium2 (IA64) cores at 1.6 GHz and 128 Gbytes of memory. The
InfiniBand NIC is a 4X DDRMellanoxMT25208 (16 Gbps). Additionally an HP Integrity Superdome systemwith 64Montvale
Itanium 2 dual-core processors (total 128 cores) at 1.6 GHz and 1 TB of memory has also been used for the shared memory
evaluation. The OS of the Finis Terrae is SUSE Linux Enterprise Server 10 with Intel compiler 10.1.074 (used with the -
fast flag) and GNU compiler (used with the -O3 flag) version 4.1.2. Regarding native message-passing libraries, HP-MPI
2.2.5.1 has been selected as it achieves the highest performance on InfiniBand and shared memory on the Finis Terrae. The
InfiniBand drivers are OFED version 1.4. The JVM is Oracle JDK 1.6.0_20 for IA64. The poor performance of Java on IA64
architectures, due to the lack of mature support for this processor in the Java Just-In-Time compiler, has motivated the
selection of this system only for the analysis of the performance scalability of MPJ applications, due to its high number of
cores. The performance results on this system have been obtained using 8 cores per node, the recommended configuration
formaximizing performance. In fact, the use of a higher number of cores per node increases significantly network contention
and memory access bottlenecks.

Regarding the benchmarks, Intel MPI Benchmarks (IMB, formerly Pallas) and our own MPJ micro-benchmark suite,
which tries to adhere to IMB measurement methodology, have been used for the message-passing primitives evaluation.
Moreover, the NPB-MPI/NPB-OMP version 3.3 and the NPB-JAV version 3.0 have been used together with our own NPB-MPJ
implementation [36]. The metrics that have been considered for the NPB evaluation are the speedup and MOPS (Millions of
Operations Per Second), which measures the operations performed in the benchmark, that differ from the CPU operations
issued. Moreover, NPB Class C workloads have been selected as they are the largest workloads that can be executed in a
single node, which imposes the restriction of using workloads with memory requirements below 16 Gbytes (the amount of
memory available in a node of the x86-64 cluster).

4.2. Performance evaluation methodology

All performance results presented in this paper are themedian of 5measurements in case of the kernels and applications
and the median of up to the 1000 samples measured for the collective operations. The selection of the most appropriate
performance evaluation methodology in Java has been thoroughly addressed in [54], concluding that the median is
considered one of the best measures as its accuracy seems to improve with the number of measurements, which is in tune
with the results reported in this paper.

Regarding the influence of JIT compilation in HPC performance results, the use of long-running codes (with runtimes of
several hours and days) generally involves the use of a high percentage of JIT compiled code, which eventually improves
performance. Moreover, the JVM execution mode selected for the performance evaluation is the default one (mixed mode)
which compiles dynamically at runtime, based on profiling information, the bytecode of costlymethods to native code,while
interprets inexpensive pieces of codewithout incurring in runtime compilation overheads. Thus, thismode is able to provide
higher performance than the use of the interpreted and even the compiled (an initial static compilation) execution modes.
In fact, we have experimentally assessed the higher performance of the use of the mixed mode for the evaluated codes,
whose percentage of runtime of natively compiled code is generally higher than 95% (hence, less than 5% of the runtime is
generally devoted to interpreted code).

Furthermore, the non-determinism of JVM executions leads to oscillations in the timemeasures of Java applications. The
main sources of variation are the JIT compilation and optimization in the JVM driven by a timer-based method sampling,
thread scheduling, and garbage collection. However, the exclusive access to HPC resources and the characteristics of HPC
applications (e.g., numerical intensive computation and a restricted use of object-oriented features such as extensions and
handling numerous objects) limit the variations in the experimental results of Java. In order to assess the variability of
representative Java codes in HPC, the NPB kernels evaluated in this paper (CG, FT, IS andMGwith Class C problem size) have
been executed 40 times, both using F-MPJ and MPI, on 64 and 128 cores of the x86-64 cluster. Regarding message-passing
primitives, both point-to-point and collectives include calls to native methods, which provide efficient communications on
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Fig. 2. NPB performance variability on the x86-64 cluster.

high-speed networks, thus obtaining performance results close to the theoretical limits of the network hardware. Moreover,
their performance measures, when relying on native methods, provide results with little variation among iterations. Only
message-passing transfers on shared memory present a high variability due to the scheduling of the threads on different
cores within a node. In this scenario the performance results depend significantly on the scheduling of the threads on cores
that belong to the same processor and that even can share some cache levels. Nevertheless, due to space restrictions a
detailed analysis of the impact of thread scheduling on Java communications performance cannot be included in this paper.
Thus, only the NPB kernels have been selected for the analysis of the performance variability of Java in HPC due to their
balance in the combination of computation and communication as well as for their representativeness in HPC evaluation.

Fig. 2 presents speedup graphswith box andwhisker diagrams for the evaluated benchmarks, showing themeasure of the
minimum sample, the lower quartile (Q1), the median (Q2), upper quartile (Q3), and the maximum sample. The selected
metric, speedup, has been selected for clarity purposes, as it allows a straightforward analysis of F-MPJ and MPI results,
especially for the comparison of their range of values, which lie closer using speedups than other metrics such as execution
times.

The analysis of the variability of the performance of these NPB kernels shows that F-MPJ results present similar variability
as MPI codes, although for CG and FT on 128 cores the NPB-MPJ measures present higher variations than their natively
compiled counterparts (MPI kernels). However, even in this scenario the variability of the Java codes is less than 10% of
the speedup value (the measured speedups fall in the range of 90% and 110% of the median value), whereas the average
variation is less than 5% of the speedup value. Furthermore, there is no clear evidence of the increase of the variability with
the number of cores, except for NPB-MPJ CG and FT.

4.3. Experimental performance results on one core

Fig. 3 shows a performance comparison of several NPB implementations on one core from the x86-64 cluster (left graph)
and on one core from the Finis Terrae (right graph). The results are shown in terms of speedup relative to the MPI library
(using the GNU C/Fortran compiler), Runtime(NPB-MPI benchmark) / Runtime(NPB benchmark). Thus, a value higher than
1 means than the evaluated benchmark achieves higher performance (shorter runtime) than the NPB-MPI benchmark,
whereas a value lower than 1 means than the evaluated code shows poorer performance (longer runtime) than the NPB-
MPI benchmark. The NPB implementations and NPB kernels evaluated are those that will be next used in this section for the
performance analysis of Java kernels (Section 4.6.1). Moreover, only F-MPJ results are shown for NPB-MPJ performance for
clarity purposes, as other MPJ libraries (e.g., MPJ Express) obtain quite similar results on one core.

The differences in performance that can be noted in the graphs are explained by the different implementations of the NPB
benchmarks, the use of Java or native code (C/Fortran), and for native code the compiler being used (Intel or GNU compiler).
Regarding Java performance, as the JVM used in this performance evaluation, the Oracle JVM for Linux, has been built with
the GNU compiler, Java performance is limited by the throughput achieved with this compiler. Thus, Java codes (MPJ and
Threads) cannot generally outperform their equivalent GNU-built benchmarks. This fact is of special relevance on the Finis
Terrae, where the GNU compiler is not able to take advantage of the Montvale Itanium2 (IA64) processor, whereas the Intel
compiler does. As a consequence of this, the performance of Java kernels on the Finis Terrae is significantly lower, even an
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Fig. 3. NPB relative performance on one core.

order ofmagnitude lower, than the performance of the kernels built with the Intel compiler. The performance of Java kernels
on the x86-64 cluster is close to the natively compiled kernels for CG and IS, whereas for FT and MG Java performance is
approximately 55% of the performance of MPI kernels built with the GNU compiler.

This analysis of the performance of Java and natively compiled codes on the x86-64 cluster and the Finis Terrae has also
verified that the use of the Intel compiler shows better performance results than the use of the GNU compiler, especially
on the Finis Terrae. Thus, from now on only the Intel compiler has been used in the performance evaluation included in
this paper, although a fair comparison with Java would have considered the GNU compiler (both Oracle JVM and the GNU
compiler are freely available software). However, the use of the compiler provided by the processor vendor is the most
generally adopted solution inHPC. Furthermore, awider availability of JVMsbuiltwith commercial compilerswould improve
this scenario, especially on Itanium platforms.

4.4. Message-passing point-to-point micro-benchmarking

The performance of message-passing point-to-point primitives has been measured on the x86-64 cluster using our own
MPJ micro-benchmark suite and IMB. Regarding Finis Terrae, its results are not considered for clarity purposes, as well as
due to the poor performance of Java on this system. Moreover, Finis Terrae communication mechanisms, InfiniBand and
shared memory, are already covered in the x86-64 cluster evaluation.

Fig. 4 presents message-passing point-to-point latencies (for short messages) and bandwidths (for long messages) on
InfiniBand (top graph), 10 Gigabit Ethernet (middle graph) and shared memory (bottom graph). Here, the results shown are
the half of the round-trip time of a pingpong test or its corresponding bandwidth.

On the one hand these results show that F-MPJ is quite close to MPI performance, which means that F-MPJ is able to
take advantage of the low latency and high throughput provided by shared memory and these high-speed networks. In
fact, F-MPJ obtains start-up latencies as low as 2 µs on shared memory, 10 µs on InfiniBand and 12 µs on 10 Gigabit
Ethernet. Regarding throughput, F-MPJ significantly outperforms MPI for 4 Kbytes and larger messages on shared memory
when using smpdev communication device, achieving up to 51 Gbps thanks to the exploitation of the thread-based intra-
process communication mechanism, whereas the inter-process communication protocols implemented in MPI and the F-
MPJ network-based communication devices (ibvdev and mxdev) are limited to less than 31 Gbps.

On the other hand, MPJ Express point-to-point performance suffers from the lack of specialized support on InfiniBand,
having to rely on NIO sockets over IP emulation IPoIB, and the use of a buffering layer, which adds noticeable overhead
for long messages. Moreover, the communication protocols implemented in this library show a significant start-up latency.
In fact, MPJ Express and F-MPJ rely on the same communication layer on shared memory (intra-process transfers) and 10
Gigabit Ethernet (Open-MX library), butMPJ Express adds an additional overhead of 8µs and 11µs, respectively, over F-MPJ.

4.5. Message-passing collective primitives micro-benchmarking

Fig. 5 presents the performance of representativemessage-passing datamovement operations (Broadcast and Allgather),
and computational operations (Reduce andAllreduce double precision sumoperations), aswell as their associated scalability
using a representative message size (32 Kbytes). The results, obtained using 128 processes on the x86-64 cluster, are
represented using aggregated bandwidth metric as this metric takes into account the global amount of data transferred,
generally message size ∗ number of processes.

The original MPJ Express collective primitives use the algorithms listed in Table 2 (column MPJ Express), whereas F-
MPJ collectives library uses the algorithms that maximize the performance on this cluster according to the automatic
performance tunning process. The selected algorithms are presented in Table 5, which extracts from the configuration file
the most relevant information about the evaluated primitives.

The results confirm that F-MPJ is bridging the gap between MPJ and MPI collectives performance, but there is still room
for improvement, especially when using several processes per node as F-MPJ collectives are not taking full advantage of the
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Fig. 4. Message-passing point-to-point performance on InfiniBand, 10 Gigabit Ethernet and shared memory.

Table 5
Algorithms that maximize performance on the x86-64 cluster.

Primitive Short message/small
number of processes

Short message/large
number of processes

Long message/small
number of processes

Long message/large
number of processes

Bcast nbFT MST MST MST
Allgather nbFTGather+nbFTBcast nbFTGather+MSTBcast MSTGather+MSTBcast MSTGather+MSTBcast
Reduce bFT bFT MST MST
Allreduce bFTReduce+nbFTBcast bFTReduce+MSTBcast MSTReduce+MSTBcast MSTReduce+MSTBcast

cores available within each node. The scalability graphs (right graphs) confirm this analysis, especially for the Broadcast and
the Reduce operations.
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Fig. 5. Collective primitives performance on the InfiniBand multi-core cluster.
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4.6. Java HPC kernel/application performance analysis

The scalability of Java for HPC has been analyzed using the NAS Parallel Benchmarks (NPB) implementation for MPJ
(NPB-MPJ) [36]. The selection of the NPB has been motivated by its widespread adoption in the evaluation of languages,
libraries and middleware for HPC. In fact, there are implementations of this benchmarking suite for MPI (NPB-MPI), Java
Threads (NPB-JAV), OpenMP (NPB-OMP) and hybrid MPI/OpenMP (NPB-MZ). Four representative NPB codes, those with
medium/high communication intensiveness (see Table 4), have been evaluated: CG (Conjugate Gradient), FT (Fourier
Transform), IS (Integer Sort) and MG (Multi-Grid). Furthermore, the jGadget [55] cosmology simulation application has also
been analyzed.

These MPJ codes have been selected for showing poor scalability in the related literature [1,52]. Hence, these are target
codes for the analysis of the scalability of current MPJ libraries, which have been evaluated using up to 128 processes on the
x86-64 cluster, and up to 256 processes on the Finis Terrae.

4.6.1. Java NAS parallel benchmarks performance analysis
Figs. 6 and 7 present the NPB CG, IS, FT and MG kernel results on the x86-64 cluster and Finis Terrae, respectively, for

the Class C workload in terms of MOPS (Millions of Operations Per Second) (left graphs) and their corresponding scalability,
in terms of speedup (right graphs). These four kernels (CG, IS, FT and MG) have been selected as they present medium
or high communication intensiveness (see Table 4). The two remaining kernels, EP and SP, were discarded due to their low
communication intensiveness (see Table 4) so their results showhigh scalability, having limited abilities to assess the impact
ofmultithreading andMPJ libraries on the scalability of parallel codes. TheNPB implementations used areNPB-MPI andNPB-
MPJ for the message-passing scalability evaluation on distributed memory and NPB-OMP and NPB-JAV for the evaluation of
shared memory performance.

Although the configuration of the shared and the distributed memory scenarios are different, they share essential
features such as the processor and the architecture of the system, so their results are shown together in order to ease their
comparison. Thus, Fig. 6 presents NPB results of shared and distributed memory implementations measured in the x86-64
cluster. The selected NPB kernels (CG, IS, FT and MG) are implemented in the four NPB implementations evaluated, in fact
the lack of some of these kernels has prevented the use of additional benchmark suites, such as the hybrid MPI/OpenMP
NPB Multi-Zone (NPB-MZ), which does not implement any of these kernels.

NPB-MPI results have been obtained using the MPI library that achieves the highest performance on each system,
OpenMPI on the x86-64 cluster and HP-MPI on the Finis Terrae, in both cases in combination with the Intel C/Fortran
compiler. Regarding NPB-MPJ, both F-MPJ and MPJ Express have been benchmarked using the communication device that
shows the best performance on InfiniBand, the interconnection network of both systems. Thus, F-MPJ has been run using its
ibvdev device whereasMPJ Express relies on niodev over the IP emulation IPoIB. NPB-OMP benchmarks have been compiled
with the OpenMP support included in the Intel C/Fortran compiler. Finally, NPB-JAV codes only require a standard JVM for
running.

The analysis of the x86-64 cluster results (Fig. 6) first reveals that F-MPJ achieves similar performance to OpenMPI for CG
when using 32 and higher number of cores, showing higher speedups than the MPI library in this case. As this kernel only
includes point-to-point communication primitives, F-MPJ takes advantage of obtaining similar point-to-point performance
to MPI. However, MPJ Express and the Java threads implementations present poor scalability from 8 cores. On the one hand,
the poor speedups of MPJ Express are direct consequence of the use of sockets and IPoIB in its communication layer. On
the other hand, the poor performance of the NPB-JAV kernels is motivated by their inefficient implementation. In fact, the
evaluated codes obtain lower performance on a single core than the MPI, OpenMP andMPJ kernels, except for NPB-JAVMG,
which outperforms NPB-MPJ MG (see in Section 4.3 the left graph in Fig. 3). The reduced performance of NPB-JAV kernels on
a single core, which can incur up to 50% performance overhead compared to NPB-MPJ codes, determines the lower overall
performance in terms of MOPS.

Additionally, the NPB shared memory implementations, using OpenMP and Java Threads, present poorer scalability on
the x86_64 cluster than distributed memory (message-passing) implementations, except for NPB-OMP IS. The main reason
behind this behavior is the memory access overhead when running 8 and even 16 threads on 8 physical cores, which thanks
to hyperthreading are able to run up to 16 threads simultaneously. Thus, the main performance bottleneck for these shared
memory implementations is the access to memory, which limits their scalability and prevents taking advantage of enabling
hyperthreading.

Regarding FT results, although F-MPJ scalability is higher than MPI (F-MPJ speedup is about 50 on 128 cores whereas the
MPI one is below 36), this is not enough for achieving similar performance in terms of MOPS. In this case MPJ performance
is limited by its poor performance on one core, which is 54% of the MPI performance (see in Section 4.3 the left graph in
Fig. 3). Moreover, the scalability of this kernel relies on the performance of the Alltoall collective, which has not prevented
F-MPJ scalability. As for CG, MPJ Express and the shared memory NPB codes show poor performance, although NPB-JAV FT
presents a slightly performance benefit when resorting to hyperthreading, probably due to its poor performance on one
core, which is below 30% of the NPB-MPI FT result. In fact, a longer runtime reduces the impact of communications and
memory bottlenecks in the scalability of parallel codes.

The significant communication intensiveness of IS, the highest among the evaluated kernels, reduces the observed
speedups, which are below 20 on 128 cores. On the one hand, the message-passing implementations of this kernel rely
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Fig. 6. NPB Class C results on the x86-64 cluster.

heavily on Alltoall and Allreduce primitives, whose overhead is the main performance penalty. In fact, F-MPJ scalability
drops from 64 cores (MPJ Express from 32 cores), whereas MPI shows poor scalability from 64 cores (the performance
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comparison between 64 and 128 cores shows that the use of the additional 64 cores only increases the speedup in 3 units,
from 16 to 19). On the other hand, OpenMP IS obtains the best results on 8 cores, showing a high parallel efficiency, and
even takes advantage of the use of hyperthreading. However, the implementation of IS using Java threads shows very poor
scalability, with speedups below 2.

The highest MG performance in terms of MOPS has been obtained with MPI, followed at a significant distance by F-MPJ
although this Java library shows higher speedups, especially on 128 cores. The reason, as for FT, is that MPJ performance is
limited by its poor performance on one core, which is 55% of theMPI performance (see in Section 4.3 the left graph in Fig. 3).
The longerMPJ runtime contributes to achieve high speedups inMG, trading off the bottleneck that represents the extensive
use by this kernel of Allreduce, a collective whose performance is lower for MPJ than for MPI. In fact, the message-passing
implementations of this kernel, both MPI and MPJ, present relatively good scalability, even for MPJ Express which achieves
speedups around 30 on 64 and 128 cores. Nevertheless, the shared memory codes show little speedups, below 4 on 8 cores.

Fig. 7 shows the Finis Terrae results, where the message-passing kernel implementations, NPB-MPI and NPB-MPJ, have
been run on the rx7640 nodes of this supercomputer, using 8 cores per node and up to 32 nodes (hence up to 256 cores),
whereas the sharedmemory results (NPB-OMP andNPB-JAV) have been obtained from the HP Integrity Superdome using up
to 128 cores. Although the results have been obtained using two different hardware configurations, both subsystems share
the same features but thememory architecture, which is distributed in rx7640 nodes and shared in the Integrity Superdome,
as presented in Section 4.1.

The analysis of the Finis Terrae results (Fig. 7) shows that the best performer is OpenMP, showing significantly higher
MOPS than the other implementations, except for MG where it is outperformed by MPI. Nevertheless, OpenMP suffers
scalability losses from 64 cores due to the access to remote cells and the relative poor bidirectional traffic performance in the
cell controller (the Integrity Superdome is a ccNUMA systemwhich consists of 16 cells, each onewith 4 dual-core processors
and 64 Gbytes memory, interconnected through a crossbar network) [56]. The high performance of OpenMP contrasts with
the poor results in terms of MOPS of NPB-JAV, although this is motivated by its poor performance on one core, which is
usually an order of magnitude lower than MPI (Intel Compiler) performance (see in Section 4.3 the right graph in Fig. 3).
Although this poor runtime favors the obtaining of high scalability, in fact NPB-JAV obtains speedups above 30 for CG and
FT, this is not enough to bridge the gap with OpenMP results as NPB-OMP codes achieves even higher speedups, except for
FT. Furthermore, NPB-JAV results are significantly poorer than those of NPB-MPJ (around 2–3 times lower), except for MG,
which confirms the inefficiency of this Java threads implementation.

The performance results of the message-passing codes, NPB-MPI and NPB-MPJ, are between NPB-OMP kernels and the
shared memory implementations, except for NPB-MPI MG, which is the best performer for MG kernel. Nevertheless, there
are significant differences among the libraries been used. Thus, MPJ Express presents modest speedups, below 30, due to
the use of a sockets-based (niodev) communication device over the IP emulation IPoIB. This limitation is overcome in F-MPJ,
relying more directly on IBV. Thus, F-MPJ is able to achieve the highest speedups, motivated in part by the longer runtimes
on one core (see in Section 4.3 the right graph in Fig. 3) which favor this scalability (a heavy workload reduces the impact
of communications on the overall performance scalability). The high speedups of F-MPJ, which are significantly higher than
those of MPI (e.g., up to 7 times higher in CG), allow F-MPJ to bridge the gap between Java and natively compiled languages
in HPC. In fact, F-MPJ performance results for CG and FT on 256 are close to those of MPI, although their performance on one
core is around 7 and 4 times lower than MPI results for CG and FT, respectively.

The analysis of these NPB experimental results show that the performance of MPJ libraries heavily depends on their
InfiniBand support. Thus, F-MPJ, which relies directly on IBV, outperforms significantly MPJ Express, whose socket-
based communication device runs on IPoIB, obtaining relatively low performance, especially in terms of start-up latency.
Furthermore, NPB-MPJ kernels have revealed to be themost efficient Java implementation, significantly outperforming Java
threads implementations, both in terms of performance on one core and scalability. Moreover, the comparative evaluation
of NPB-MPJ and NPB-MPI results reveals that efficient MPJ libraries can help to bridge the gap between Java and native code
performance in HPC. Finally, the evaluated libraries have shown higher speedups on Finis Terrae than on the x86-64 cluster.
The reason behind this behavior is that the obtaining of poorer performance on one core allows for higher scalability given
the same interconnection technology (both systems use 16 Gbps InfiniBand DDR networks). Thus, NPB-MPJ kernels on the
Finis Terrae, showing some of the poorest performance on one core, are able to achieve speedups of up to 175 on 256 cores,
whereas NPB-MPI scalability on the x86-64 cluster is always below a speedup of 50. Nevertheless, NPB-MPI on the x86-64
cluster shows the highest performance in terms of MOPS, outperforming NPB-MPI results on the Finis Terrae, which has
double the number of available cores (256 cores available on the Finis Terrae vs. 128 cores available on the x86-64 cluster).

4.6.2. Performance analysis of the jGadget application
The jGadget [55] application is the MPJ implementation of Gadget [57], a popular cosmology simulation code initially

implemented in C and parallelized using MPI that is used to study a large variety of problems like colliding and merging
galaxies or the formation of large-scale structures. The parallelization strategy, both with MPI and MPJ, is an irregular and
dynamically adjusted domain decomposition, with copious communication between processes. jGadget has been selected
as representative Java HPC application as its performance has been previously analyzed [52] for their Java (MPJ) and C (MPI)
implementations, as well as for its communication intensiveness and its popularity.

Fig. 8 presents jGadget and Gadget performance results on the x86-64 cluster and the Finis Terrae for a galaxy cluster
formation simulation with 2 million particles in the system (simulation available within the examples of Gadget software
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Fig. 7. NPB Class C results on Finis Terrae.

bundle). As Gadget is a communication-intensive application, with significant collective operations overhead, its scalability
is modest, obtaining speedups of up to 48 on 128 cores of the x86-64 cluster and speedups of up to 57 on 256 cores of
the Finis Terrae. Here F-MPJ achieves generally the highest speedups, followed closely by MPI, except from 64 cores on the
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Fig. 8. Gadget runtime and scalability on the x86-64 cluster and the Finis Terrae supercomputer.

Finis Terrae whereMPI loses performance. This slowdown is sharedwithMPJ Express, which shows its highest performance
on 64 cores for both systems. Nevertheless, MPJ Express speedups on the Finis Terrae are much higher (up to 37) than on
the x86-64 cluster (only up to 16), something motivated by the different runtime of the application on the x86-64 cluster
and the Finis Terrae. In fact, MPI Gadget presents numerous library dependences, such as FFTW-MPI, Hierarchical Data
Format (HDF) support, and the numerical GNU Scientific Library (GSL), which are not fully optimized for this system, thus
increasing significantly its runtime. An example of inefficiency is that GSL shows poor performance on the Finis Terrae. Here
the use of Intel Math Kernel Library (MKL) would show higher performance but the support for this numerical library is not
implemented in Gadget. As a consequence of this jGadget performs better, compared in relative termswithMPI, on the Finis
Terrae (only 2 times slower than MPI) than on the x86-64 cluster (3 times slower than MPI), although the performance of
Java on IA64 architectures is quite poor.

Moreover, the performance gap between Gadget and jGadget is motivated by the poor performance of the numerical
methods included in jGadget, which consist of a translation of the GSL functions invoked in the Gadget source code, without
relying on external numerical libraries. The use of an efficient Java numerical library [58], comparable in performance to
Fortran numerical codes, would have improved the performance of jGadget. The development of such a library is still an
ongoing effort, although it started a decade ago when it was demonstrated that Java was able to compete with Fortran in
high performance numerical computing [59,60]. In the last years a few projects are being actively developed [61], such
as Universal Java Matrix Package (UJMP) [62], Efficient Java Matrix Library (EJML) [63], Matrix Toolkit Java (MTJ) [64] and
jblas [65], which are replacing more traditional frameworks such as JAMA [66]. Furthermore, a recent evaluation of Java for
numerical computing [67] has shown that the performance of Java applications can be significantly enhanced by delegating
numerically intensive tasks to native libraries (e.g., IntelMKL)which supports the development of efficient high performance
numerical applications in Java.

5. Conclusions

This paper has analyzed the current state of Java for HPC, both for shared and distributedmemory programming, showing
an important number of past and present projects which are the result of the sustained interest in the use of Java for HPC.
Nevertheless, most of these projects are restricted to experimental environments, which prevents their general adoption in
this field. However, the analysis of the existing programming options and available libraries in Java forHPC, togetherwith the
presentation in this paper of our current research efforts in the improvement of the scalability of our Java message-passing
library, F-MPJ, would definitively contribute to boost the embracement of Java in HPC.

Additionally, Java lacks thorough and up-to-date evaluations of their performance in HPC. In order to overcome this issue
this paper presents the performance evaluation of current Java HPC solutions and research developments on two shared
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memory environments and two InfiniBand multi-core clusters. The main conclusion of the analysis of these results is that
Java can achieve almost similar performance to natively compiled languages, both for sequential and parallel applications,
being an alternative for HPC programming. In fact, the performance overhead that Javamay impose is a reasonable trade-off
for the appealing features that this language provides for parallel programming multi-core architectures. Furthermore, the
recent advances in the efficient support of Java communications on shared memory and low-latency networks are bridging
the performance gap between Java and more traditional HPC languages.

Finally, the active research efforts in this area are expected to bring in the next future new developments that will
continue rising the interest of both industry and academia and increasing the benefits of the adoption of Java for HPC.

Acknowledgements

This work was funded by theMinistry of Science and Innovation of Spain under Project TIN2010-16735 and an FPU grant
AP2009-2112. We gratefully thank CESGA (Galicia Supercomputing Center, Santiago de Compostela, Spain) for providing
access to the Finis Terrae supercomputer.

References

[1] G.L. Taboada, J. Touriño, R. Doallo, Java for high performance computing: assessment of current research and practice, in: Proc. 7th Intl. Conference
on the Principles and Practice of Programming in Java, PPPJ’09, Calgary, Alberta, Canada, 2009, pp. 30–39.

[2] B. Amedro, D. Caromel, F. Huet, V. Bodnartchouk, C. Delbé, G.L. Taboada, ProActive: using a Java middleware for HPC design, implementation and
benchmarks, International Journal of Computers and Communications 3 (3) (2009) 49–57.

[3] J.J. Dongarra, D. Gannon, G. Fox, K. Kennedy, The impact of multicore on computational science software, CTWatch Quarterly 3 (1) (2007) 1–10.
[4] A. Kaminsky, Parallel Java: a unified API for shared memory and cluster parallel programming in 100% Java, in: Proc. 9th Intl. Workshop on Java and

Components for Parallelism, Distribution and Concurrency, IWJacPDC’07, Long Beach, CA, USA, 2007, p. 196a (8 pages).
[5] M.E. Kambites, J. Obdrzálek, J.M. Bull, An OpenMP-like interface for parallel programming in Java, Concurrency and Computation: Practice and

Experience 13 (8–9) (2001) 793–814.
[6] M. Klemm, M. Bezold, R. Veldema, M. Philippsen, JaMP: an implementation of OpenMP for a Java DSM, Concurrency and Computation: Practice and

Experience 19 (18) (2007) 2333–2352.
[7] A. Shafi, B. Carpenter, M. Baker, Nested parallelism for multi-core HPC systems using Java, Journal of Parallel and Distributed Computing 69 (6) (2009)

532–545.
[8] R. Veldema, R.F.H. Hofman, R. Bhoedjang, H.E. Bal, Run-time optimizations for a Java DSM implementation, Concurrency and Computation: Practice

and Experience 15 (3–5) (2003) 299–316.
[9] K.A. Yelick, et al., Titanium: a high-performance Java dialect, Concurrency — Practice and Experience 10 (11–13) (1998) 825–836.

[10] K. Datta, D. Bonachea, K.A. Yelick, Titanium performance and potential: an NPB experimental study, in: Proc. 18th Intl. Workshop on Languages and
Compilers for Parallel Computing, LCPC’05, in: LNCS, vol. 4339, Hawthorne, NY, USA, 2005, pp. 200–214.

[11] G.L. Taboada, J. Touriño, R. Doallo, Java Fast Sockets: enabling high-speed Java communications on high performance clusters, Computer
Communications 31 (17) (2008) 4049–4059.

[12] R.V.v. Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann, H.E. Bal, Ibis: a flexible and efficient Java-based Grid programming
environment, Concurrency and Computation: Practice and Experience 17 (7–8) (2005) 1079–1107.

[13] L. Baduel, F. Baude, D. Caromel, Object-oriented SPMD, in: Proc. 5th IEEE Intl. Symposium on Cluster Computing and the Grid, CCGrid’05, Cardiff, UK,
2005, pp. 824–831.

[14] M. Philippsen, B. Haumacher, C. Nester, More efficient serialization and RMI for Java, Concurrency: Practice and Experience 12 (7) (2000) 495–518.
[15] D. Kurzyniec, T. Wrzosek, V. Sunderam, A. Slominski, RMIX: a multiprotocol RMI framework for Java, in: Proc. 5th Intl. Workshop on Java for Parallel

and Distributed Computing, IWJPDC’03, Nice, France, 2003, p. 140 (7 pages).
[16] J. Maassen, R.V.v. Nieuwpoort, R. Veldema, H.E. Bal, T. Kielmann, C. Jacobs, R. Hofman, Efficient Java RMI for parallel programming, ACM Transactions

on Programming Languages and Systems 23 (6) (2001) 747–775.
[17] G.L. Taboada, C. Teijeiro, J. Touriño, Highperformance Java remotemethod invocation for parallel computing on clusters, in: Proc. 12th IEEE Symposium

on Computers and Communications, ISCC’07, Aveiro, Portugal, 2007, pp. 233–239.
[18] G.L. Taboada, J. Touriño, R. Doallo, Performance analysis of Java message-passing libraries on Fast Ethernet, Myrinet and SCI clusters, in: Proc. 5th IEEE

Intl. Conf. on Cluster Computing, CLUSTER’03, Hong Kong, China, 2003, pp. 118–126.
[19] B. Carpenter, G. Fox, S.-H. Ko, S. Lim, mpiJava 1.2: API Specification, http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-spec.html

[Last visited: May 2011].
[20] B. Carpenter, V. Getov, G. Judd, A. Skjellum, G. Fox, MPJ: MPI-like message passing for Java, Concurrency: Practice and Experience 12 (11) (2000)

1019–1038.
[21] Java grande forum, http://www.javagrande.org, [Last visited: May 2011].
[22] M. Baker, B. Carpenter, G. Fox, S. Ko, S. Lim, mpiJava: an object-oriented Java interface to MPI, in: Proc. 1st Intl. Workshop on Java for Parallel and

Distributed Computing, IWJPDC’99, in: LNCS, vol. 1586, San Juan, Puerto Rico, 1999, pp. 748–762.
[23] B. Pugh, J. Spacco, MPJava: high-performance message passing in Java using Java.nio, in: Proc. 16th Intl. Workshop on Languages and Compilers for

Parallel Computing, LCPC’03, in: LNCS, vol. 2958, College Station, TX, USA, 2003, pp. 323–339.
[24] B.-Y. Zhang, G.-W. Yang, W.-M. Zheng, Jcluster: an efficient Java parallel environment on a large-scale heterogeneous cluster, Concurrency and

Computation: Practice and Experience 18 (12) (2006) 1541–1557.
[25] S. Genaud, C. Rattanapoka, P2P-MPI: a peer-to-peer framework for robust execution of message passing parallel programs, Journal of Grid Computing

5 (1) (2007) 27–42.
[26] M. Bornemann, R.V.v. Nieuwpoort, T. Kielmann, MPJ/Ibis: a flexible and efficient message passing platform for Java, in: Proc. 12th European PVM/MPI

Users’ Group Meeting, EuroPVM/MPI’05, Sorrento, Italy, LNCS, vol. 3666, 2005, pp. 217–224.
[27] S. Bang, J. Ahn, Implementation and performance evaluation of socket and RMI based Java message passing systems, in: Proc. 5th ACIS Intl. Conf. on

Software Engineering Research, Management and Applications, SERA’07, Busan, Korea, 2007, pp. 153–159.
[28] G.L. Taboada, J. Touriño, R. Doallo, F-MPJ: scalable Java message-passing communications on parallel systems, Journal of Supercomputing (2011)

doi:10.1007/s11227-009-0270-0.
[29] G.L. Taboada, S. Ramos, J. Touriño, R. Doallo, Design of efficient Java message-passing collectives on multi-core clusters, Journal of Supercomputing

55 (2) (2011) 126–154.
[30] A. Shafi, J. Manzoor, K. Hameed, B. Carpenter, M. Baker, Multicore-enabling the MPJ Express messaging library, in: Proc. 8th Intl. Conference on the

Principles and Practice of Programming in Java, PPPJ’10, Vienna, Austria, 2010, pp. 49–58.

144 Chapter 5. Java in the HPC Arena: Research, Practice and Experience



444 G.L. Taboada et al. / Science of Computer Programming 78 (2013) 425–444

[31] L.A. Barchet-Estefanel, G. Mounié, Fast tuning of intra-cluster collective communications, in: Proc. 11th European PVM/MPI Users’ Group Meeting,
EuroPVM/MPI’04, Budapest, Hungary, LNCS, vol. 3241, 2004, pp. 28–35.

[32] E. Chan, M. Heimlich, A. Purkayastha, R.A. van de Geijn, Collective communication: theory, practice, and experience, Concurrency and Computation:
Practice and Experience 19 (13) (2007) 1749–1783.

[33] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective communication operations in MPICH, International Journal of High Performance
Computing Applications 19 (1) (2005) 49–66.

[34] S.S. Vadhiyar, G.E. Fagg, J.J. Dongarra, Towards an accuratemodel for collective communications, International Journal of High Performance Computing
Applications 18 (1) (2004) 159–167.

[35] J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, R.A. Davey, A benchmark suite for high performance Java, Concurrency: Practice and Experience 12
(6) (2000) 375–388.

[36] D.A. Mallón, G.L. Taboada, J. Touriño, R. Doallo, NPB-MPJ: NAS parallel benchmarks implementation for message-passing in Java, in: Proc. 17th
Euromicro Intl. Conf. on Parallel, Distributed, and Network-Based Processing (PDP’09), Weimar, Germany, 2009, pp. 181–190.

[37] P. Charles, C. Grothoff, V.A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, V. Sarkar, X10: an object-oriented approach to non-
uniform cluster computing, in: Proc. 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA’05, San Diego, CA, USA, 2005, pp. 519–538.

[38] X10: Performance and productivity at scale, http://x10plus.cloudaccess.net/ [Last visited: May 2011].
[39] Habanero Java, http://habanero.rice.edu/hj.html [Last visited: May 2011].
[40] J. Shirako, H. Kasahara, V. Sarkar, Language extensions in support of compiler parallelization, in: Proc. 20th Intl.Workshop on Languages and Compilers

for Parallel Computing, LCPC’07, Urbana, IL, USA, 2007, pp. 78–94.
[41] Y. Yan, M. Grossman, V. Sarkar, JCUDA: a programmer-friendly interface for accelerating Java programs with CUDA, in: Proc. 15th Intl. European

Conference on Parallel and Distributed Computing, Euro-Par’09, Delft, The Netherlands, 2009, pp. 887–899.
[42] jcuda.org, http://jcuda.org [Last visited: May 2011].
[43] jCUDA, http://hoopoe-cloud.com/Solutions/jCUDA/Default.aspx [Last visited: May 2011].
[44] JaCuda, http://jacuda.sourceforge.net [Last visited: May 2011].
[45] Jacuzzi, http://sourceforge.net/apps/wordpress/jacuzzi [Last visited: May 2011].
[46] java-gpu, http://code.google.com/p/java-gpu [Last visited: May 2011].
[47] jocl.org, http://jocl.org [Last visited: May 2011].
[48] JavaCL, http://code.google.com/p/javacl [Last visited: May 2011].
[49] JogAmp, http://jogamp.org [Last visited: May 2011].
[50] G. Dotzler, R. Veldema, M. Klemm, JCudaMP: OpenMP/Java on CUDA, in: Proc. 3rd Intl. Workshop onMulticore Software Engineering, IWMSE’10, Cape

Town, South Africa, 2010, pp. 10–17.
[51] A. Leung, O. Lhoták, G. Lashari, Parallel execution of Java loops on graphics processing units, Science of Computer Programming (2011)

doi:10.1016/j.scico.2011.06.004.
[52] A. Shafi, B. Carpenter, M. Baker, A. Hussain, A comparative study of Java and C performance in two large-scale parallel applications, Concurrency and

Computation: Practice and Experience 21 (15) (2009) 1882–1906.
[53] Finis Terrae Supercomputer, Galicia Supercomputing Center, CESGA, http://www.top500.org/system/9156 [Last visited: May 2011].
[54] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous Java performance evaluation, in: Proc. 22nd Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA’07, Montreal, Quebec, Canada, 2007, pp. 57–76.
[55] M. Baker, B. Carpenter, A. Shafi, MPJ Express meets Gadget: towards a Java code for cosmological simulations, in: Proc. 13th European PVM/MPI Users’

Group Meeting, EuroPVM/MPI’06, Bonn, Germany, 2006, pp. 358–365.
[56] D.A. Mallón, G. Taboada, C. Teijeiro, J. Touriño, B. Fraguela, A. Gómez, R. Doallo, J. Mouriño, Performance evaluation of MPI, UPC and OpenMP on

multicore architectures, in: Proc. 16th European PVM/MPI Users’ Group Meeting, EuroPVM/MPI’09, Espoo, Finland, 2009, pp. 174–184.
[57] V. Springel, The cosmological simulation code GADGET-2, Monthly Notices of the Royal Astronomical Society 364 (4) (2005) 1105–1134.
[58] JavaGrande JavaNumerics, http://math.nist.gov/javanumerics/ [Last visited: May 2011].
[59] R.F. Boisvert, J.J. Dongarra, R. Pozo, K.A. Remington, G.W. Stewart, Developing numerical libraries in Java, Concurrency: Practice and Experience 10

(11–13) (1998) 1117–1129.
[60] J.E. Moreira, S.P. Midkiff, M. Gupta, P.V. Artigas, M. Snir, R.D. Lawrence, Java programming for high-performance numerical computing, IBM Systems

Journal 39 (1) (2000) 21–56.
[61] H. Arndt, M. Bundschus, A. Naegele, Towards a next-generation matrix library for Java, in: Proc. 33rd Annual IEEE Intl. Computer Software and

Applications Conference, COMPSAC’09, Seattle, WA, USA, 2009, pp. 460–467.
[62] Universal Java Matrix Package (UJMP), http://www.ujmp.org [Last visited: May 2011].
[63] Efficient Java Matrix Library (EJML), http://code.google.com/p/efficient-java-matrix-library/ [Last visited: May 2011].
[64] Matrix Toolkits Java (MTJ), http://code.google.com/p/matrix-toolkits-java/ [Last visited: May 2011].
[65] Linear Algebra for Java (jblas), http://jblas.org/ [Last visited: May 2011].
[66] JAMA: A Java Matrix Package, http://math.nist.gov/javanumerics/jama [Last visited: May 2011].
[67] M. Baitsch, N. Li, D. Hartmann, A toolkit for efficient numerical applications in Java, Advances in Engineering Software 41 (1) (2010) 75–83.

145





Part II

Evaluation of Communication

Middleware for HPC on a Public

Cloud Infrastructure

147





Chapter 6

Evaluation of Messaging

Middleware for Cloud Computing

The content of this chapter corresponds to the following journal paper:

- Title: Evaluation of messaging middleware for high-performance cloud com-

puting

- Authors: Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos, Juan

Touriño, Ramón Doallo

- Journal: Personal and Ubiquitous Computing

- Editorial: Springer Science+Business Media

- ISSN: 1617-4909

- Year: 2013

- Volume(Number):Pages: 17(8):1709–1719

- DOI: 10.1007/s00779-012-0605-3

The final publication is available at http://link.springer.com/article/10.

1007%2Fs00779-012-0605-3. A copy of the accepted paper has been included next.

149

http://link.springer.com/article/10.1007%2Fs00779-012-0605-3
http://link.springer.com/article/10.1007%2Fs00779-012-0605-3


Evaluation of messaging middleware for high-performance
cloud computing

Roberto R. Expósito • Guillermo L. Taboada •

Sabela Ramos • Juan Touriño • Ramón Doallo

Abstract Cloud computing is posing several challenges,

such as security, fault tolerance, access interface singular-

ity, and network constraints, both in terms of latency and

bandwidth. In this scenario, the performance of commu-

nications depends both on the network fabric and its effi-

cient support in virtualized environments, which ultimately

determines the overall system performance. To solve the

current network constraints in cloud services, their pro-

viders are deploying high-speed networks, such as 10

Gigabit Ethernet. This paper presents an evaluation of

high-performance computing message-passing middleware

on a cloud computing infrastructure, Amazon EC2 cluster

compute instances, equipped with 10 Gigabit Ethernet. The

analysis of the experimental results, confronted with a

similar testbed, has shown the significant impact that vir-

tualized environments still have on communication per-

formance, which demands more efficient communication

middleware support to get over the current cloud network

limitations.

Keywords Cloud computing � High-performance

computing � Virtualization � 10 Gigabit ethernet �
Message-passing middleware � Performance evaluation

1 Introduction

Cloud computing is a model that enables convenient, on

demand and self-service access to a shared pool of highly

scalable, abstracted infrastructure that hosts applications,

which are billed by consumption. This computing para-

digm is changing rapidly the way enterprise computing is

provisioned and managed, thanks to the commoditization

of computing resources (e.g., networks, servers, storage

and applications) which provide cost-effective solutions

and efficient server virtualization [5]. Moreover, cloud

computing technologies can be useful in a wide range of

applications such as email, file storage or document clus-

tering [39], among other domains [20]. However, this

model is posing several challenges, such as security [35],

heterogeneity of the cloud management frameworks and

handling network constraints, both in terms of latency (the

cost of sending a message with minimal size through

the network) and bandwidth, that limit the scalability of the

cloud resources.

In cloud computing, the performance of communica-

tions depends both on the network fabric and its efficient

support in cloud middleware, which ultimately determines

the overall system performance. Cloud infrastructures

typically relied on a virtualized access to Gigabit Ethernet

and the use of TCP/IP stack, a combination that provides

poor performance [33], especially when the underlying

infrastructure consists of systems with an increasing

number of cores per processor due to the poor ratio

between CPU power and network performance. To solve
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these network constraints in cloud services, their providers

are deploying high-speed networks (e.g., 10 Gigabit

Ethernet and InfiniBand).

High-speed networks have been traditionally deployed

in high-performance computing (HPC) environments,

where message-passing middleware is the preferred choice

for supporting communications across distributed memory

systems. MPI [1] is the standard interface for programming

message-passing applications in languages compiled to

native code (e.g., C/C?? and Fortran), whereas MPJ

[7, 31] is the messaging middleware for Java applications.

These HPC applications, whose scalability depends on

low-latency communications [37], generally achieve good

performance on clusters with high-speed networks,

whereas they suffer significant performance bottlenecks on

virtualized environments, especially networking overheads,

at public cloud infrastructures.

Amazon Elastic Compute Cloud (Amazon EC2) [21]

provides users with access to on demand computational

resources to run their applications. EC2 allows scalable

deployment of applications by providing a Web service

through which a user can boot an Amazon Machine Image

(AMI) to create a custom Virtual Machine (a VM or

‘‘instance’’). Cluster compute instances [22], a resource

introduced in July 2010, provide the most powerful CPU

resources with increased network performance, which is

intended to be well suited for HPC applications and other

demanding network-bound applications. This is particu-

larly valuable for those applications that rely on messaging

middleware like MPI for tightly coupled inter-node

communication.

This paper presents an evaluation of HPC message-

passing middleware on a cloud computing infrastructure,

Amazon EC2 cluster compute instances, with a high-speed

network, 10 Gigabit Ethernet, in order to assess their

suitability for HPC. Nevertheless, the experimental results

have shown several performance penalties, such as the lack

of efficient network virtualization support and a proper

VM-aware middleware adapted to cloud environments.

The structure of this paper is as follows: Sect. 2

introduces the related work. Section 3 describes the net-

work support in virtualized environments, the building

block in cloud infrastructures. Section 4 introduces the

message-passing middleware considered in this work.

Section 5 analyzes the performance results of the selected

middleware on HPC cluster instances of Amazon EC2

cloud, compared to our private cloud testbed with a

similar configuration. These results have been obtained

from a micro-benchmarking of point-to-point primitives,

as well as an application benchmarking in order to ana-

lyze the scalability of HPC applications on cloud services.

Section 6 summarizes our concluding remarks and future

work.

2 Related work

Typically, computationally intensive codes present little

overhead when running on virtualized environments,

whereas I/O bound applications, especially network

intensive ones, suffer significant performance losses [14].

Thus, message-passing applications whose scalability

heavily depends on start-up latency performance were

initially highly inefficient in such virtualized environments.

There have been many studies of virtualization techniques

in the literature, including performance enhancements

focused on reducing this I/O overhead. Paravirtualization

[36] was introduced in order to reduce the performance

overhead associated with emulated I/O access to virtual

devices. Liu et al. [19] describe the I/O bypass of the virtual

machine monitor (VMM) or hypervisor, using InfiniBand

architecture, extending the OS-bypass mechanism to high-

speed interconnects. The use of this technique has shown

that Xen hypervisor [8] is capable of near-native bandwidth

and latency, although it has not been officially integrated

in Xen so far. Nanos et al. [27] developed Myrixen, a thin

split driver layer on top of the Myrinet Express (MX) driver

to support message-passing in Xen VMs over the wire pro-

tocols in Myri-10G infrastructures.

A VM-aware MPI library was implemented in [15],

reducing the communication overhead for HPC applications

by supporting shared memory transfers among VMs in the

same physical host. Mansley et al. [24] developed a direct

data path between the VM and the network using Solarflare

Ethernet NICs, but its operation is restricted to these devices.

Raj et al. [28] describe network processor-based self via

specialized network interface cards to minimize network

overhead.

Hybrid computing concept was studied in [25]. They have

examined how cloud computing can be best combined with

traditional HPC approaches, proposing a hybrid infrastruc-

ture for the predictable execution of complex scientific

workloads across a hierarchy of internal and external

resources. They presented the Elastic Cluster as a

unified model of managed HPC and cloud resources.

Additionally, some works have already evaluated the

performance of cloud computing services, such as Amazon

EC2. Wang et al. [34] present a quantitative study of the

end-to-end networking performance among Amazon EC2

medium instances, and they observed unstable TCP/UDP

throughput caused by virtualization and processor sharing.

Walker [33] evaluates the performance of Amazon EC2 for

high-performance scientific applications, reporting that

Amazon has much worse performance than traditional HPC

clusters. Walker used only up to 32 cores from Amazon

EC2 high-CPU extra large instances, the most powerful

CPU instances in 2008, with a standard Gigabit Ethernet

interconnection network. His main conclusion was that the
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cloud computing service was not mature for HPC at that

moment.

The suitability for HPC of several virtualization tech-

nologies was evaluated in [29], showing that operating

system virtualization was the only solution that offers near-

native CPU and I/O performance. They included in their

testbed four Amazon EC2 cluster compute instances,

interconnected via 10 Gigabit Ethernet, although they

focused more on the overall performance of the VM

instead of the scalability of HPC applications.

3 Network support in virtualized environments

The basic building blocks of the system (i.e., CPUs, memory

and I/O devices) in virtualized environments are multiplexed

by the virtual machine monitor (VMM) or hypervisor. Xen

[8] is a popular high-performance VMM, used by Amazon

EC2 among other cloud providers. Xen systems have a

structure with the Xen hypervisor as the lowest and most

privileged layer. Above this layer come one or more guest

operating systems, which the hypervisor schedules across the

physical CPUs. The first guest operating system, called in

Xen terminology domain 0 (dom0), boots automatically

when the hypervisor boots and receives special management

privileges and direct access to all physical hardware by

default. The system administrator can log into dom0 in order

to manage any further guest operating systems, called domain

U (domU) in Xen terminology.

Xen supports two virtualization technologies:

• Full Virtualization (HVM): This type of virtualization

allows the virtualization of proprietary operating sys-

tems, since the guest system’s kernel does not require

modification, but guests require CPU virtualization

extensions from the host CPU (Intel VT [16], AMD-V

[4]). In order to boost performance, fully virtualized

HVM guests can use special paravirtual device drivers

to bypass the emulation for disk and network I/O.

Amazon EC2 cluster compute instances use this Xen

virtualization technology.

• Paravirtualization (PV): This technique requires

changes to the virtualized operating system to be

hypervisor-aware. This allows the VM to coordinate

with the hypervisor, reducing the use of privileged

instructions that are typically responsible for the major

performance penalties in full virtualization. For this

reason, PV guests usually outperform HVM guests.

Paravirtualization does not require virtualization exten-

sions from the host CPU.

VMs in Xen usually do not have direct access to net-

work hardware, except using PCI passthrough technique

(see next paragraph) or with third-party specific support

(like [19] for InfiniBand and [27] for Myrinet). Since most

existing device drivers assume a complete control of the

device, there cannot be multiple instantiations of such

drivers in different guests. To ensure manageability and

safe access, Xen follows a split driver model [11]. Domain

0 is a privileged guest that accesses I/O devices directly

and provides the VMs abstractions to interface with the

hardware. In fact, dom0 hosts a backend driver that com-

municates with the native driver and the device. Guest VM

kernels host a frontend driver, exposing a generic API to

guest users. Guest VMs need to pass the I/O requests to the

driver domain to access the devices, and this control

transfer between domains requires involvement of the

VMM. Therefore, Xen networking is completely virtual-

ized. A series of virtual Ethernet devices are created on the

host system which ultimately function as the endpoints of

network interfaces in the guests. The guest sees its end-

points as standard Ethernet devices, and bridging is used on

the host to allow all guests to appear as individual servers.

PCI passthrough [17] is a technique that provides an

isolation of devices to a given guest operating system so

the device can be used exclusively by that guest, which

eventually achieves near-native performance. Thus, this

approach benefits network-bounded applications (e.g., HPC

applications) that have not adopted virtualization because

of contention and performance degradation through the

hypervisor (to a driver in the hypervisor or through the

hypervisor to a user space emulation). However, assigning

devices to specific guests is also useful when those devices

cannot be shared. For example, if a system included mul-

tiple video adapters, those adapters could be passed

through to unique guest domains.

Both Intel and AMD provide support for PCI pass-

through in their more recent processor architectures (in

addition to new instructions that assist the hypervisor).

Intel calls its option Virtualization Technology for Directed

I/O (VT-d [2]), while AMD refers to I/O Memory Man-

agement Unit (IOMMU [3]). For each case, the new CPUs

provide the means to map PCI physical addresses to guest

virtual addresses. When this mapping occurs, the hardware

takes care of access (and protection), and the guest oper-

ating system can use the device as if it were a non-virtu-

alized system. In addition to this mapping of virtual guest

addresses to physical memory, isolation is provided in such

a way that other guests (or the hypervisor) are precluded

from accessing it.

Xen supports PCI passthrough [38] for PV or HVM

guests, but dom0 operating system must support it, typi-

cally available as a kernel build-time option. For PV

guests, Xen does not require any special hardware support,

but PV domU kernel must support the Xen PCI frontend

driver for PCI passthrough in order to work. Hiding the

devices from the dom0 VM is also required, which can be
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done with Xen using pciback driver. For HVM guests,

hardware support (Intel VT-d or AMD IOMMU) is required

as well as pciback driver on dom0 kernel. However, domU

kernel does not need any special feature, so PCI passthrough

with proprietary operating systems is also possible with Xen

using HVM guests.

4 Messaging middleware for high-performance cloud

computing

Two widely extended HPC messaging middleware, Open

MPI [12] and MPICH2 [26], were selected for the perfor-

mance evaluation of native codes (C/C?? and Fortran)

carried out on Amazon EC2. In addition, FastMPJ [32] was

also selected as representative Java messaging middleware.

Open MPI is an open source MPI-2 implementation

developed and maintained by a consortium of academic,

research and industry partners. Open MPI’s Modular

Component Architecture (MCA) allows for developers to

implement extensions and features within self-contained

components. The Byte Transfer Layer (BTL) framework is

designed to provide a consistent interface to different net-

works for basic data movement primitives between peers.

This favors the quick and efficient support of emerging

network technologies. Therefore, adding native support for

a new network interconnect is straightforward; thus, Open

MPI now includes several BTL implementations for TCP,

Myrinet, InfiniBand and shared memory support, among

other (see Fig. 1).

MPICH2 is a high-performance and open source imple-

mentation of the MPI standard (both MPI-1 and MPI-2). Its

goal is to provide an MPI implementation that efficiently

supports different computation and communication plat-

forms including commodity clusters, high-speed networks,

and proprietary high-end computing systems. The ADI-3

(Abstract Device Interface) layer is a full featured low-level

interface used in the MPICH2 implementation to provide a

portability layer that allows access to many features of a wide

range of communication systems. It is responsible for both the

point-to-point and one-sided communications. The ADI-3

layer can be implemented on top of the CH3 device, which

only requires the implementation of a dozen functions but

provides many of the performance advantages of the full

ADI-3 interface. In order to support a new platform in

MPICH2, only the CH3 channel has to be implemented.

Several CH3 channels already offer support for TCP, Myri-

net, InfiniBand and shared memory (see Fig. 2).

Nemesis [9] is a new generic communication subsystem

designed and implemented to be scalable and efficient both

in the intra-node communication context using shared

memory and in the inter-node communication case using

high-performance networks. Nemesis has been integrated

in MPICH2 as a CH3 channel and delivers better perfor-

mance than other dedicated communication channels.

FastMPJ is a Java message-passing implementation which

provides shared memory and high-speed networks support on

InfiniBand and Myrinet. FastMPJ implements the mpiJava

1.2 API [10], the most widely extended MPJ API, and

includes a scalable MPJ collectives library [30]. Figure 3

presents an overview of the FastMPJ communication devices

on shared memory and high-speed cluster networks. From top

to bottom, the communication support of MPJ applications

with FastMPJ is implemented in the device layer. Current

FastMPJ communication devices are implemented on JVM

threads (smpdev, a thread-based device), on sockets over the

TCP/IP stack (iodev on Java IO sockets and niodev on

Java NIO sockets), on Myrinet and InfiniBand.

5 Performance evaluation

This section presents a performance evaluation of native

(C/C?? and Fortran) and Java message-passing
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middleware for HPC on a cloud computing infrastructure,

Amazon EC2 cluster compute instances, whose access to

the high-speed network, 10 Gigabit Ethernet, is virtualized.

In order to analyze the impact of the cloud network over-

head in representative HPC codes, a testbed with similar

hardware has been set up. This evaluation consists of a

micro-benchmarking of point-to-point data transfers, both

inter-VM (through 10 Gigabit Ethernet) and intra-VM

(shared memory), at the message-passing library level and

its underlying layer, TCP/IP. Then, the significant impact

of virtualized communication overhead on the scalability

of representative parallel codes, NAS Parallel Benchmarks

(NPB) kernels [6], has been assessed. These results indicate

that more efficient communication middleware support is

required to get over the current cloud network limitations.

5.1 Experimental configuration

The evaluation has been conducted on sixteen cluster

compute instances of the Amazon EC2 cloud [21], which

have been allocated simultaneously in order to obtain

nearby instances, and two nodes from our private cloud

infrastructure (CAG testbed). Performance results using up

to 8 processes have been obtained in a single node, whereas

processes/8 nodes have been used in the remaining

scenarios.

The Amazon EC2 cluster compute instances are a

resource introduced in July 2010 with 23 GB of memory

and 33.5 EC2 Compute Units (according to Amazon, one

EC2 Compute Unit provides the equivalent CPU capacity

of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor),

running a Linux OS. For these instances, Xen HVM guests,

the provider details the specific processor architecture (see

Table 1), two Intel Xeon X5570 (2.93 GHz) quad-core

Nehalem processors, hence 8 cores per instance, to allow

the performance tuning of applications on this processor.

These systems are interconnected via 10 Gigabit Ethernet,

which is the differential characteristic of this resource. In

fact, this EC2 instance type has been specifically designed

for HPC applications and other demanding latency-bound

applications. However, unfortunately, the network inter-

face card is not available via PCI passthrough in these

instances, so its access is virtualized. The Java Virtual

Machine (JVM) used is OpenJDK 1.6.0_20 (Amazon

Linux 2.6.35 Cluster virtual machine). There is no control

on the location of the requested resources as the provider

does not support yet the allocation of several instances

connected to the same physical switch.

Regarding CAG testbed (see Table 1 again), each node

has two Intel Xeon E5620 (2.40 GHz) quad-core proces-

sors (thus, 8 cores per node) and 16 GB of memory,

interconnected via 10 Gigabit Ethernet (Intel PRO/10GbE

NIC). These machines run Xen PV guests whose OS is

Linux Debian with kernel 2.6.35, and the JVM is Sun JDK

1.6.0_20. These VMs access directly the network interface

card through PCI passthrough, using this approach in 10

Gigabit Ethernet for the first time to the best of our

knowledge. The motivation behind enabling PCI pass-

through in this cloud is to analyze its impact on the effi-

cient support of high-speed networks in virtualized

environments.

The evaluated message-passing libraries are Open MPI

1.4.3 and MPICH2 1.4, used with GNU C/Fortran compiler

4.1.2 and Intel C/Fortran compiler 12.1 (both compilers

with -O3 flag), as well as FastMPJ 0.1 (labeled F-MPJ in

graphs). The performance differences observed between

GNU and Intel compilers were reduced, below 4 %, when

no network communications are involved, and completely

negligible when network traffic is considered due to the

virtualized network I/O overhead. As some works have

already stated that GNU C compiler is generally the most

efficient and reliable under Linux OS [18], only GNU

compiler results are shown for clarity purposes. The point-

to-point micro-benchmarking results have been obtained

with Intel MPI Benchmarks suite (IMB, formerly Pallas)

and its MPJ counterpart communicating byte arrays (hence,

Table 1 Description of the

specific hardware details of the

two clouds used

Amazon EC2 CAG

CPU 2 9 Intel Xeon X5570

Nehalem @2.93 GHz

2 9 Intel Xeon E5620

Westmere @2.40 GHz

#Cores 8 (16 with HT) 8 (16 with HT)

Memory 23 GB DDR3-1333 MHz 16 GB DDR3-1066 MHz

Memory bandwidth 32 GB/s 25.6 GB/s

#Memory channels 3 3

QPI speed 6.4 GT/s 5.86 GT/s

#QPI links 2 2

L3 cache size 8 MB 12 MB

Interconnect 10 Gigabit Ethernet 10 Gigabit Ethernet

Virtualization Xen HVM Xen PV
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with no serialization overhead). The NPB implementations

are the official NPB-MPI version 3.3 and the NPB-MPJ

implementation [23]. The metric considered for the eval-

uation of the NPB kernels is MOPS (Millions of Operations

Per Second), which measures the operations performed in

the benchmark, that differs from the CPU operations

issued. Moreover, NPB Class B workloads have been

selected as they are the largest workloads that can be

executed in a single Xen PV VM in CAG testbed, due to a

Xen bug that limits the amount of memory to 3 GB when

using PCI passthrough.

Finally, the performance results presented in this paper

are the mean of several measurements, generally 1,000

iterations in ping-pong benchmarks and 5 measurements

for NPB kernels. The results show some variability due to

the scheduling of the processes/threads on different cores

within a node (the pinning of threads to specific cores has

not been considered in this work).

5.2 Point-to-point micro-benchmarking

Figures 4 and 5 show point-to-point latencies (for short

messages) and bandwidths (for long messages) of message-

passing transfers using the evaluated message-passing

middleware on 10 Gigabit Ethernet and shared memory,

respectively. Here, the results shown are the half of the

round-trip time of a ping-pong test or its corresponding

bandwidth. Each figure presents the performance results of

Amazon EC2 HVM and CAG native and CAG PV

testbeds.

MPI (MPICH2 and Open MPI) obtains 55–60 ls start-

up latency and up to 3.7 Gbps bandwidth for Xen HVM

point-to-point communication on Amazon EC2 over 10

Gigabit Ethernet (top graph in Fig. 4). Here, both MPI

libraries rely on TCP sockets, which, according to the raw

TCP communication test from the Hpcbench suite [13],

show poor start-up latency, around 52 ls, similar to MPI

start-up latency. However, TCP sockets obtain higher

bandwidth than MPI, up to 5.5 Gbps. These results, both

MPI and Hpcbench, are quite poor, caused by the overhead

in the virtualized access of Xen HVM to the NIC. How-

ever, the communication protocol also presents a signifi-

cant influence as MPI is not able to achieve as much

bandwidth as Hpcbench. This assessment is confirmed by

the Java results, which show even poorer performance than

MPI, with about 140 ls start-up latency and below 2 Gbps

bandwidth for FastMPJ using niodev. Here, Java sockets

operation suffers a significant performance penalty.

The communication overhead caused by the virtualized

access of Xen HVM to the NIC can be significantly alle-

viated through the use of Xen PCI passthrough (middle

graph in Fig. 4). Thus, MPI and Hpcbench achieve start-up

latencies around 28–35 ls and bandwidths up to 7.2 Gbps.

It is noticeable that Hpcbench and Open MPI obtain quite

similar results on this scenario, which suggests that the

overhead incurred by network virtualization on Xen HVM

scenario without PCI passthrough limits long message

performance. Java performance on Xen PV also outper-

forms its results on Xen HVM, although the performance is

still far from the MPI results.

In order to assess the impact of Xen PV virtualization

overhead on the previous results, the performance of the

communications has been measured on the CAG testbed
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Fig. 4 Point-to-point communication performance on the analyzed

testbeds over 10 Gigabit Ethernet
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running a non-virtualized environment, thus obtaining the

native performance of the system (bottom graph in Fig. 4).

The main conclusions that can be derived from these

results are that Xen PV incurs an overhead of around 11 ls

in start-up latency (25 ls overhead in the case of FastMPJ),

whereas native long message performance achieves up to

8.2 Gbps for Hpcbench and almost 8 Gbps for MPI, which

are reduced in Xen PV down to 5.3 Gbps for MPICH2 and

7.2 Gbps for Hpcbench. These results are still a little far

from the theoretical performance of 10 Gigabit Ethernet,

which suggests that TCP processing is the main perfor-

mance bottleneck, for both short and long message per-

formance. Regarding Java results on the non-virtualized

scenario, long message performance is similar to Xen PV

results, only showing a small 10 % improvement due to the

high overhead of the operation of its NIO sockets

implementation.

As the access to multi-core systems is a popular option

in cloud computing, in fact each Amazon EC2 cluster

computing instance provides two quad-core processors, the

performance of communications on such shared memory

systems has also been considered. Here, communications

are done generally within a single VM, without accessing

the network hardware or their communication support (i.e.,

the communication protocol is not assisted by the NIC). In

fact, the use of several VMs per compute node is ineffi-

cient, especially in terms of start-up latency, as the data

transfers must pass through the hypervisor and the domain0

VM.

The shared memory performance results of message-

passing middleware on Amazon EC2 cluster compute

instances (top graph in Fig. 5) are significantly superior

than on 10 Gigabit Ethernet. Thus, MPI shows start-up

latencies below 0.5 ls, thanks to the use of Nemesis in

MPICH2 and the shared memory BTL in Open MPI,

whereas Java shows latencies below 1 ls. Regarding long

message bandwidth, both FastMPJ (smpdev) and MPICH2,

which relies on Nemesis, achieve up to 60 Gbps due to

their efficient exploitation of multithreading, whereas Open

MPI gets up to 38 Gbps.

These high-performance results confirm that Xen

obtains close to native performance results for CPU and

memory intensive operations, when no I/O activity is

involved. In order to prove this statement, the performance

results of our CAG testbed with the Xen PV and native

configurations (middle and bottom graphs in Fig. 5) have

been analyzed. These results show very low start-up

latencies, below 1 ls for MPI and 1.5 ls for FastMPJ in

the native scenario, which are slightly increased in

approximately 0.5 ls for MPI and 1 ls for FastMPJ due to

the Xen PV overhead. Moreover, the performance for long

messages is similar for the three evaluated middleware,

which suggests that the main memory subsystem is the

main performance bottleneck, not the communication

protocol. The drop in performance for large messages is

due to the effect of cache size, as the storage needs exceed

the L3 cache size (L3 cache size per processor is 8 MB in

EC2 and 12 MB in CAG and is shared by all available

cores for both cases). Thus, as the two processes involved

in this micro-benchmark are scheduled in the same pro-

cessor, the performance drops when the message size is

equals or higher than a quarter of the L3 cache size due to

the one-copy protocol implemented for large messages by
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Fig. 5 Point-to-point shared memory communication performance

on the analyzed testbeds
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Fig. 6 NPB performance on Amazon EC2 HVM, CAG PV and CAG native testbeds
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these middleware. These results confirm the high efficiency

of shared memory message-passing communication on

virtualized cloud environments, especially on Amazon EC2

cluster compute instances, which is able to obtain two

times better start-up latency and around 40 % higher

bandwidth than in CAG mainly thanks to its higher com-

putational power and the higher performance of the

memory.

5.3 Impact of virtualized networking on applications

scalability

The impact of the virtualized network overhead on the

scalability of HPC applications has been analyzed using the

MPI and MPJ implementations of the NPB, selected as

they are probably the benchmarks most commonly used in

the evaluation of languages, libraries and middleware for

HPC. In fact, there are additional implementations of the

NPB for Grid middleware, Java Threads, OpenMP and

hybrid MPI/OpenMP.

Four representative NPB codes have been evaluated: CG

(Conjugate Gradient), FT (Fourier Transform), IS (Integer

Sort) and MG (Multi-Grid). Moreover, Class B workloads

have been selected due to the technical limitation of Xen

PV as well as they present limited scalability, with per-

formance results highly influenced by the efficiency of the

communication middleware, which favor the comparison

of the evaluated middleware.

Figure 6 presents the performance, in terms of Millions

of Operations Per Second (MOPS), of CG, FT, IS and MG

using up to 128 processes on Amazon EC2 and using up to

16 processes on CAG. Regarding CG kernel, which is a

communication-intensive code that only includes point-to-

point communication primitives, the evaluated middleware

is not able to scale when using more than one node on

Amazon EC2, due to their poor communications perfor-

mance on 10 Gigabit Ethernet as it has shown a very high

start-up latency. This statement has been proved analyzing

CG results on CAG, where MPI and FastMPJ take

advantage of the use of 16 processes (2 nodes), both for

Xen PV and native scenarios. However, the higher per-

formance of shared memory data transfers on Amazon EC2

allows their cluster compute instances to obtain the best

performance results on 8 processes, whereas the CAG

testbed shows a small performance penalty due to the

higher start-up latency of Xen PV than the native scenario

for shared memory communications. This behavior has

also been appreciated in the remaining NPB kernels under

evaluation. FastMPJ results on 32 and further number of

processes are not shown for CG and the other kernels due

to the poor performance they achieve.

Regarding FT results, Amazon EC2 suffers significantly

the network overhead due to the extensive use of Alltoall

primitives, showing similar results for one and four/eight

nodes. Only using 16 nodes, this kernel clearly outperforms

the results obtained in a single node. Nevertheless, native

CAG testbed using 16 processes (2 nodes) outperforms

Amazon EC2 results on 128 processes (16 nodes) due to its

higher network performance that allows this kernel to

scale. IS kernel is a communication-intensive code whose

scalability is highly dependent on Allreduce and point-to-

point communication latency. Thus, native CAG is able to

outperform Amazon EC2, which is able to scale only

within a single node using up to the all available processes

(8) thanks to its good shared memory performance and the

avoidance of network traffic. Finally, MG is a less com-

munication-intensive kernel that is able to scale on Ama-

zon EC2. Nevertheless, CAG results are quite competitive,

achieving around 10,000 MOPS with only 2 nodes (16

processes). Regarding FastMPJ results, the shared memory

device (smpdev) generally shows the best performance

although it is limited to shared memory systems.

The performance evaluation presented in this section has

shown that communication bound applications would

greatly benefit from the direct access to the NIC in virtu-

alized environments. This is especially true for applications

sensitive to network start-up latency that, therefore, can

take advantage from the flexibility, elasticity, and economy

of cloud services provided that an efficient communication

middleware for virtualized cloud environments would be

made available.

6 Conclusions

The scalability of HPC applications on cloud infrastruc-

tures relies heavily on the performance of communications,

which depends both on the network fabric and its efficient

support in cloud middleware. To solve the current latency

and network limitations in cloud services, their providers

are deploying high-speed networks (10 Gigabit Ethernet

and InfiniBand), although without the proper middleware

support as they rely on TCP/IP stack and a virtualized

access to the NIC.

This paper has presented an evaluation of HPC message-

passing middleware on a cloud computing infrastructure,

Amazon EC2 cluster compute instances, equipped with 10

Gigabit Ethernet. The analysis of the performance results

obtained, confronted with the experimental results mea-

sured in a similar testbed, a private cloud infrastructure, has

shown the significant impact that virtualized environments

still have on communications performance. This fact

demands more efficient communication middleware sup-

port to get over the current cloud network limitations, such

as TCP/IP stack replacement on high-speed Ethernet

networks.
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The analysis of the measured performance results has

shown significant scalability increases when supporting the

direct access to the underlying NIC through PCI pass-

through, reducing the communication processing overhead

and the associated data copies. In fact, thanks to this

technique, our experimental two-node cloud testbed is able

to outperform the results obtained on sixteen Amazon EC2

cluster compute instances.
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a b s t r a c t

The scalability of High Performance Computing (HPC) applications depends heavily on the efficient
support of network communications in virtualized environments. However, Infrastructure as a Service
(IaaS) providers aremore focused on deploying systemswith higher computational power interconnected
via high-speed networks rather than improving the scalability of the communication middleware. This
paper analyzes the main performance bottlenecks in HPC application scalability on the Amazon EC2
Cluster Compute platform: (1) evaluating the communication performance on shared memory and a
virtualized 10 Gigabit Ethernet network; (2) assessing the scalability of representative HPC codes, the
NAS Parallel Benchmarks, using an important number of cores, up to 512; (3) analyzing the new cluster
instances (CC2), both in terms of single instance performance, scalability and cost-efficiency of its use;
(4) suggesting techniques for reducing the impact of the virtualization overhead in the scalability of
communication-intensive HPC codes, such as the direct access of the Virtual Machine to the network and
reducing the number of processes per instance; and (5) proposing the combination of message-passing
with multithreading as the most scalable and cost-effective option for running HPC applications on the
Amazon EC2 Cluster Compute platform.

1. Introduction

Cloud computing [1,2] is an Internet-based computing model
which has gained significant popularity in the past several years
as it provides on-demand network access to a shared pool of
configurable and often virtualized computing resources typically
billed on a pay-as-you-use basis.

Virtualization is a mechanism to abstract the hardware and
system resources from a given operating system, and it is one of
the most important technologies that make the cloud computing
paradigm possible. Infrastructure-as-a-Service (IaaS) is a type of
cloud service which easily enables users to set up a virtual cluster
providing cost-effective solutions. Many research efforts have
been done in the last years to reduce the overhead imposed by
virtualized environments, and due to this, cloud computing is
becoming an attractive option for High Performance Computing
(HPC).

Amazon Web Services (AWS) is an IaaS provider whose Elastic
Compute Cloud (EC2) [3] is nowadays among the most used
and largest public clouds platforms. Some early studies [4–6]
have evaluated public clouds for HPC since 2008 and the main

∗ Correspondence to: Computer Architecture Group, University of A Coruña,
Campus de Elviña s/n, 15071 A Coruña, Spain. Tel.: +34 981167000; fax: +34
981167160.

E-mail addresses: rreye@udc.es (R.R. Expósito), taboada@udc.es (G.L. Taboada),
sramos@udc.es (S. Ramos), juan@udc.es (J. Touriño), doallo@udc.es (R. Doallo).

conclusion was that clouds at that time were not designed for
running tightly coupled HPC applications. The main reasons were
the poor network performance caused by the virtualization I/O
overhead, the use of commodity interconnection technologies
(e.g., Gigabit Ethernet) and processor sharing, that limit severely
the scalability of HPC applications in public clouds. To overcome
these constraints Amazon released the Cluster ComputeQuadruple
Extra Large instance (cc1.4xlarge, abbreviated as CC1) in July
2010, a resource that provides powerful CPU resources (two
quad-core processors) and dedicated physical node allocation,
together with a full-bisection high-speed network (10 Gigabit
Ethernet). The availability of a high-speed network is key for
the scalability of HPC applications. However, virtualized network
resources lack efficient communication support, which prevents
HPC codes to take advantage of these high performance networks.
More recently, in November 2011, Amazon released a new type of
instance suitable for HPC, the Cluster Compute Eight Extra Large
instance (cc2.8xlarge, abbreviated as CC2), with improved CPU
power as it has two octa-core processors. Both resources (CC1 and
CC2 instances) are intended to be well suited for HPC applications
and other demanding network-bound applications [7].

This paper evaluates CC1 and CC2 instances for High Perfor-
mance Cloud Computing on Amazon EC2 cloud infrastructure, the
largest public cloud in production, using up to 512 cores, hence 64
CC1 instances and 32 CC2 instances were used. In this evaluation,
the scalability of representative parallel HPC codes using the NAS
Parallel Benchmarks (NPB) suite [8] is analyzed. Moreover, as the

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.06.009
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NPB original suite only contains pure MPI kernels, the NPB Multi-
Zone (NPB-MZ) suite [9], which contains hybrid MPI+OpenMP
codes, have also been assessed since the use of threads can alle-
viate the network bottleneck in the cloud.

The structure of this paper is as follows: Section 2 presents the
related work. Section 3 describes the I/O support in virtualized
environments, and particularly explains the network support in
Amazon EC2 CC platform. Section 4 introduces the experimental
configuration, both hardware and software, and the methodology
of the evaluation conducted in this work. Section 5 analyzes the
performance results of the selected message-passing middleware
on Amazon EC2 CC instances. These results have been obtained
from a micro-benchmarking of point-to-point primitives, as well
as an application benchmarking using representative HPC codes
in order to analyze the scalability of HPC applications. Section 6
summarizes our concluding remarks.

2. Related work

There are several feasibility studies of the use of public clouds
for HPC, all concluding that the network communication overhead
is the main performance bottleneck, limiting severely applications
scalability. There are also many works that tackle the reduction of
this network overhead.

Currently virtualization of CPU andmemory resources presents
very low overhead, close to native (bare-metal) performance on
x86 architectures [10]. The key for reducing the virtualization
overhead imposed by hypervisors, also known as Virtual Machine
Monitors (VMM), are software techniques such as ParaVirtualiza-
tion (PV) [11] or Hardware-assisted Virtualization (HVM) [12,13].
However, the efficient virtualization support of I/O devices is still
work in progress, especially for network I/O, which turns out to be
a major performance penalty [14].

2.1. I/O virtualization

Previous works on I/O virtualization can be classified as
either software- or hardware-based approaches. In software-based
approaches devices cannot be accessed directly by the guest
VMs and every I/O operation is virtualized. A representative
project is the driver domain model [15], where only an Isolated
Device Domain (IDD) has access to the hardware and runs native
device drivers. The rest of guest VMs pass the I/O requests to
the IDD through special VMM-aware or paravirtual drivers. This
technique, implemented by all modern hypervisors, has two main
drawbacks: (1) the still poor performance, despite its continuous
improvements [16,17], and (2) the need for guest VMmodification,
unfeasible in some systems.

Hardware-based I/O virtualization achieves higher perfor-
mance supporting the direct device access (also known as ‘‘PCI
passthrough access’’ or ‘‘direct device assignment’’) from a guest
VM. Initially the use of self-virtualized adapters (smart network
devices) improved I/O performance by offloading some virtual-
ization functionality onto the device [18,19]. However, the re-
quirements of non-standard hardware support and custom drivers
hindered the adoption of this early ad-hoc hardware-approach. A
more recent work by Yassour et al. [20] provides almost native
network performance in Linux/KVM environments, but its imple-
mentation of the PCI passthrough technique does not support live
migration and requires that the VM has exclusive access to a
device.

Another hardware-based approach is SR/MR-IOV [21], a stan-
dard that allows a physical device to present itself to the system as
multiple virtual devices, exporting to VMs part of the capabilities
of smart network devices. Thus, VMs have a direct network path

bypassing the hypervisor and the privileged guest. However, the
access from multiple VMs to the physical device has to be multi-
plexed by the network interface firmware. Although this approach
achieves reasonably good performance [22], a new hardware sup-
port has to be incorporated to PCI devices. Nevertheless, the direct
device access cannot provide bare-metal performance, according
to Gordon et al. [23], due to the host involvement, as it intercepts
all interrupts inducing multiple unwarranted guest/host context
switches. In order to eliminate the overhead caused by these un-
warranted exits Gordon et al. proposed ELI, a software-only ap-
proach for handling interrupts directly and securely within guest
VMs.

2.2. HPC in the cloud

The interest in the use of public clouds for HPC increases as their
availability, computational power and performance improves,
which has motivated lately multiple works about adopting cloud
computing for HPC applications. Among them, the feasibility of
HPC on Amazon EC2 public cloud infrastructure is the most
common approach. Regarding applications, the execution of
scientific workflows [24–27] has obtained significant success,
whereas many early studies [4–6,28,29] have assessed that public
clouds have not been designed for running tightly coupled MPI
applications, primarily due to their poor network performance,
processor sharing and the use of commodity interconnection
technologies. In order to overcome this performance bottleneck,
Amazon EC2 introduced their Cluster Compute (CC) instances.

Amazon EC2 CC1 instances, the first version of CC instance type,
have been evaluated in some recent related work. Thus, Carlyle
et al. [30] compared, from an economic point of view, the benefits
in academia of operating a community cluster program versus the
provision of Amazon EC2 CC1 instances. Regola and Ducom [31]
analyzed the suitability of several virtualization technologies for
HPC, among them 4 CC1 instances. Nevertheless, their work is
more focused on the overall performance of the evaluated hypervi-
sors instead of the virtualized network performance and the scal-
ability of communications. Ramakrishnan et al. [32] stated that
virtualized network is themain performance bottleneck, after ana-
lyzing the communication overhead of a number of different inter-
connect technologies, including 10 Gigabit Ethernet. Furthermore,
Zhai et al. [33] conducted a comprehensive evaluation of MPI ap-
plications on 16 CC1 instances, revealing a significant performance
increase compared to previous evaluations on standard and High-
CPU EC2 instances. Finally, Mauch et al. [34] give an overview on
the current state of HPC IaaS offerings and present an approach to
use InfiniBand in a private virtualized environment. They present
HPL benchmark results for both CC1 and CC2 instance types, but
using only one instance of each type. In addition, they do not study
CC1/CC2 performance and scalability using representative HPC
applications and a high number of cores.

The review of the related works on evaluating Amazon EC2
for HPC has revealed the lack of suitable assessments of the
performance of the new CC2 instances. This paper addresses this
lack evaluating thoroughly the performance of CC2 instances,
as well as comparing these instances against the previous
CC1 instances. Moreover, previous works were limited to the
evaluation of MPI codes using up to 16 CC1 instances (128
cores). Additional contributions of this paper are the performance
evaluation using a significantly higher number of cores (up to
512) both in terms of single instance performance, scalability and
cost-efficiency of its use as well as taking into account hybrid
programming models such as MPI+OpenMP.
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Fig. 1. Xen architecture overview.

3. Virtualization support on Amazon EC2

Xen [10] is a high performance hypervisor or VMM quite
popular among cloud providers, and it is used by all current
Amazon EC2 instances. Xen architecture (Fig. 1) has the hypervisor
as the lowest and most privileged layer and above it comes
one or more guest operating systems, which the hypervisor
schedules across the physical CPUs. The first guest OS, called
domain 0 (dom0), boots automatically when the hypervisor
boots and receives special management privileges and exclusive
direct access to all physical hardware. This dom0 OS is used to
manage any further guest OS, called domain U (domU), and the
virtualization technologies supported for creating these domU
guests are full virtualization assisted with hardware support
(HVM) and ParaVirtualization (PV). I/O virtualization is usually
implemented in one of three ways (Fig. 2): device emulation, using
paravirtualized I/O drivers and giving a VM a direct device access
(‘‘PCI passthrough access’’ or ‘‘direct device assignment’’).

In Xen VMM, device emulation is available for domU HVM
guests by default, where dom0 emulates a real I/O device for
which the guest already has a driver. The dom0 has to trap all
device accesses from domU and converts them to operations on
a real and possibly different device (Fig. 2(a)), requiring many
context switches between domains and therefore offering low
performance. In the PV approach (Fig. 2(b)), available for PV guests
as well as HVM guests, domU guests use special VMM-aware
drivers where the I/O code is optimized for VM execution. This
code is manually pre-processed or re-coded to remove privileged
instructions that are substituted by VM application programming
interfaces, or ‘‘hypercalls’’, in their place. Therefore, performance
is improved but it is still far from native, besides the fact that it
requires changes in the device drivers used by domU guests.

With direct device access (Fig. 2(c)), also available for both
types of guests, the domU guest ‘‘sees’’ a real device and interacts
with it directly, without software intermediaries, improving the
performance since no dom0 involvement is required. Moreover,

domU guests can use any device for which they have a driver,
as no modifications are necessary in the native device drivers
used by them. For PV guests, Xen does not require any special
hardware support, but domU kernelmust support the PCI frontend
driver (pcifront) in order to work. Hiding the devices from the
dom0 is also required, which can be done using the pciback
driver. However, an I/O Memory Management Unit (IOMMU) in
hardware is required for HVM guests as well as a pciback driver on
dom0 kernel. Examples of IOMMUs are Intel’s VT-d [35] or AMD’s
IOMMU [36]. This technique, the only one which can provide
near bare-metal performance, also has limitations: it is not fully
compatible with live migration and it requires dedication of a
device to a domU guest (the latter can be solved with PCI standard
SR/MR-IOV [21] devices).

3.1. Amazon EC2 cluster compute platform

The Amazon EC2 Cluster Compute Quadruple Extra Large
instances (abbreviated as CC1) and Cluster Compute Eight Extra
Large instances (CC2) are resources with 23 and 60.5 GB of
memory and 33.5 and 88 EC2 Compute Units (ECUs) for CC1 and
CC2, respectively. According to Amazon one ECU provides the
equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007
Xeon processor.

For these instances, the provider details the specific processor
architecture: two Intel Xeon X5570 quad-core Nehalemprocessors
for CC1, hence 8 cores per CC1 instance, and two Intel Xeon E5-
2670 octa-core Sandy Bridge processors for CC2, hence 16 cores
per CC2 instance. These systems are interconnected via a high-
speed network (10 Gigabit Ethernet), which is the differential
characteristic of these resources. In fact, these EC2 instance types
have been specifically designed for HPC applications and other
demanding latency-bound applications.

Both versions of CC instances, whose main characteristics are
presented in Table 1, use Xen HVM virtualization technology,
whereas the rest of Amazon EC2 instance types are Xen PV guests.
Moreover, instead of using an I/O device emulation for theNetwork
Interface Card (NIC) which is configured by default in HVM
guests, these cluster instances have installed paravirtual drivers
for improving network and disk performance. Therefore, the access
to the NIC in Amazon EC2 instances is paravirtualized, so a direct
access is not available which causes a significant performance
penalty as will be shown later.

4. Experimental configuration and evaluation methodology

The performance evaluation has been conducted on 64 CC1 and
32 CC2 instances of the Amazon EC2 cloud [3]. These resources
have been allocated simultaneously and in the same placement
group in order to obtain nearby instances, and thus obtaining the

(a) Device emulation. (b) Paravirtual drivers. (c) Direct access.

Fig. 2. Network virtualization support in Xen.
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Table 1
Description of the Amazon EC2 cluster compute quadruple and eight extra large instances.

Quadruple extra large Eight extra large

CPU 2 × Intel Xeon X5570 Nehalem @2.93 GHz 2 × Intel Xeon E5-2670 Sandy Bridge @2.60 GHz
ECUs 33.5 88
#Cores 8 (16 with HT) 16 (32 with HT)
Memory 23 GB DDR3 60.5 GB DDR3
Storage 1690 GB 3370 GB
API name cc1.4xlarge cc2.8xlarge
Price (Linux) $1.30 per hour $2.40 per hour
Interconnect 10 Gigabit Ethernet (full-bisection bandwidth with placement groups)
Virtualization Xen HVM 64-bit platform (PV drivers for I/O)

benefits from the full-bisection high bandwidth network provided
by Amazon for these instance types.

Regarding the software, two widely extended HPC messaging
middleware, OpenMPI [37] 1.4.4 and MPICH2 [38] 1.4.1, were
selected for the performance evaluation of native codes (C/C++

and Fortran). In addition, FastMPJ [39] was also selected as
representative Message-Passing in Java (MPJ) middleware [40]. In
all cases, the most efficient communication mechanism available
for network transfers and shared memory scenarios was selected.

The evaluation consists of a micro-benchmarking of point-
to-point data transfers, both inter-VM (through 10 Gigabit
Ethernet) and intra-VM (shared memory), at the message-
passing library level. The point-to-point micro-benchmarking
results have been obtained with the Intel MPI Benchmarks
suite (IMB) and its MPJ counterpart communicating byte arrays
(hence, with no serialization overhead). Then, the impact of
paravirtualized network on the scalability of representative
parallel codes, NAS Parallel Benchmarks (NPB) kernels [8], has
been assessed using the official NPB-MPI version 3.3 and the
NPB-MPJ implementation [41]. In order to determine whether a
hybrid parallel programming model could overcome the current
Amazon EC2 network limitations, the NPB Multi-Zone (NPB-MZ)
suite [9] version 3.3.1 for hybrid MPI+OpenMP codes has also
been analyzed. The metrics considered for the evaluation of
the NPB kernels are MOPS (Millions of Operations Per Second),
which measures the operations performed in the benchmark (that
differ from the CPU operations issued), and their corresponding
speedups. Moreover, NPB Class C workloads have been selected
because their performance is highly influenced by the efficiency of
the communicationmiddleware and the support of the underlying
network, as well as they are the largest workloads that can be
executed in a single CC1 instance.

Both the GNU 4.4.4 and the Intel 12.1 compilers have been
considered for the NPB kernels, and the reported results in the
next graphs have been obtained from binaries compiled with the
best compiler in each case. Regarding the Java Virtual Machine
(JVM), the version used was the OpenJDK Runtime Environment
1.6.0_20. Finally, the performance results presented in this paper
are themean of several measurements, generally 10,000 iterations
in ping-pong benchmarks and 5 measurements for NPB kernels.

5. Assessment of Amazon EC2 cluster compute platform for
HPC

This section presents an analysis of the performance of point-
to-point communications and the scalability of HPC codes on the
Amazon EC2 Cluster Compute platformdesigned for HPC, using the
selected micro-benchmarks and representative kernels described
in the previous section.

5.1. Inter-VM point-to-point micro-benchmarking

Fig. 3 shows point-to-point latencies (for short messages) and
bandwidths (for long messages) of message-passing transfers

using the selected message-passing middleware, MPICH2, Open-
MPI and FastMPJ, on Amazon EC2 CC1 (left graph) and CC2 (right
graph) instances in an inter-VM scenario, where communications
are performed through a 10 Gigabit Ethernet network link. The re-
sults shown are the half of the round-trip time of a ping-pong test
and its corresponding bandwidth.

On CC1 instances (left graph) OpenMPI and FastMPJ obtains
the lowest start-up latency (55 µs), slightly better than MPICH2
latencies (around 57 µs), but quite high compared to the usual
10 Gigabit Ethernet start-up latencies on bare-metal, which can
be as low as 10 µs. Regarding bandwidth the three libraries show
similar performance on CC1 instances, up to 4.9 Gbps bandwidth,
quite far from the theoretical 10 Gbps bandwidth provided by the
interconnection technology and the 9 Gbps that message-passing
libraries can achieve without virtualization overhead.

The results on CC2 instances (right graph) show slightly better
performance (10% in the best case -OpenMPI-) than using CC1
instances, which can be motivated by the higher performance
(about 31%) of the CC2 processor core (5.5 ECUs) compared to
the computational power of the CC1 processor core (4.2 ECUs).
Thus, these libraries obtain start-up latencies around 50–54 µs,
whereas observed bandwidths are up to 5.4 Gbps, also suffering
from poor network virtualization support. Despite theseminimum
improvements the overhead in the paravirtualized access of VMs to
the 10 Gigabit Ethernet NIC still represents the main performance
bottleneck.

5.2. Intra-VM point-to-point micro-benchmarking

Fig. 4 shows point-to-point performance of message-passing
transfers in the intra-VM scenario, where data transfers are
implemented on shared memory (hence, without accessing
the network hardware). Thus, the observed shared memory
performance results are significantly better than the inter-VM
scenario.

Performance results on CC1 instances (left graph) present very
low start-up latencies, 0.3 µs for OpenMPI and 0.4 µs for MPICH2
and FastMPJ, and similar high bandwidths, up to 60.9 Gbps for
OpenMPI and 62.5 Gbps for MPICH2 and FastMPJ, which confirms
the efficient virtualization support in the Xen hypervisor for CPU-
and memory-intensive operations when no I/O network activity is
involved.

Regarding CC2 instances (right graph), start-up latencies are
slightly higher than on CC1: OpenMPI also obtains the lowest
values, 0.35 µs, whereas MPICH2 and FastMPJ obtain around
0.47µs, probably due to the lower clock frequency of the processor
in CC2 instances (2.60 GHz) than in CC1 (2.93 GHz). The three
evaluated libraries show again similar long message performance
results, which suggests that their communication protocols are
close to themaximumeffectivememory bandwidth. Themeasured
sharedmemory bandwidths are slightly higher in CC1, particularly
in the range 1 kB–1MB, due to its higher clock frequency. However,
from 2 MB CC2 shared memory performance is higher as its L3
cache size (20MB shared by 8 cores) is larger than CC1 L3 cache size
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Fig. 3. Point-to-point communication performance on Amazon EC2 CC instances over 10 Gigabit Ethernet.

Fig. 4. Point-to-point shared memory communication performance on Amazon EC2 CC instances.

(8 MB shared by 4 cores). In fact, CC1 performance results fall from
2 MB on as the messages and the intermediate shared memory
buffer (used internally by message-passing libraries) exceed the
L3 cache region that can be addressed by a single process (4 MB).
Moreover, as the message size increases the percentage of the
message that fits in L3 cache reduces and as a direct consequence
its performance falls. It has to be taken into account that the
OS generally schedules the two communicating processes on the
same processor, thus reducing the L3 cache region available for
each one. However, this scheduling strategy improves the overall
communication performance, especially the start-up latency.

This significant influence of the cache hierarchy on the perfor-
mance of shared memory communications on both CC1 and CC2
instances confirms the low virtualization overhead experienced,
thus providing highly efficient shared memory message-passing
communication on virtualized cloud environments.

5.3. HPC kernels performance analysis

The impact of the paravirtualized network overhead on the
scalability of representative HPC codes has been analyzed using
the MPI and MPJ implementations of the NPB, selected as it is
probably the benchmarking suite most commonly used in the
evaluation of languages, libraries and middleware for HPC. Four
representative NPB kernels, the most communication-intensive
codes of the suite, have been evaluated: CG (Conjugate Gradient),
FT (Fourier Transform), IS (Integer Sort) and MG (Multi-Grid). As
mentioned in Section 4, NPB Class C workloads have been used.

The native (C/Fortran) implementations of the kernels have
been compiled using the GNU and Intel compilers (both with -O3
flag), showing their performance for the serial kernels, including
also Java results, in Fig. 5. As it can be seen, the impact of the

Fig. 5. NPB kernels serial performance.

compiler on the performance of these codes is almost negligible.
Thus, for clarity purposes the next graphs only show results
obtained with the best performer compiler for each kernel.

Figs. 6 and 7 present the performance of CG, FT, IS and MG
using up to 512 cores on Amazon EC2 CC platform (hence, using
64 CC1 and 32 CC2 instances). The performance metrics reported
are MOPS (left graphs), and their corresponding speedups (right
graphs). The number of CC instances used in the performance
evaluation is the number of cores used divided by the number of
cores per instance type (8 cores for CC1 and 16 cores for CC2).

The analysis of the NPB kernels performance shows that the
evaluated libraries obtain good results when running entirely on
shared memory (on a single VM) using up to 8 and 16 cores in CC1
and CC2 instances, respectively, due to the higher performance and
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Fig. 6. NPB kernels performance and scalability on Amazon EC2 CC1 instances.

scalability of intra-VM sharedmemory communications. However,
when using more than one VM, the evaluated kernels scale poorly,
experiencing important performance penalties due to the network

virtualization overhead. The poorest scalability has been obtained
by FT kernel on CC2 instances, CG on CC1, and IS both on CC1 and
CC2.
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Fig. 7. NPB kernels performance and scalability on Amazon EC2 CC2 instances.

CG kernel, characterized by multiple point-to-point data
movements, achieves on CC1 its highest speedup value of 22
using 64 cores, dropping dramatically its performance from that
point on as it has to rely on inter-VM communications, where the

network virtualization overhead represents themain performance
bottleneck. CG obtains higher performance on CC2 instances, a
speedup of 40 on 256 cores, although its parallel efficiency is
very poor in this case, below 16%. FT kernel achieves a limited
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Fig. 8. NPB kernels productivity on Amazon EC2 CC instances.

scalability on CC1 whereas it does not scale at all on CC2. In
fact, FT shows similar results on CC2 using a single instance (16
cores) and 32 instances (512 cores). The reason for this behavior is
that FT uses extensively Alltoall primitives which access massively
the interconnection network, increasing significantly the network
overhead imposed by the hypervisor by having 8/16 processes on
each instance accessing the paravirtualized NIC.

IS kernel is a communication-intensive code whose scalability
greatly depends on the performance of the Alltoall(v)/Allreduce
primitives and point-to-point communication start-up latency.
Thus, this code only scales when using a single VM thanks to the
high performance of intra-VM transfers, whereas it suffers a signif-
icant slowdown when using more than one VM, both for CC1 and
CC2 instance types. Finally, MG kernel is the less communication-
intensive code under evaluation and for this reason it presents the
highest scalability on Amazon EC2, especially on CC2 instances,
achieving a maximum speedup value of 53 for FastMPJ.

The analysis of scalability has revealed an important issue:
the high start-up latencies and limited bandwidths imposed by
the paravirtualized access to the NIC limit severely the scalability
of communication-intensive codes. The presence of processors
with higher computational power in the new CC2 instances
partly alleviates this issue for some codes but also aggravates
the situationwhen communication-intensive collective operations
(e.g., Alltoall or Allreduce) are involved. Thus, a more efficient I/O
network virtualization support, such as a direct access to the NIC
in virtualized environments, is needed together with techniques
that reduce the number of communicating processes accessing
simultaneously through the paravirtualized NIC.

5.4. HPC kernels cost analysis

The use of a public cloud infrastructure like Amazon involves
a series of associated costs that have to be taken into account. In
order to ease the analysis of the cost of Amazon EC2 resources
for HPC we present in Fig. 8 the productivity in terms of USD
per GOPS (Giga Operations Per Second) of the already evaluated
NPB codes. This proposed metric is independent of the number

of cores being used. Moreover, these kernels ran on-demand
CC1 and CC2 instances. The use of spot instances from the spot
market [42] enables bidding for unused Amazon EC2 capacity,
which can significantly reduce costs as they provide the same
performance as on-demand instances but at lower cost. However,
the spot price fluctuates periodically depending on the supply and
the demand for spot instance capacity. Moreover, the provision of
the requested number of instances, especially when it is a high
number, something that it can be expected for an HPC application,
is not fully guaranteed unless the resources are invoked as on-
demand instances.

CC2 instances provide twice the number of physical cores
and 2.6 times more memory than CC1. Additionally, CC2 in-
stances are based on Sandy Bridge, a more modern microarchi-
tecture than Nehalem, the technology behind CC1, which results
in more performance per core. However, CC2 does not provide
communication-intensive HPC applications with a performance
increase proportional to its higher features due to the network
overhead which severely limits the scalability of these applica-
tions. If we take into account the cost of each instance (as of May
2012), $1.30 for CC1 and $2.40 for CC2, it can be easily concluded
with the aid of Fig. 8 that the use of CC2 instances is generally
more expensive than the use of CC1 instances and therefore it is
worth recommending CC2 only for applications with highmemory
requirements that cannot be executed on CC1.

5.5. Impact of process allocation strategies

It seems intuitive that after allocating a certain number of EC2
instances the best option would be running as many processes per
instance as the cores the instance has, thus fully using the paid
resources. However, in terms of performance, this option is not
going to be always the best.

Fig. 9 presents performance results of the NPB kernels with
CC1 instances (left graphs) and CC2 ones (right graphs) using only
one process per instance (labeled as ‘‘1 ppi’’) until it reaches the
maximumnumber of available instances, and posteriorly two, four,
and finally eight processes per instance. This scheduling strategy,
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Fig. 9. NPB kernels performance on Amazon EC2 CC instances (ppi = processes per instance).

which is significantly much more expensive than the previous
one, is able to obtain higher performance in the evaluated kernels,
except for CG where this strategy seems to perform similarly
(for CC1) or even slightly worse (for CC2). For the other kernels

this scheduling achieves up to 7 times better results for IS on
CC2 instances (OpenMPI), 3.3 times on CC1 instances (MPICH2)
or 2.3 for FT on CC1 instances (OpenMPI). Here FT and IS take
full advantage of this approach as the use of less processes per
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Fig. 10. NPB/NPB-MZ kernels serial performance.

instance alleviates the overhead introduced by the hypervisor in
collective communications, frequently used in these kernels. This
strategy can be very useful when there is a strong constraint about

the execution time of a particular application, such as meeting a
deadline, in exchange for much higher costs.

5.6. Using several levels of parallelism

The popularity of hybrid shared/distributed memory archi-
tectures, such as clusters of multi-core processors, is currently
leading to the support of several levels of parallelism in many
prominent scientific problems. The NPB suite is not an exception,
an existing NPB Multi-Zone (NPB-MZ) implementation takes ad-
vantage of two-level parallelism through hybrid MPI+OpenMP
codes. The NPB-MZ contains three applications, the Lower–Upper
Symmetric Gauss–Seidel (LU, but limited to 16 MPI processes in
theMZ version), Scalar Penta-diagonal (SP), and Block Tri-diagonal
(BT) applications, whose serial performance is shown in Fig. 10.
FastMPJ results are not shown due to the lack of an NPB-MZ im-
plementation in Java.

Fig. 11 shows performance results, in terms of speedups, of
the hybrid NPB-MZ Class C workloads, together with their NPB
counterparts. The NPB-MZ codes have been executed with the

Fig. 11. NPB/NPB-MZ kernels scalability (tpp = threads per process − ppi = processes per instance).
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following two configurations: (1) a singleMPI process per instance
with asmanyOpenMP threads as cores of the instance (8 and 16 for
CC1 and CC2, respectively); and (2) twoMPI processes per instance
with as many OpenMP threads as cores of each processor (4 and 8
for CC1 and CC2, respectively). Additional configurations have also
been evaluated, such as the use of 4 MPI processes per instance
and 2 and 4 threads for CC1 and CC2, respectively, but the results
obtained were worse.

These results have revealed some important facts: (1) although
these codes (BT, LU and SP) are not as communication-intensive
as the previously evaluated kernels (CG, FT, IS and MG), the
pure MPI versions present poor scalability on CC instances (the
maximum speedup achieved is 60 for BT on CC2 using 512 cores);
(2) NPB-MZ kernels can overcome this issue and outperform
significantly NPB kernels (the maximum reported speedup is 185
on 512 cores for BT-MZ on CC2). Thus, as the message transfers
through the network are reduced to only one (or two) MPI
processes communicating per instance, the overhead caused by
the paravirtualized access to the NIC is drastically decreased;
(3) BT and SP obtain the best performance using twoMPI processes
per instance, which suggests that the right balance between MPI
processes and OpenMP threads has to be found for each particular
application; and (4) CC2 significantly outperforms CC1 for BT-MZ
and SP-MZ in the best configuration (for LU-MZ similar results are
obtained) as their overall performance does not rely heavily on
the communication performance. Unlike NPB kernels, BT-MZ and
SP-MZ present a better cost/performance ratio on CC2 than on CC1.

6. Conclusions

The scalability of HPC applications on public cloud infrastruc-
tures relies heavily on the performance of communications, which
depends both on the network fabric and its efficient support in the
virtualization layer. Amazon EC2 Cluster Compute (CC) platform
provides powerful HPC resources with access to a high-speed net-
work (10 Gigabit Ethernet), although without a proper I/O virtual-
ization support as these resources rely on a paravirtualized access
to the NIC.

The contributions of this paper are: (1) it has evaluated the
performance of communications on Amazon EC2 CC platform,
both 10 Gigabit Ethernet and shared memory transfers for
CC1 and CC2 instances; (2) it has assessed the scalability of
representative message-passing codes (NPB) using up to 512
cores; (3) it has revealed that the new CC2 instances, despite
providing more computational power and slightly better point-
to-point communication performance, present poorer scalability
than CC1 instances for collective-based communication-intensive
applications; (4) the use of CC1 instances is generally more cost-
effective than relying on CC2 instances; (5) it is possible to achieve
higher scalability running only a single process per instance, thus
reducing the communications performance penalty in the access to
the network; (6) finally, the use ofmultiple levels of parallelismhas
been proposed, combining message-passing with multithreading,
as the most scalable and cost-effective option for running HPC
applications on the Amazon EC2 CC platform.
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González-Domı́nguez, Juan Touriño, Ramón Doallo

- Journal: Journal of Grid Computing

- Editorial: Springer Science+Business Media

- ISSN: 1570-7873

- Year: 2013

- Volume(Number):Pages: 11(4):613–631

- DOI: 10.1007/s10723-013-9250-y

The final publication is available at http://link.springer.com/article/10.

1007%2Fs10723-013-9250-y. A copy of the accepted paper has been included next.

175

http://link.springer.com/article/10.1007%2Fs10723-013-9250-y
http://link.springer.com/article/10.1007%2Fs10723-013-9250-y


J Grid Computing (2013) 11:613–631
DOI 10.1007/s10723-013-9250-y

Analysis of I/O Performance on an Amazon EC2 Cluster
Compute and High I/O Platform

Roberto R. Expósito · Guillermo L. Taboada ·
Sabela Ramos · Jorge González-Domínguez ·
Juan Touriño · Ramón Doallo

Abstract Cloud computing is currently being ex-
plored by the scientific community to assess
its suitability for High Performance Computing
(HPC) environments. In this novel paradigm,
compute and storage resources, as well as ap-
plications, can be dynamically provisioned on a
pay-per-use basis. This paper presents a thor-
ough evaluation of the I/O storage subsystem us-
ing the Amazon EC2 Cluster Compute platform
and the recent High I/O instance type, to deter-
mine its suitability for I/O-intensive applications.
The evaluation has been carried out at different
layers using representative benchmarks in order
to evaluate the low-level cloud storage devices
available in Amazon EC2, ephemeral disks and
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Elastic Block Store (EBS) volumes, both on local
and distributed file systems. In addition, several
I/O interfaces (POSIX, MPI-IO and HDF5) com-
monly used by scientific workloads have also been
assessed. Furthermore, the scalability of a repre-
sentative parallel I/O code has also been analyzed
at the application level, taking into account both
performance and cost metrics. The analysis of
the experimental results has shown that available
cloud storage devices can have different perfor-
mance characteristics and usage constraints. Our
comprehensive evaluation can help scientists to
increase significantly (up to several times) the per-
formance of I/O-intensive applications in Amazon
EC2 cloud. An example of optimal configuration
that can maximize I/O performance in this cloud
is the use of a RAID 0 of 2 ephemeral disks,
TCP with 9,000 bytes MTU, NFS async and MPI-
IO on the High I/O instance type, which pro-
vides ephemeral disks backed by Solid State Drive
(SSD) technology.

Keywords Cloud computing · Virtualization · I/O
performance evaluation · Network File System
(NFS) · MPI-IO · Solid State Drive (SSD)

1 Introduction

Data management is a critical component of many
current scientific computing workloads, which are
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generating very large data sets, contributing sig-
nificantly to the consolidation of the so-called cur-
rent big data era. These applications often require
a high number of computing resources to perform
large-scale experiments into a reasonable time
frame, and these needs have been typically ad-
dressed with dedicated High Performance Com-
puting (HPC) infrastructures such as clusters or
big supercomputers. In this scenario, scientific ap-
plications can be sensitive to CPU power, memory
bandwidth/capacity, network bandwidth/latency
as well as the performance of the I/O storage
subsystem.

The cloud computing paradigm is a relatively
recent computing model where dynamically scal-
able and often virtualized resources are provided
as a service over the Internet. This novel paradigm
has gained significant popularity in many areas,
including the scientific community. The combina-
tion of this model together with the rich set of
cloud infrastructure services can offer a feasible
alternative to traditional servers and computing
clusters, saving clients from the expense of build-
ing an in-house datacenter that is provisioned to
support the highest predicted load. With cloud-
based technologies, scientists can have easy access
to large distributed infrastructures and completely
customize their execution environment, thus pro-
viding the perfect setup for their experiments. In
addition, the interest in the use of public clouds
for HPC applications increases as their availabil-
ity, computational power, price and performance
improves.

Amazon Web Services (AWS) is nowadays the
leading public Infrastructure-as-a-Service (IaaS)
cloud provider in terms of number of users, allow-
ing resources in their data centers to be rented on-
demand through Elastic Compute Cloud (EC2)
service [7]. By means of virtualization technolo-
gies, EC2 allows scalable deployment of applica-
tions by providing a web service through which
a user can, among other tasks, boot straightfor-
wardly an Amazon Machine Image (AMI) into
a custom Virtual Machine (a VM or “instance”).
This on-demand allocation of resources provides a
new dimension for HPC due to the elastic capabil-
ity of the cloud computing model, which addition-

ally can provide both cost-effective and energy-
efficient solutions [31].

Amazon EC2 offers a cloud infrastructure,
the Cluster Compute (CC) platform, which
specifically targets HPC environments [9]. The
CC platform is a family of several instance types
which are intended to be well suited for large-scale
scientific experiments and HPC applications by
offering physical node allocation (a single VM per
node), powerful and up-to-date CPUs and GPUs,
and an improved interconnection network (10 Gi-
gabit Ethernet). Additionally, the High I/O in-
stance type shares the same characteristics as the
CC instances with enhanced storage performance
providing Solid State Drives (SSD) disks. Using
these instance types customers can expedite their
HPC workloads on elastic resources as needed,
adding and removing compute resources to meet
the size and time requirements for their specific
workloads. An example of the extent and magni-
tude of Amazon EC2 is the self-made cluster that,
with only a small portion of its resources (about
1,000 CC instances), ranks #102 in the latest Top
500 list (November 2012) [1].

This paper evaluates the I/O storage subsystem
on the Amazon EC2 CC platform to determine its
suitability for scientific applications with high I/O
performance requirements. Moreover, the evalu-
ation includes, for the first time to the best of our
knowledge, the High I/O instance type, which has
been recently released in July 2012. This instance
type is intended to provide very high instance
storage I/O performance, as it is backed by SSD
disks, which is the main differential characteristic
of this resource, but it also provides high levels of
CPU, memory and network performance as CC
instances.

In this evaluation, experiments at different
levels are conducted. Thus, several micro-
benchmarks are used to evaluate different
cloud low-level storage devices available in CC
instances, ephemeral disks and Elastic Block
Store (EBS) volumes [6], both at the local and
distributed file system levels. In addition, common
middleware libraries such as HDF5 [4] and MPI-
IO [35], which are directly implemented on top of
file systems, have also been assessed as scientific
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workloads usually rely on them to perform
I/O. Finally, the scalability of a representative
parallel I/O code implemented on top of MPI-IO,
the BT-IO kernel [38] from the NAS Parallel
Benchmarks (NPB) suite [24], has also been
analyzed at the application level both in terms of
performance and cost effectiveness.

The paper is organized as follows: Section 2
describes the related work. Section 3 presents
an overview of the storage system of the Ama-
zon EC2 public cloud. Section 4 introduces the
experimental configuration, both hardware and
software, and the methodology of the evaluation
conducted in this work. Section 5 analyzes the
I/O performance results of the selected bench-
marks/kernels on Amazon EC2 CC and High I/O
instances. Finally, our conclusions are presented
in Section 6.

2 Related Work

In recent years there has been a spur of research
activity in assessing the performance of virtualized
resources and cloud computing environments [18,
25, 30, 40, 41]. The majority of recent studies have
evaluated Amazon EC2 to examine the feasibility
of using public clouds for high performance or
scientific computing, but with different focuses.

Some previous works have shown that
computationally-intensive codes present little
overhead when running on virtualized environ-
ments, whereas communication-intensive appli-
cations tend to perform poorly [12, 13, 23, 27, 37],
especially tightly-coupled parallel applications
such as MPI [3] jobs. This is primarily due to the
poor virtualized network performance, processor
sharing among multiple users and the use of
commodity interconnection technologies (Gigabit
Ethernet). In order to overcome this performance
bottleneck, Amazon EC2 offers the Cluster
Compute (CC) platform, which introduces several
HPC instance types, cc1.4xlarge and cc2.8xlarge,
abbreviated as CC1 and CC2, respectively, in
addition to the recent High I/O instance type
(hi1.4xlarge, abbreviated as HI1) which provides
SSD disks. Thus, Sun et al. [34] relied on 16

CC1 instances for running the Lattice Optimiza-
tion and the HPL benchmark. The main conclu-
sion derived from the results is that MPI codes,
especially those which are network latency
bound, continue to present poor scalability.
Ramakrishnan et al. [29] stated that virtualized
network is the main performance bottleneck on
Amazon EC2 after analyzing the communication
overhead on CC1 instances. Mauch et al. [21]
presented an overview of the current state of
HPC IaaS offerings and suggested how to use
InfiniBand in a private virtualized environment,
showing some HPL benchmark results using a
single instance of CC1 and CC2 instance types.
Finally, our previous work [14] has stated that
CC1 and CC2 instances are able to achieve
reasonable scalable performance in parallel
applications, especially when hybrid shared/distri-
buted memory programming paradigms, such as
MPI+OpenMP, are used in order to minimize
network communications.

However, most of the previous work is focused
on computation and communication, whereas
there are very little works that have investi-
gated I/O and storage performance. Some of
them analyzed the suitability of running scien-
tific workflows in the cloud [19, 26, 36], showing
that it can be a successful option as these work-
loads are loosely-coupled parallel applications.
Thus, Juve et al. [19] studied the performance
and cost of different storage options for scientific
workflows on Amazon EC2, although regarding
CC platform they only evaluated three workflows
on the CC1 instance type. Vecchiola et al. [36]
ran an fMRI brain imaging workflow on Ama-
zon EC2 using the object-based Amazon Simple
Storage Service (S3) [8] for storage, and analyzed
the cost varying the number of nodes. In [5],
Abe and Gibson provide S3-like storage access
on top of PVFS [10] on an open-source cloud
infrastructure. Palankar et al. [28] assessed the
feasibility of using Amazon S3 for scientific Grid
computing. Zhai et al. [42] conducted a com-
prehensive evaluation of MPI applications on
Amazon EC2 CC platform, revealing a sig-
nificant performance increase compared to previ-
ous evaluations on non-CC instances. They also
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reported some experimental results of storage
performance, but limited to ephemeral devices
(local disks) without RAID and using only CC1
instances. In [32], the storage and network perfor-
mance of the Eucalyptus cloud computing frame-
work is analyzed, confronted with some results
from one large instance type of Amazon EC2.
Ghoshal et al. [16] compared I/O performance on
two cloud platforms, Amazon EC2 and Magellan,
using the IOR benchmark on the CC1 instance
type. Their study is limited to the file system
level, so RAID configurations as well as the per-
formance of I/O interfaces are not taken into
account. Finally, Liu et al. [20] ran two parallel
applications (BT-IO and POP) on CC1 instances
using ephemeral disks, both for NFS and PVFS
file systems. Their results show that cloud-based
clusters enable users to build per-application par-
allel file systems, as a single parallel I/O solution
can not satisfy the needs of all applications.

In addition, many current applications (e.g.,
data mining, social network analysis) demand
distributed computing frameworks such as
MapReduce [11] and iMapReduce [43] to process
massive data sets. An attractive feature of these
frameworks is that they support the analysis of
petabytes of data with the help of cloud comput-
ing without any prior investment in infrastructure,
which has popularized big data analysis. For
instance, Gunarathne et al. [17] present a new
MapReduce runtime for scientific applications
built using the Microsoft Azure cloud infrastruc-
ture. In [39], Yang et al. proposed a regression
model for predicting relative performance of
workloads under different Hadoop configurations
with 87 % accuracy.

In this paper we evaluate the I/O performance
of an Amazon EC2 CC and High I/O platform.
Thus, we evaluated CC1 and CC2 instance types
together with the most recent HI1 instances, so
they can be directly compared. Moreover, we an-
alyze the performance of the different low-level
storage devices available on these instances (EBS
volumes and ephemeral disks) in addition to the
use of software RAID. Moreover, our study is
carried out at several layers (storage devices, file
systems, I/O interfaces and applications) using
representative benchmarks/applications for each
layer. Finally, we also take into account the costs

associated with the use of a public cloud in-
frastructure, presenting a cost analysis at the ap-
plication level.

3 Overview of Amazon EC2 CC and High I/O
Instances

Amazon EC2 offers the CC platform which cur-
rently provides two HPC instance types. The
Cluster Compute Quadruple Extra Large in-
stances (cc1.4xlarge, abbreviated as CC1) and
Cluster Compute Eight Extra Large instances
(cc2.8xlarge, abbreviated as CC2) are resources
with 23 and 60.5 GBytes of memory and 33.5 and
88 EC2 Compute Units (ECUs) for CC1 and CC2,
respectively. According to Amazon WS one ECU
provides the equivalent CPU capacity of a 1.0–
1.2 GHz 2007 Opteron or 2007 Xeon processor.

In addition to the CC instances, Amazon has
recently launched (July 2012) the High I/O
Quadruple Extra Large instances (hi1.4xlarge, ab-
breviated as HI1). These instances have two SSD
disks as local block storage, which is the main
differential characteristic of this resource, in order
to provide very high instance storage I/O perfor-
mance. Moreover, HI1 instances also have power-
ful CPUs (35 ECUs) and a significant amount of
memory (60.5 GBytes). The very high demand for
these instances has caused that Amazon currently
limits their use to only two simultaneous HI1
instances per user.

Regarding the hardware characteristics of these
instances (see Table 1), the provider details the
specific processor: two Intel Xeon X5570 quad-
core Nehalem processors for CC1, hence 8 cores
per CC1 instance, two Intel Xeon E5-2670 octa-
core Sandy Bridge processors for CC2, hence 16
cores per CC2 instance, and two Intel Xeon E5620
quad-core Westmere processors for HI1, hence 8
cores per HI1 instance. Each instance will be allo-
cated to users in a dedicated manner (a single VM
per physical node), unlike the allocation mode
in most other EC2 instance types (multiple VMs
per physical node). These instances are intercon-
nected via a high-speed network (10 Gigabit Eth-
ernet), which is also among the main differential
characteristics of these resources. Moreover, these
instances can be launched within a placement
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Table 1 Description of the Amazon EC2 CC1, CC2 and HI1 instance types

CC1 (cc1.4xlarge) CC2 (cc2.8xlarge) HI1 (hi1.4xlarge)

Release date July 2010 November 2011 July 2012
CPU 2 × Intel Xeon 2 × Intel Xeon E5 2 × Intel Xeon

X5570 Nehalem-EP 2670 Sandy Bridge-EP E5620 Westmere-EP
@2.93 GHz @2.60 GHz @2.40 GHz

ECUs 33.5 88 35
#Cores 8 16 8
Memory 23 GBytes DDR3 60.5 GBytes DDR3 60.5 GBytes DDR3
Ephemeral storage 1.7 TBytes (2 HDD) 3.4 TBytes (4 HDD) 2 TBytes (2 SSD)
API name cc1.4xlarge cc2.8xlarge hi1.4xlarge
Price (Linux) $1.30 per hour $2.40 per hour $3.10 per hour
Interconnect 10 Gigabit ethernet (full bisection bandwidth)
Virtualization Xen HVM 64-bit platform

group to obtain low latency, full bisection 10 Gbps
bandwidth between them, but with the important
restriction that only instances of the same type can
be included in the same group.

Related with CC instances is the Cluster GPU
Quadruple Extra Large Instance (cg1.4xlarge, ab-
breviated as CG1). Instances of this family pro-
vide exactly the same hardware capabilities than
CC1 in terms of CPU power, memory capac-
ity, I/O storage and network performance. The
differential feature of CG1 instances is the provi-
sion of two GPUs for General-Purpose GPU com-
puting (GPGPU). As the main goal of this work is
the evaluation of the I/O storage subsystem, which
is the same in CC1 and CG1, the study of CG1
instances has not been considered.

3.1 Storage System Overview of Amazon EC2

The virtual machines available in Amazon EC2
provide several storage solutions with different
levels of abstraction, performance and access
interfaces. Generally, each instance can access
three types of storage: (1) the local block stor-
age, known as ephemeral disk, where user data
are lost once the instances are released (non-
persistent storage); (2) off-instance Elastic Block
Store (EBS), which are remote volumes accessible
through the network that can be attached to an
EC2 instance as block storage devices, and whose
content is persistent; and (3) Simple Storage Ser-
vice (S3), which is a distributed object storage sys-
tem, accessed through a web service that supports
both SOAP and REST. We have not considered

S3 in our evaluation since, unlike ephemeral and
EBS devices, it lacks general file system interfaces
required by scientific workloads so that the use of
S3 is not transparent to the applications, and also
due to the poor performance shown by previous
recent works [19].

The ephemeral and EBS storage devices have
different performance characteristics and usage
constraints. On the one hand, a CC1 instance can
only mount up to two ephemeral disks of approx-
imately 845 GBytes each one, resulting in a total
capacity of 1,690 GBytes (see Table 1), whereas a
CC2 instance can mount up to four disks of the
aforementioned size, 845 GBytes, which repre-
sents an overall capacity of 3,380 GBytes. The new
HI1 instances, as mentioned before, provide two
SSD disks of 1,024 GBytes each one as ephemeral
storage, for a total of 2,048 GBytes. On the other
hand, the number of EBS volumes attached to
instances can be almost unlimited, and the size of a
single volume can range from 1 GByte to 1 TByte.

4 Experimental Configuration and Evaluation
Methodology

The I/O performance evaluation of the Amazon
platform has been conducted on CC1, CC2 and
HI1 instance types. This evaluation consists of a
micro-benchmarking with IOzone benchmark [2]
of a local file system (ext3) on ephemeral disks
and EBS volumes, using a single storage device
as well as multiple storage devices combined in a
single software RAID 0 (data striping) array using
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the mdadm utility, as this RAID level can improve
both write and read performance without losing
overall capacity. The IOzone benchmark has also
been used to evaluate the performance of a rep-
resentative distributed file system, NFS version 3,
selected as it is probably the most commonly used
network file system. Additionally, it remains as
the most popular choice for small and medium-
scale clusters.

After characterizing NFS with the IOzone
benchmark, the performance of several I/O inter-
faces commonly used in scientific applications has
been analyzed using the IOR benchmark [33] with
multiple NFS clients. Three I/O interfaces were
tested: (1) POSIX, which is the IEEE Portable
Operating System Interface for computing en-
vironments that defines a standard way for an
application to obtain basic services from the oper-
ating system, the I/O API among them; (2) MPI-
IO [35], which is a comprehensive API with many
features intended specifically to provide a high
performance, portable, and parallel I/O interface
to MPI programs; and (3) HDF5 [4], which is a
data model, library, and file format for storing
and managing data that supports an unlimited
variety of datatypes, and is designed for flexible
and efficient I/O and for high volume and complex
data. Additionally, the scalability of the parallel
BT-IO kernel [38], which is implemented on top
of MPI-IO, has also been analyzed at the applica-
tion level both in terms of performance and cost
metrics.

The pattern of the I/O operations performed
by the benchmarks/applications previously se-
lected is essentially sequential, both for write and
read operations. Random accesses, widely used
in some scenarios such as database environments,
are rarely used in HPC applications and scientific
workloads. Most parallel I/O in HPC involves
large-scale data movements, such as checkpoint-
ing the state of a running application, which makes
that I/O access is mainly dominated by sequential
operations.

CC1 and CC2 resources have been allocated
simultaneously in the same placement group in
order to obtain nearby instances, thus being able
to benefit from the low latency and full bisection
bandwidth of the 10 Gigabit Ethernet network.
However, Amazon’s current restriction for HI1

instances (only two HI1 instances can run simulta-
neously) has severely determined the evaluation.
As one HI1 instance is needed to run the NFS
server, the other HI1 instance can be used for the
NFS clients. While this configuration is enough
for the characterization of NFS with IOzone (as
only one NFS client is used), for the IOR and BT-
IO benchmarks it would be necessary to launch
8 HI1 instances in order to run up to 64 NFS
clients. Therefore, for the evaluation of HI1 with
these benchmarks, we opted for the use of one
HI1 instance for the NFS server and CC1 and CC2
instances for the NFS clients. This fact implies that
the HI1 server and CC1/CC2 clients can not be
allocated in the same placement group, because
only instances of the same type can be included in
it, which can cause a loss in network performance.
In order to minimize it, the HI1 server was always
executed in the same clients’ availability zone.
Thus, all the experiments were performed in the
us-east-1 region (North Virginia), within the us-
east-1d availability zone.

Regarding software settings, the Amazon
Linux AMI 2012.03 was selected as it is a sup-
ported and maintained Linux image provided by
AWS for its usage on Amazon EC2 CC instances.
This AMI, which comes with kernel 3.2.18, was
customized with the incorporation of the pre-
viously described benchmarks: IOzone version
3.405 and IOR version 2.10.3. In addition, the
MPI implementation of the NPB suite version 3.3
was also installed for the BT-IO kernel evalua-
tion. The metrics considered for the evaluation
of the BT-IO kernel are MOPS (Millions of Op-
erations Per Second), which measures the oper-
ations performed in the benchmark (that differ
from the CPU operations issued), and its corre-
sponding I/O aggregated bandwidth measured in
MBytes/sec. Moreover, the BT-IO Class C work-
load has been selected because it is the largest
workload that can be executed in a single CC1
instance. The GNU C/Fortran 4.4.6 compiler has
been used with -O3 flag, whereas the message-
passing library selected for IOR and BT-IO eval-
uation is Open MPI [15], version 1.4.5. Finally,
the performance results presented in this paper
are the mean of the five measurements performed
for each evaluated configuration. Unlike non-
dedicated instance types, the dedicated (one VM
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per physiscal node) CC and HI1 instances present
reduced variability in the performance measure-
ments, so the standard deviation is not significant.

5 Evaluation of I/O Performance on Amazon
EC2

This section presents an analysis of the perfor-
mance results of the I/O subsystem on a cloud
computing infrastructure, Amazon EC2 Cluster
Compute platform and High I/O instances, using
the representative benchmarks described in the
previous section.

5.1 Local File System Performance

Figure 1 presents the maximum bandwidth ob-
tained (measured in MBytes per second) for se-
quential read and write operations using the IO-
zone benchmark on EBS volumes and ephemeral
disks (labeled as “EPH” on the graphs) on a single
device formatted with the ext3 file system for
CC1, CC2 and HI1 instances. The Linux buffer
cache was bypassed using direct I/O (O_DIRECT
flag) in order to get the real performance of the
underlying storage devices.

All the configurations perform very similarly
for the read operation, achieving all of them at
least 100 MBytes/sec. The exception here is the
SSD (ephemeral) disk on the HI1 instance, which
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Fig. 1 Local file system (ext3) performance on Amazon
EC2 CC and high I/O instances

is clearly the best performer in this case as it is
able to get 900 MBytes/sec, nine times better than
the rest of configurations. Regarding the write
operation, the results are more insightful as EBS
volumes can obtain only a 40–50 % of the per-
formance of ephemeral disks on CC1 and CC2
instances. For writing on EBS volumes, which
requires network access, the maximum bandwidth
is 50.8 MBytes/sec on CC1 and 44.5 MBytes/sec
on CC2, whereas for ephemeral disks the maxi-
mum bandwidth is 78.2 and 89.4 MBytes/sec on
CC1 and CC2, respectively. In addition, the HI1
instance type presents similar results than CC1
and CC2 instances when using EBS volumes.
Although 10 Gigabit Ethernet is available for
communication among CC instances, the inter-
connection technology to access EBS volumes is
not known. However, HI1 obtains again the best
performance using the SSD disk, which obtains
562 MBytes/sec, around six times higher than the
best result for the ephemeral disk on CC2. These
results show that the ephemeral disks on HI1 in-
stances provide very high performance that seems
not to be affected at all by the virtualization layer.

Figure 2 presents the maximum bandwidth ob-
tained when 2 (left graph) or 4 devices (right
graph) are combined into a single software RAID
0 array (chunk size was configured at 64 KBytes).
For the 2-device array configurations and the read
operation, the results in CC1 and CC2 with EBS
volumes and ephemeral disks are again very simi-
lar as they achieve around 200 MBytes/sec, double
the performance of a single device, which suggests
that the use of software RAID and virtualiza-
tion in this scenario is not harming performance.
The HI1 instance type, which is obviously the
best option again, gets up to 1567 MBytes/sec,
75 % improvement compared to a single SSD
disk. For the write operation, the performance of
ephemeral disks on CC1 an CC2 instances is again
significantly better than the results obtained with
EBS volumes, approximately doubling its perfor-
mance, whereas the SSD array is able to achieve
up to 1014 MBytes/sec, which represents around
80 % improvement.

Regarding 4-device array configurations (right
graph), the option with ephemeral disks is only
available for CC2 instances, as CC1 and HI1
are physically limited to 2 ephemeral disks by
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Fig. 2 Software RAID 0 performance on Amazon EC2 CC and high I/O instances

Amazon, whereas the number of EBS volumes
attached to them can be almost unlimited. For
the read operation, 4 EBS volumes combined are
able to get a 60 % improvement compared to
the 2-device array (e.g., from 209 MBytes/sec to
333 MBytes/sec on CC2). However, the combi-
nation of 4 ephemeral disks on CC2 slightly out-
performs EBS for reading, achieving a maximum
of 358 MBytes/sec. For the write operation, al-
though the use of two EBS volumes is able to
double the performance of a single volume (83.7
vs 44.5 MBytes/sec on CC2, respectively), when 4
volumes are combined the maximum bandwidth
obtained is only 101.3 MBytes/sec on CC2 and
105.3 MBytes/sec on HI1, showing poor scalability
(this is the reason why the number of EBS vol-
umes was limited to 4 in the evaluation). This poor
result shows that the write performance on EBS
is severely limited by the network performance.
Furthermore, although the three instance types
can not effectively take advantage of using 4 EBS
volumes for the write operation, the combina-
tion of 4 ephemeral disks on CC2 is clearly the
best performer, obtaining up to 334 MBytes/sec,
showing almost a linear speedup (172 and
334 MBytes/sec for 2-device and 4-device arrays,
respectively). Nevertheless, CC2 instances can not
rival HI1 instances at all, as the 2-device SSD-
based array on HI1 obtains more than 4 times
higher read performance and up to three times
more write performance than the 4-device array
on CC2.

This evaluation has shown that EBS volumes
suffer a significant performance penalty for write
operations, and the use of software RAID can
only help to partly alleviate this issue using up
to 4 volumes. Therefore, the ephemeral disks,
especially in RAID configuration, are the best
option in a local file system scenario, as write
operations are highly used in scientific applica-
tions. In fact, the SSD-based ephemeral disks of
the new released HI1 instances clearly become the
best choice, as they provide significantly higher
performance than CC1 and CC2 ephemeral disks,
both for read and write. Another advantage of
using ephemeral disks is that the cost of their
use is free, whereas the use of EBS volumes
is charged by Amazon. However, if a particular
application requires data persistence as a strong
constraint, EBS volumes should be used for data
safety reasons. In this scenario, a combination
of both ephemeral and EBS volumes could be
used.

5.2 Distributed File System Performance

Figures 3 and 4 present the results of the read
and write performance of a distributed file system,
NFS, with a base configuration of one instance
running the NFS server and one client instance
connecting to the server through the 10 Gigabit
Ethernet network. The micro-benchmark selected
is the IOzone benchmark using both EBS vol-
umes and ephemeral disks as storage devices, and

183



Analysis of I/O Performance on an Amazon EC2 Cluster Compute and High I/O Platform 621

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

yt
es

/s
ec

IOzone File Size

NFS over TCP Read Performance (HI1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

yt
es

/s
ec

IOzone File Size

NFS over UDP Read Performance (HI1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

yt
es

/s
ec

IOzone File Size

NFS over TCP Read Performance (CC2 server)

4xEBS (async,1.5k)
4xEPH (async,1.5k)
4xEBS (async,9k)
4xEPH (async,9k)
4xEBS (sync,1.5k)
4xEPH (sync,1.5k)
4xEBS (sync,9k)
4xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

yt
es

/s
ec

IOzone File Size

NFS over UDP Read Performance (CC2 server)

4xEBS (async,1.5k)
4xEPH (async,1.5k)
4xEBS (async,9k)
4xEPH (async,9k)
4xEBS (sync,1.5k)
4xEPH (sync,1.5k)
4xEBS (sync,9k)
4xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

yt
es

/s
ec

IOzone File Size

NFS over TCP Read Performance (CC1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

yt
es

/s
ec

IOzone File Size

NFS over UDP Read Performance (CC1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

Fig. 3 NFS read performance through 10 Gigabit Ethernet on Amazon EC2

using different file sizes for CC1, CC2 and HI1
instances. In these experiments, as only two in-
stances are needed (one for the server and one for
the client), two HI1 instances (the maximum that
can be launched) allocated in the same placement
group have been used, as for CC1 and CC2. For
clarity purposes, the figures only present experi-

mental results from RAID configurations as they
provide better performance. In these experiments
the NFS server buffer cache (or page cache) has
not been bypassed in order to reflect the per-
formance results of a typical NFS configuration,
which generally takes advantage of this mecha-
nism to achieve higher performance.
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Fig. 4 NFS write performance through 10 Gigabit Ethernet on Amazon EC2

Two NFS server configurations for the write
operation have been used: (1) asynchronous
(async) mode, which can provide high perfor-
mance as it supports NFS calls to return the con-
trol to the client before the data has been flushed
to disk; and (2) synchronous (sync) mode, where a
block has to be actually written to disk before re-
turning the control to the client, providing higher

data safety in terms of data persistence when the
NFS server crashes. In addition, the Amazon AMI
for CC instances sets the Maximum Transmission
Unit (MTU) of the network to 1,500 bytes by
default. In order to assess the impact of the use
of Jumbo frames (MTUs higher than the default
1,500 bytes) the tests have been repeated with the
MTU configured at 9,000 bytes (maximum MTU
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value supported) both for server and client. More-
over, TCP and UDP transport protocols have
been tested in order to characterize the impact of
the selected protocol on the overall performance,
which is highly important in virtualized environ-
ments where the network plays a key role. Both
transport protocols have been configured with the
maximum block size allowed for each one in this
kernel version (1 MByte and 32 KBytes for TCP
and UDP, respectively). These are the parameters
that have generally shown a significant impact
on performance. Finally, noatime and nodiratime
mount options were enabled in the client as they
can provide a small performance gain.

Figure 3 shows performance results on CC1,
CC2 and HI1 instances (from top to bottom)
which compare TCP and UDP protocols for the
read operation under the different settings consid-
ered. TCP results (left graphs) significantly out-
perform UDP (right graphs) for all file sizes and
configurations, especially from 8 MBytes on. This
fact is due to the higher block size allowed in
the TCP protocol, which benefits TCP especially
when file sizes larger than 1 MByte are used. The
performance comparison between EBS volumes
and ephemeral disks for both protocols results in
a tie, since data is actually read from the NFS
server buffer cache that hides the underlying stor-
age performance. In addition, the server async
configuration is not able to achieve better per-
formance as only write operations can take full
advantage of this feature. However, the MTU
parameter presents a huge impact on performance
for both protocols; in fact in some cases the
9,000 byte MTU value allows for up to 165 %
improvement over using the default MTU value
of 1,500 bytes (e.g., see the 1 MByte file size for
TCP protocol on CC1). The comparative analysis
among different instance types shows that they
achieve generally similar read performance, once
again due to the operation of the NFS server
cache.

Figure 4 compares TCP and UDP protocols
for the write operation. In this case, these re-
sults have revealed some important facts: (1) TCP
performance is again generally higher than UDP
performance, except for the smallest file sizes,
128 KBytes and 1 MByte, where UDP slightly
outperforms TCP when MTU is 1,500 bytes; (2)

the async server configuration is able to provide
significantly higher performance (up to 4 times
better) than sync configuration for both protocols
and all file sizes; (3) increasing the MTU value
to 9,000 bytes provides better performance re-
sults for all configurations, especially for the async
mode; (4) ephemeral disks show significantly bet-
ter results than EBS volumes in the sync mode,
confirming some of the conclusions derived from
the local file system benchmarking. However, the
async server mode allows to reduce the perfor-
mance penalties of using EBS volumes enabling
the overlapping of I/O, as control is returned
to the client when data is written in the server
buffer cache (the actual writing to disk is done
asynchronously), which results in similar perfor-
mance for EBS volumes and ephemeral disks
in this scenario; (5) the async mode shows very
similar results on CC1 and CC2 (for both proto-
cols), whereas HI1 seems to perform slightly bet-
ter than CC instances especially when using TCP
and large file sizes; and (6) the sync mode allows
to analyze more straightforwardly the underlying
storage system performance. Thus, CC1 achieves
up to 154 MBytes/sec on TCP with ephemeral
disks, showing that performance in this case is
being limited by the 2-device array. CC2, relying
on an array of 4 ephemeral disks, outperforms
CC1 with 238 MBytes/sec, whereas HI1 obtains
up to 332 MBytes/sec thanks to the use of SSD
disks. However, these results on CC2 and HI1
instances with sync mode reveal that the net-
work becomes the main performance bottleneck,
reducing significantly the maximum underlying
disk performance obtained in the Section 5.1
(334 and 1014 MBytes/sec for CC2 and HI1,
respectively).

5.2.1 Multi-Client NFS Performance Using
Dif ferent I/O Interfaces

Figure 5 shows the aggregated read (left graphs)
and write (right graphs) bandwidths, measured in
MBytes/sec, obtained with the parallel I/O IOR
benchmark in a configuration with one NFS server
exporting multiple devices, either EBS volumes
or ephemeral disks, and with multiple NFS clients
which access the server through a 10 Gigabit Eth-
ernet network. The experimental configuration
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Fig. 5 NFS performance using multiple clients on Amazon EC2 CC and high I/O instances

of this micro-benchmarking includes an optimal
combination of values of NFS parameters, in or-
der to provide the highest performance, that is
to say the async mode for the NFS server as

well as the use of the TCP protocol for NFS
clients. The MTU value has also been configured
at 9,000 bytes on all the machines involved, replac-
ing the default value.
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In these experiments, each of the client in-
stances runs 8 (on CC1) or 16 (on CC2) parallel
processes, reading and writing a single shared file
collectively. For CC1 and CC2, both server and
clients are instances of the same type. However,
as mentioned in Section 4, the current restric-
tion in the use of the HI1 instance type (only
two instances can run simultaneously) limits the
configuration of the HI1 testbed to the use of
one HI1 instance for the NFS server and either
CC1 or CC2 instance types for the NFS clients,
which also implies that server and clients can not
be allocated in the same placement group. EBS
results on this HI1 testbed have been omitted for
clarity purposes, since they are very similar to
those of CC1 (for a 2-device array) and CC2 (for
a 4-device array).

In order to obtain the underlying I/O through-
put, the aggregated file size has been configured
for each test to ensure that the NFS server mem-
ory is exhausted. This means that the aggregated
file size under consideration is significantly larger
than the available memory in the server, 23 and
60.5 GBytes for CC1 and CC2/HI1, respectively,
reducing the impact of the usage of the NFS server
buffer cache on the results. Finally, it has been set
a high value (16 MBytes) for the transfer size pa-
rameter of IOR, which represents the amount of
data transferred per process between memory and
file for each I/O function call, in order to achieve
the maximum possible aggregated bandwidth.

Performance results on CC1, CC2 and HI1 in-
stances for the read operation are presented in
the left graphs. As can be observed, CC2 ob-
tains better results than CC1 for both storage
devices and all interfaces (except for HDF5 on
EBS which performs very similarly) due to the
use of a 4-device array. On CC1 instances EBS
volumes outperform ephemeral disks for the three
evaluated interfaces, whereas this fact only occurs
for MPI-IO on CC2. This result confirms that
ephemeral disks scale better than EBS volumes
when the number of devices combined in the
RAID array increases, as seen in the local file
system benchmarking results. The comparison be-
tween the interfaces shows that their performance
is quite similar, although HDF5 results are slightly
worse than the others for the read operation. On
average, MPI-IO is the best performer for CC

instances. Regarding the HI1 read graph, it shows
almost similar results for the three interfaces eval-
uated on ephemeral disks both for CC1 and CC2
clients, and also very similar to CC2 results. This
fact confirms that the network is the main per-
formance bottleneck and thus the availability of
a high performance storage device does not im-
prove performance significantly.

The right graphs of Fig. 5 present the results
for the write operation, where CC2 clearly out-
performs CC1 instance type again, doubling the
performance in some cases. Moreover, ephemeral
disks are able to obtain better performance
than EBS, even when the number of processes
increases. Here, the additional network access in-
curred using EBS volumes seems to be the re-
sponsible for this performance penalty. Regarding
HI1 instance type, the results show again that the
network is clearly limiting its overall performance,
achieving up to 456 and 490 MBytes/sec with 64
clients of CC1 and CC2 instance types, respec-
tively. In addition, the performance difference
between the I/O interfaces is almost null, and
the difference between CC1 and CC2 clients is
also negligible for 8, 32 and 64 clients. However,
the use of a single CC2 instance to run 16 client
processes (as it has 16 cores) obtains significantly
lower (around half) performance than using two
CC1 instances, where each one runs 8 client
processes. This fact suggests that, once again, the
performance bottleneck is in the network access,
as the CC2 instance client has twice processes
(16) accessing simultaneously the network card,
thus dividing the available bandwidth per process
and showing a poor ratio between network and
CPU performance. For the remaining scenarios
(8, 32 and 64 clients) the network link between the
server (HI1) and the clients (CC1/CC2) remains
as the limiting factor for the overall performance.

These results have revealed an important fact:
the poor virtualized network performance clearly
limits the new HI1 instances with SSD disks,
especially for the read operation. Nevertheless,
HI1 instances can provide better performance
(up to twice higher) than CC instances for the
write operation when the NFS server is configured
in the async mode. Additionally, these results
have confirmed the higher performance of the
ephemeral disks for the write operation compared
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to EBS volumes, especially when using the CC2
and HI1 resources. However, for the read oper-
ation EBS volumes can achieve similar or even
better performance than ephemeral disks. There-
fore, the choice between storage devices, EBS or
ephemeral, will depend on the I/O characteristics
and requirements of each particular application.

5.2.2 The Ef fect of Caching and Transfer Size
on NFS Performance

In Section 5.2.1, the NFS server buffer cache was
exhausted writing a shared file size which was sig-
nificantly larger than the server memory in order
to ensure that the performance of the underlying
storage subsystem was actually being measured.
This section presents the analysis of the effect
of caching by writing a shared file which size is
less than the server memory, and under different
transfer sizes (from 16 KBytes to 16 MBytes),
using MPI-IO as a representative I/O interface.
The results for CC1, CC2 and HI1 instances using
64 clients are shown in Fig. 6, under the same NFS
configuration than in the previous subsection but
only including ephemeral disks that they provide
the best write performance.

The left graph of Fig. 6 shows the perfor-
mance results of writing a large file, twice larger
than the available memory on the NFS server
(64 GBytes for CC1 and 128 GBytes for CC2

and HI1). The results using a transfer size of
16 MBytes are the same as those shown in the
previous subsection for MPI-IO (see Fig. 5). The
right graph shows the performance of writing a
file size that fits into the available memory of the
server (16-GByte file size). Performance results
have been obtained for 4 different configurations:
(1) a CC1 server and 8 CC1 clients (CC1-CC1);
(2) a CC2 server and 4 CC2 clients (CC2-CC2);
(3) an HI1 server and 8 CC1 clients (HI1-CC1);
and (4) an HI1 server and 4 CC2 clients (HI1-
CC2). The limitation in the number of avail-
able HI1 instances (right now up to 2 per user)
has prevented the evaluation of a scenario with
both server and clients in HI1 instance. However,
in this hypothetical configuration (HI1-HI1) the
clients would benefit from being located in the
same placement group, but they will not take
advantage of the locally attached SSD disks and
will suffer from the limited computational power
of the HI1 systems (35 ECUs, similar to CC1
instances, but far from the 88 ECUs of CC2
instances).

The first conclusion that can be derived from
this analysis is that the use of the largest transfer
size (16 MBytes in this scenario) is key to achieve
high parallel I/O performance, mainly in HI1 in-
stances. The results in the left graph clearly show
that the SSD disks on HI1 provide significantly
better performance from 64 KBytes on. Once the
server cache is exhausted, performance is deter-

0

 100

 200

 300

 400

 500

 600

16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

M
B

yt
es

/s
ec

IOR Transfer Size

NFS MPI-IO Write Performance 
(64 Cores, Uncached file)

CC1-CC1 (2xEPH)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

0

 100

 200

 300

 400

 500

 600

16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

M
B

yt
es

/s
ec

IOR Transfer Size

NFS MPI-IO Write Performance
 (64 Cores, Cached file)

CC1-CC1 (2xEPH)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

Fig. 6 NFS performance depending on caching and transfer size
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mined by the I/O subsystem, although for HI1
performance is ultimately determined by the net-
work, as seen in Section 5.2.1.

The right graph shows significant performance
increases for the CC2-CC2 configuration when
the file is cached, whereas for the rest of
configurations the results are only slightly better.
The performance of the CC1-CC1 configuration is
clearly limited by the poor performance of the un-
derlying I/O subsystem, based on a 2-device array
of ephemeral disks that, according to our previous
local file system benchmarking, only provides up
to 160 MBytes/sec (see Fig. 2 in Section 5.1). Re-
garding the HI1 server-based configurations (HI1-
CC1 and HI1-CC2), whose 2-device array is able
to provide above 1000 MBytes/sec, the network
severely limits performance. This is mainly to the
fact that the server is not in the same placement
group of CC1/CC2 clients, which increases la-
tency and reduces the full bandwidth available.
Moreover, the CC2-CC2 configuration is now the
best performer, even slightly better than the HI1
server-based configurations, due to a combination
of two facts: (1) unlike the HI1 configurations,
the allocation of CC2 server and clients in the
same placement group enables to exploit the full
network bandwidth; and (2) a CC2 instance pro-
vides higher memory write performance (up to
20 % more) than an HI1 instance, according to the
STREAM benchmark [22], which clearly benefits
the operation of the NFS buffer cache in a CC2
server.

5.3 I/O-Intensive Parallel Application
Performance

The performance of a representative I/O-
intensive parallel application, the BT-IO kernel
from the NPB suite, has been analyzed. This
code is the I/O-enabled version of the NPB BT
benchmark, which solves Navier-Stokes equations
in three spatial dimensions. As mentioned in
Section 4, the NPB Class C workload has been
selected, whereas the I/O size is the Full subtype.
With these settings, all processes append data to
a single file through 40 collective MPI-IO write
operations, generating a total of 6.8 GBytes of
output data, which are also read at the end of
the execution. It has been used the default I/O
frequency, which consists of appending data to
the shared output file every 5 computation time
steps. Finally, the BT-IO evaluation has been
performed using the same NFS configuration as in
Section 5.2, as it maximizes the NFS performance.

Figure 7 presents BT-IO performance using
up to 64 clients. The performance metrics re-
ported are the aggregated bandwidth measured
in MBytes/sec (left graph) and MOPS (right
graph). BT-IO requires that the number of client
processes must be square numbers.

The aggregated bandwidth results confirm
that ephemeral disks can provide better perfor-
mance than EBS volumes. Thus, the CC1-CC1
configuration with ephemeral devices achieves
up to 271 MBytes/sec (for 64 clients) whereas
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Fig. 7 BT-IO performance on Amazon EC2 CC and high I/O instances
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EBS volumes obtain up to 254 MBytes/sec. The
numbers for the CC2-CC2 configuration are 327
and 302 MBytes/sec, respectively. Regarding the
HI1 server-based testbeds, only ephemeral (SSD)
devices have been considered, showing the best
result for CC2 clients (e.g., 338 MBytes/sec for
64 clients). Here, the need of double the num-
ber of CC1 instances than CC2 ones (8 vs 4
when considering 64 clients) represents an im-
portant performance bottleneck for this code,
as BT-IO is also a computation/communication-
intensive code. Thus, the higher number of
network communications required by CC1 are
significantly affected by the poor virtualized net-
work performance. This fact causes that the
CC2-CC2 configuration using ephemeral devices
outperforms HI1-CC1 for 36 and 64 clients.

These assessments are confirmed by the overall
performance of the application in terms of MOPS
(right graph). Thus, HI1-CC1 achieves similar re-
sults to CC1-CC1 (less than 35,000 MOPS), while
using CC2 clients (either for CC2-CC2 or HI1-
CC2) the measured performance is up to 20 %
higher (e.g., 42,000 MOPS for HI1-CC2). Here,
the differences in I/O performance are not trans-
lated into equivalent differences in MOPS, be-
cause I/O represents around 25–35 % of the total
execution time of the application on these sce-
narios. The remaining execution time is spent in
computation and MPI communications, increas-
ing the communication overhead with the number
of processes, which explains the impact of MPI
communications on the overall performance as
well as on I/O performance since disk writes are
performed collectively.

Taking into account the different instance
types, the use of a 4-device array allows CC2 to
achieve higher performance than CC1 both for
ephemeral and EBS devices, especially when con-
sidering the aggregated bandwidth, where CC2
servers obtain approximately 20 % more band-
width than CC1 servers. As mentioned before,
the HI1-CC1 configuration obtains poor results,
whereas HI1-CC2 slightly outperforms the CC2-
CC2 testbed on 64 clients (338 vs 327 MBytes/sec,
respectively). The fact that all data are cached
in the NFS server (in this scenario, 6.8 GBytes
are written to disk) together with the poor per-
formance of the virtualized network between the

NFS server and its clients prevented the HI1
server-based configurations (in particular, HI1-
CC2) to obtain better performance.

5.3.1 Cost Analysis of I/O-Intensive Parallel
Codes

Amazon EC2 offers different purchasing options:
(1) on-demand instances, which allow to access
immediately computation power by paying a fixed
hourly rate; (2) spot instances from the spot mar-
ket, which allow customers to bid on unused
Amazon EC2 capacity and run those instances
for as long as their bid exceeds the current spot
price (which changes periodically based on supply
and demand); and (3) reserved instances for one-
or three-year terms, which allow to receive a sig-
nificant discount on the hourly charge. There are
three reserved instance types: light, medium and
heavy, that enable to balance the amount payed
upfront with the effective hourly price. Table 2
presents all the prices considered in the analysis.

In order to ease the analysis of the cost of
Amazon EC2 resources, Fig. 8 presents the pro-
ductivity of the previously evaluated BT-IO ap-
plication in terms of aggregated bandwidth per
USD$ . Only results for ephemeral disks are
shown for clarity purposes as they provide bet-
ter performance. Different purchasing options are
compared: (1) using the price of on-demand in-
stances (left graph); (2) using the average spot
price in the July-September 2012 period (right
graph, labeled as “S”), only for CC1 and CC2 in-
stances as currently HI1 instances are not offered
in the spot market; and (3) using the price calcu-
lated with heavy utilization reserved instances for
a three-year term (right graph, labeled as “R”),
which usually represents the lowest price that can
be obtained for a particular instance type.

Table 2 EC2 pricing for CC1, CC2 and HI1 (Linux/UNIX)
instance types (us-east-1 region)

Instance On-demand Spot price Reserved
type (3-year term)

CC1 $1.30 $0.818 $0.537
CC2 $2.40 $0.948 $0.653
HI1 $3.10 Not available $0.899
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Fig. 8 BT-IO productivity using on-demand, spot and reserved instances

On the one hand, the results using on-demand
instances (left graph) show negligible differences
between the different options except for the CC1-
CC1 configuration with 9 clients, which is the
most cost-effective option. On the other hand, the
results using spot and reserved instances (right
graph) present more differences among the evalu-
ated configurations. First of all, the use of spot in-
stances can provide significant cost improvements,
up to 3 times higher performance/cost ratio than
using on-demand instances (e.g., for CC2-CC2
with 64 clients), although here the main drawback
of spot instances is that they can be shut down at
any moment (when the spot price moves higher
than the customer’s maximum price). Regarding
reserved instances, they allow for up to 25 %
higher performance/cost ratio on average than
using spot instances, being CC2-CC2 the most
cost-effective option, slighly better than HI1-CC2.
Furthermore, reserved instances will be always ac-
tive for the availability zone specified at purchase
time. Thus, reserved instances are the best choice
in terms of performance/cost ratio.

6 Conclusions

Cloud computing is a model that enables on-
demand and self-service access to a pool of
highly scalable, abstracted infrastructure, plat-
form and/or services, which are billed by con-

sumption. This paradigm is currently being ex-
plored by the scientific community to assess its
suitability for HPC applications. Among current
cloud providers, Amazon WS is the leading com-
mercial public cloud infrastructure provider.

This work has presented a comprehensive
evaluation of the I/O storage subsystem on the
Amazon EC2 Cluster Compute platform, a family
of instance types which are intended to be well
suited for HPC applications. Moreover, this work
has included the evaluation of the new High I/O
(HI1) instance type recently released by Amazon
(July 2012), which provides SSD disks as
ephemeral storage, thus highly oriented to
be used in scalable cloud storage I/O systems.
The performance evaluation was carried out at
different layers and using several representative
micro-benchmarks. Thus, the cloud low-level
storage devices available in these instances
(ephemeral disks and EBS volumes) have been
evaluated both on local and distributed file
systems, as well as the performance of several
I/O interfaces commonly used in scientific
applications (POSIX, MPI-IO and HDF5).
Moreover, the scalability of an I/O-intensive
code, the BT-IO application from the NPB suite,
has also been analyzed at the application level,
including an analysis in terms of cost.

Performance results have shown that the avail-
able cloud storage devices present significant
performance differences. Thus, this paper has
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revealed that the use of ephemeral disks can pro-
vide more performance than EBS volumes for the
write operation, especially when software RAID
is used, thanks to the avoidance of additional net-
work accesses to EBS, outside of the placement
group, as EBS performance is deeply influenced
by the network overhead and variability. In ad-
dition, this paper has characterized NFS perfor-
mance on Amazon EC2, showing the impact of
the main NFS configuration parameters on a vir-
tualized cloud environment. Moreover, the analy-
sis of the parallel I/O performance on Amazon
EC2 has revealed that HI1 instances can pro-
vide significantly better write performance than
any other instance type when writing very large
files with large transfer sizes, although the overall
performance is ultimately limited by the poor net-
work throughput. Finally, the analysis of the per-
formance/cost ratio of the BT-IO application has
shown that, although the use of the HI1 instance
type provides slightly better raw performance in
terms of aggregated bandwidth, it may not be the
best choice when taking into account the incurred
costs.
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The advent of cloud computing technologies, which dynamically provide on-
demand access to computational resources over the Internet, is offering new
possibilities to many scientists and researchers. Nowadays, Infrastructure as a
Service (IaaS) cloud providers can offset the increasing processing requirements
of data-intensive computing applications, becoming an emerging alternative to
traditional servers and clusters. In this paper, a comprehensive study of the
leading public IaaS cloud platform, Amazon EC2, has been conducted in order to
assess its suitability for data-intensive computing. One of the key contributions
of this work is the analysis of the storage-optimized family of EC2 instances.
Furthermore, this study presents a detailed analysis of both performance and cost
metrics. More specifically, multiple experiments have been carried out to analyze
the full I/O software stack, ranging from the low-level storage devices and cluster
file systems up to real-world applications using representative data-intensive
parallel codes and MapReduce-based workloads. The analysis of the experimental
results has shown that data-intensive applications can benefit from tailored EC2-
based virtual clusters, enabling users to obtain the highest performance and cost-

effectiveness in the cloud.

Keywords: Data-intensive computing; Cloud computing; Infrastructure as a Service (IaaS);
Amazon EC2; Cluster file system; MapReduce

1. INTRODUCTION

In recent years, the computational requirements for
large-scale data-intensive computing [1] applications
across distributed clusters or data centers have
grown significantly in various disciplines including
bioinformatics, astronomy or medical image analysis.
In the current era of Big Data, characterized by the
unprecedented volume of data, these applications are
generating and analyzing large data sets, which usually
require a high number of computational resources
together with the availability of a high-performance
cluster file system for scalable performance.

Cloud computing [2] is a relatively recent Internet-
based computing model which is gaining significant
acceptance in many areas and IT organizations as an
elastic, flexible, and variable-cost way to deploy their
service platforms using outsourced resources. These
resources can be rapidly provisioned and released with
minimal management effort. Public cloud providers
offer access to external users who are typically billed
by consumption using the pay-per-use pricing model.

Infrastructure as a Service (IaaS) is a type of
cloud service which dynamically provides, by means of
virtualization technologies, on-demand and self-service
access to elastic computational resources (e.g., CPU,
memory, networking and storage), offering a powerful
abstraction that easily allows end users to set up
virtual clusters to exploit supercomputing-level power
without any knowledge of the underlying infrastructure.
Public IaaS providers typically make huge investments
in data centers and then rent them out, allowing
consumers to avoid heavy capital investments and
obtain both cost-effective and energy-efficient solutions.
Hence, organizations are no longer required to invest in
additional computational resources, since they can just
leverage the infrastructure offered by the IaaS provider.

Most popular public cloud providers include Amazon
Web Services (AWS) [3], Google Compute Engine
(GCE) [4], Microsoft Azure [5] and Rackspace [6].
Nowadays, AWS remains as the top public cloud
provider [7], offering the widest range of cloud-based
services. In fact, the Elastic Compute Cloud (EC2)
service [8] is among the most used and largest IaaS cloud
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platforms [9], which allows computational resources in
Amazon’s data centers to be easily rented on-demand.
Moreover, Amazon EC2 offers several cloud resources
which specifically target High Performance Computing
(HPC) environments [10], composed of several virtual
machines that are intended to be well suited for
highly demanding workloads by offering powerful multi-
core CPU resources, improved network performance
via a high-speed interconnect (10 Gigabit Ethernet)
and enhanced Input/Output (I/O) performance by
providing Solid State Drive (SSD) disks.
In this context, the cloud computing paradigm

has experienced tremendous growth in the last few
years, particularly for general-purpose applications
such as web servers or commercial web applications.
Furthermore, it has also generated considerable interest
both in the scientific community and industry. Thus,
cloud computing is becoming an attractive option
for distributed computing and HPC due to the high
availability of computational resources at large scale.
This fact has motivated multiple works that analyze
the feasibility of using public clouds, especially Amazon
EC2, instead of traditional clusters for running HPC
applications [11, 12, 13, 14]. However, most of the
previous works are focused mainly on computation- and
communication-intensive HPC codes, especially tightly-
coupled parallel applications using the Message-Passing
Interface (MPI), whereas there are few works that
have investigated cloud storage and I/O performance
using data-intensive applications (e.g., MapReduce [15]
workloads). In addition, previous evaluations have
been carried out before Amazon introduced storage-
optimized instances [16], which provide with direct-
attached storage devices specifically optimized for
applications with high disk I/O requirements.
This paper presents a comprehensive study of running

data-intensive applications on the leading Amazon
EC2 cloud, using storage-optimized instances and
conducting a related analysis that takes into account
both performance and cost metrics. Hence, multiple
experiments have been performed at several layers
using a suite of micro-benchmarks and applications
to evaluate the full I/O software stack of data-
intensive computing, ranging from the low-level storage
devices and cluster file systems up to the application
level using representative parallel codes implemented
on top of common computing frameworks and I/O
middleware (e.g., Apache Hadoop [17], MPI-IO [18]).
The main experimental results indicate that the unique
configurability advantage offered by public clouds,
almost impossible to achieve in traditional platforms,
can benefit significantly data-intensive applications.
Thus, our main conclusions point out that current
cloud-based virtual clusters enable end users to build
up high-performance I/O systems when using the
appropriate resources and configurations.
The rest of the paper is organized as follows:

Section 2 describes the related work. Section 3

presents an overview of the software stack for data-
intensive computing. Section 4 provides general
background of the Amazon EC2 platform and the
experimental configuration, briefly describing both
the benchmarks and applications used as well as
the evaluation methodology. Section 5 presents and
analyzes the performance results obtained in the
evaluation conducted in this work. Finally, Section 6
summarizes our concluding remarks.

2. RELATED WORK

Recently, there have been a series of research efforts
assessing the suitability of using public cloud platforms
for HPC and scientific computing. Although there
are some works that have evaluated other public IaaS
providers such as Microsoft Azure [19] and GoGrid [20],
the vast majority of them have assessed the most
popular IaaS platform: Amazon EC2 [11, 12, 13, 14,
21, 22, 23]. Most of these previous studies are mainly
focused on computation and communication behavior,
evaluating only tightly-coupled parallel codes, usually
MPI-based applications, which are commonly used
in HPC environments, hence characterizing only the
performance of CPU and network. As a main conclusion
of these works, it has been fairly well-established that
communication-intensive MPI codes tend to perform
poorly on Amazon EC2, primarily due to the low
virtualized network performance.
However, few works have investigated I/O and

storage performance on Amazon EC2. Some of
them analyzed the suitability of running scientific
workflows [24, 25, 26], showing that it can be a
successful option as these are loosely-coupled parallel
applications. Other works, next presented, have
evaluated some I/O aspects of Amazon EC2, but they
were carried out before the availability of storage-
optimized instances. Evangelinos and Hill [27] reported
some I/O storage results using an I/O-intensive
workload, but limited to sequential runs on a basic
Network File System (NFS) setting. The storage
and network performance of the Eucalyptus cloud
computing platform was analyzed in [28], confronted
with some results from one general-purpose EC2 large
instance. Ghoshal et al. [29] compared the I/O
performance of Amazon EC2 confronted with Magellan,
a private cloud platform, and an HPC cluster. Their
results show that NFS performance in Amazon is
many orders of magnitude worse than the parallel
file system installed in the HPC cluster. Similar
studies have been carried out in [30, 31, 32], which
have evaluated some parallel codes for NFS and/or
PVFS file systems, but only limited to MPI-based
applications, as MapReduce-based workloads were not
taken into account. Gunarathne et al. [33] presented
a MapReduce framework designed on top of the
Microsoft Azure cloud, which was evaluated against
the Amazon Elastic MapReduce (EMR) service and an

The Computer Journal, Vol. ??, No. ??, ????

197



Performance evaluation of data-intensive computing applications 3

EC2-based Hadoop cluster. More recently, the same
authors have introduced a new runtime that supports
iterative MapReduce computations [34]. Finally, some
other works have evaluated MapReduce frameworks
and applications on private cloud platforms such as
Nimbus [35] and on traditional HPC clusters [36, 37].

3. OVERVIEW OF DATA-INTENSIVE
COMPUTING APPLICATIONS

Most current data-intensive applications can be
classified into one of the following categories: HPC
and Big Data analysis. In both categories, applications
are executed across distributed clusters or data centers
using multiple compute nodes and handling massive
amounts of data, in which the underlying cluster
file system is a key component for providing scalable
application performance.
On the one hand, HPC is traditionally defined by

parallel scientific applications in the fields of science
and engineering that rely on low-latency networks
for message passing and cluster deployments that
usually separate compute and storage nodes. HPC
applications are typically large simulations that run for
a long time and protect themselves from failures using
fault tolerance methods such as checkpointing [38].
These methods involve large-scale data movements as
the system state is periodically written to persistent
storage in order to be able to restart the application
in case of failure. Therefore, checkpointing can be
particularity challenging when all processes in the
parallel application write to the same checkpoint file at
the same time, an I/O access pattern fairly known as
N-1 writing [39]. Hence, these HPC applications are
considered data-intensive, and they typically rely on
a POSIX-based parallel file system for highly scalable
and concurrent parallel I/O. In these systems, multiple
dedicated storage nodes act as I/O servers to provide a
UNIX file system API and expose a POSIX-compliant
interface to applications to support a broad range of
access patterns for many different workloads. In this
scenario, the I/O access pattern is mainly dominated
by sequential operations, being random accesses rare in
data-intensive HPC applications [40, 41].
On the other hand, Big Data analysis generally

refers to a heterogeneous class of business applications
that operate on large amounts of unstructured and
semi-structured data, usually implemented using the
MapReduce programming model, which was first
proposed by Google [15]. In fact, MapReduce has
become the most popular computing framework for
large-scale processing and analysis of vast data sets
in clusters [42], mainly because of its simplicity
and scalability. These data-intensive applications
are designed to handle data more efficiently than a
traditional structured query language to quickly extract
value from the data. They include traditional batch-
oriented jobs such as data mining, building search

indices and log collection and analysis [43], as well
as web search and advertisement selection [44]. One
key aspect of these applications is that they are
aware in advance of the workloads and I/O access
patterns, typically relying on a custom, purpose-built
distributed file system that is usually implemented
from scratch. These file systems are specifically
designed to support only one programming model
(e.g., MapReduce) in order to provide high scalability
with reliability by striping and replicating the data in
large chunks across the locally attached storage of the
cluster nodes. Hence, by exposing the data layout
to the applications, the MapReduce task scheduler
is able to co-locate a compute task on a node that
stores the required input data [15], thereby relying on
cluster deployments that co-locate compute and storage
nodes on the same cluster node. However, these file
systems feature a simplified design and implementation
without providing a POSIX-compliant interface or
consistency semantics. Consequently, they work well for
MapReduce applications but cannot support traditional
HPC applications without changes. Unlike distributed
file systems, parallel file systems cannot exploit data
locality as they do not generally expose the data
layout to the applications, which usually results in a
significant performance loss when running MapReduce
applications. Hence, the developers of the most popular
parallel file systems have demonstrated the feasibility of
using them with the MapReduce paradigm by applying
some minor modifications and providing simple file
system extensions, obtaining comparable performance
to distributed file systems [45, 46].

3.1. I/O Hardware and Software Support

Figure 1 shows the I/O software stacks more commonly
available on current HPC and Big Data platforms that
support data-intensive applications. On the one hand,
HPC applications perform I/O at a specific level in
the software stack depicted in Figure 1(a). In the
upper levels, advanced data models such as HDF5 [47]
and NetCDF [48] can provide certain advantages for
particular applications. These high-level libraries
usually feature a parallel version (Parallel HDF5 [49],
Parallel NetCDF [50]) implemented on top of the
MPI-IO [18] middleware in order to perform parallel
I/O cooperatively among many processes. MPI-IO
is specified in the MPI-2 standard and defines a
comprehensive API, which is implemented on top of file
systems, intended specifically to provide MPI programs
with a high-performance, portable and parallel I/O
interface. Towards the bottom of the stack, parallel
file systems (e.g., GPFS [51], PVFS [52], Lustre [53],
OrangeFS [54]) are used to transfer I/O requests and
file data across the underlying interconnection network
and storage devices. Figure 2(a) shows the most widely
extended cluster architecture in HPC platforms, which
usually separates compute and storage nodes.
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Storage Infrastructure

Interconnection Network

(HDF5, NetCDF)

HPC Applications

(POSIX, MPI−IO)

High−level I/O Libraries

I/O Middleware

(GPFS, PVFS, Lustre, OrangeFS)
Parallel File Systems

(a) I/O software stack for HPC applications

Big Data Applications

Interconnection Network

Distributed File Systems

MapReduce Frameworks

High−level Tools

(GFS, HDFS, KFS)

(Google, Hadoop, Twister)

Storage Infrastructure

(Google Tenzing, Apache Mahout, Apache Hive)

(b) Big Data analysis on top of MapReduce frameworks

FIGURE 1. I/O software stacks for data-intensive computing applications

(a) Traditional HPC cluster architecture (b) High-level overview of Hadoop and
HDFS architecture

FIGURE 2. Hardware support for data-intensive computing applications

On the other hand, Big Data applications can
either use a high-level tool or directly a distributed
computing framework (e.g., Google MapReduce [15])
to perform their data analysis (see Figure 1(b)).
Usually, the high-level tools (e.g., Google Tenzing [55],
Apache Mahout [56]) are built on top of a computing
framework to allow users write applications that take
advantage of the MapReduce programming model
without having to learn all its details. Among
these frameworks, the Apache Hadoop project [17]
has gained significant attention in the last years as
a popular open-source Java-based implementation of
the MapReduce paradigm derived from the Google’s
proprietary implementation. As mentioned before,
these frameworks generally rely on custom distributed
file systems (e.g., GFS [57], HDFS [58], KFS [59])
to transfer I/O requests across the interconnection
network and the underlying storage infrastructure.
Figure 2(b) shows an overview of a typical Hadoop
cluster that stores the data in HDFS, using a master-
slave architecture which co-locates compute and storage
nodes on the same slave node. Using the Hadoop
terminology, the TaskTracker and DataNode processes,
which execute the tasks and store the data, respectively,
run on the slave nodes. The master node runs the
JobTracker and NameNode processes, acting as a single
task manager and metadata server.

4. EXPERIMENTAL CONFIGURATION

In this section, the Amazon EC2 platform and the
selected instance types are described along with brief
descriptions of the representative benchmarks and
applications used in the performance evaluation section.

4.1. Amazon EC2 Platform

The Amazon EC2 cloud service currently offers a rich
variety of Xen-based virtual machine configurations
called instance types [16], which are optimized to fit
different use cases. Virtual machines of a given instance
type comprise varying combinations of CPU, memory,
storage and networking capacity, each with a different
price point. One of the key contributions of this paper is
the evaluation of the storage-optimized family of EC2
instances, which according to Amazon are specifically
intented to be well suited for Hadoop, cluster file
systems and NoSQL databases, among other uses.
The storage-optimized family includes two EC2

instance types: High I/O (hi1.4xlarge, hereafter
HI1) and High Storage (hs1.8xlarge, hereafter HS1).
These instances provide direct-attached storage devices
(known as “ephemeral” or local disks) optimized
for applications with specific disk I/O and capacity
requirements. More specifically, HI1 provides 2
TB of instance storage capacity backed by 2 SSD-
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based disks, whereas HS1 provides 48 TB across 24
standard Hard Disk Drive (HDD) disks (see Table 1).
Generally, EC2 instances can access two additional
storage options: (1) off-instance Elastic Block Store
(EBS), which are remote volumes accessible through
the network that can be attached to an instance
as block storage devices; and (2) Simple Storage
Service (S3), which is a distributed key-value based
object storage system, accessed through a web service
interface. However, S3, unlike EBS and ephemeral
devices, lacks general file system interfaces usually
required by data-intensive applications. Hence, S3
has not been considered in our evaluation since its
use is not transparent to applications, and because of
its poor performance shown by previous works [24].
Moreover, ephemeral (local) disks perform better than
EBS volumes according to [28, 29] due to the overhead
caused by the additional network access incurred by
EBS. This superior performance of ephemeral disks
was assessed even before the availability of storage-
optimized instances, which favor significantly the
performance of local disks.

In addition, storage-optimized instances provide 8
physical cores that represent 35 EC2 Compute Units
(ECUs1) of computational power, together with 60.5
and 117 GB of memory for HI1 and HS1, respectively.
Moreover, these instances support cluster networking
via a high-speed network (10 Gigabit Ethernet), which
is also another differential characteristic of these
resources. Hence, instances launched into a common
placement group are placed in a logical cluster that
provides low-latency, full-bisection 10 Gbps bandwidth
connectivity between instances in the cluster. However,
there is a current limitation that only instances of
the same type can be included in a placement group
(i.e., a placement group cannot combine HI1 and HS1
instances).

Two additional high-performance instance types
which also provide the cluster networking feature
together with the 10 Gigabit Ethernet network have
been evaluated. On the one hand, the Cluster Compute
instance type (cc2.8xlarge, hereafter CC2) is a compute-
optimized instance with 16 physical cores, 60.5 GB of
memory and 3.4 TB of instance storage capacity across
4 HDDs. On the other hand, the High Memory Cluster
Compute instance type (cr1.8xlarge, herefater CR1) is a
memory-optimized instance with 16 physical cores, 244
GB of memory and 240 GB of instance storage capacity
across 2 SSDs. Note that CC2 and CR1 are among the
EC2 instances with the most powerful computational
resources (i.e., 88 ECUs). Table 1 summarizes the main
characteristics of the selected instance types together
with their hourly price for on-demand Linux usage in
the North Virginia data center.

1According to Amazon one ECU provides the equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or Xeon processor.

4.2. Benchmarks and Applications

The evaluation of data-intensive applications on
Amazon EC2 has been conducted using representative
benchmarking tools and applications (see details in
Table 2) ranging at the different levels shown in the
software stacks of Figures 1(a) and 1(b). The first
set of experiments consists of a single-instance micro-
benchmarking of a local file system, xfs, selected as
it provides interesting features (e.g., allocation groups,
B-tree indexing, metadata journaling) as building
blocks for scalable data-intensive infrastructures. This
analysis has been carried out using the IOzone
benchmark [60] on a single ephemeral disk as well as
on multiple disks combined in a single software RAID
array with the Linux mdadm utility.
After characterizing the performance of the under-

lying storage infrastructure, both software stacks have
been analyzed at the cluster file system level. Re-
garding the HPC stack, the OrangeFS parallel file sys-
tem [54] has been evaluated using the IOR bench-
mark [61] and the MPI-IO interface [18] as represen-
tative I/O middleware. OrangeFS is a relatively recent
branch of the production-quality and widely extended
Parallel Virtual File System (PVFS) [52], but unlike
PVFS, under active development and introducing new
features. OrangeFS has also been selected because it
lacks, to the best of our knowledge, suitable assess-
ments of its performance on a public cloud infrastruc-
ture. Regarding the Big Data software stack, the Intel
HiBench suite [62] has been used for the evaluation of
Apache Hadoop [17], selected as the most representa-
tive MapReduce computing framework. The HiBench
suite consists of a set of Hadoop programs including
both synthetic micro-benchmarks and real-world appli-
cations. Hadoop HDFS [58] has been evaluated at the
distributed file system level using the Enhanced DFSIO
benchmark included in HiBench.
Next, the performance of several data-intensive codes

has been analyzed at the application level. On the
one hand, the BT-IO kernel [63] and the FLASH-IO
code [64], which are implemented on top of the MPI-
IO and Parallel HDF5 (PHDF5) libraries, respectively,
have been selected as representative I/O-intensive
HPC applications. On the other hand, the Sort
and WordCount workloads, also included in HiBench,
have been selected as they are representative of two
widespread kinds of MapReduce jobs: transforming
data from one representation to another, and extracting
a small amount of information from a large data set.
Additionally, the PageRank and Aggregation workloads
have been evaluated. They are based on high-level
tools built on top of the Hadoop framework. PageRank
is an implementation of the page-rank algorithm in
Apache Mahout [56], an open-source machine learning
library. Aggregation measures the performance of
Apache Hive [65] through computing the sum of each
group in Hive over a single read-only table.

The Computer Journal, Vol. ??, No. ??, ????

200 Chapter 9. Performance Evaluation of Data-Intensive Applications



6 R.R. Expósito et al.

T
A
B
L
E

1
.
D
es
cr
ip
ti
o
n
o
f
th
e
A
m
a
zo
n
E
C
2
in
st
a
n
ce
s:

C
C
2
,
H
I1
,
H
S
1
a
n
d
C
R
1

C
C
2

H
I1

H
S
1

C
R
1

R
e
le
a
se

D
a
te

N
ov

em
b
er

2
0
1
1

J
u
ly

2
0
1
2

D
ec
em

b
er

2
0
1
2

J
a
n
u
a
ry

2
0
1
3

In
st
a
n
c
e
F
a
m
il
y

C
o
m
p
u
te
-o
p
ti
m
iz
ed

S
to
ra
g
e-
o
p
ti
m
iz
ed

S
to
ra
g
e-
o
p
ti
m
iz
ed

M
em

o
ry
-o
p
ti
m
iz
ed

A
P
I
n
a
m
e

cc
2
.8
x
la
rg
e

h
i1
.4
x
la
rg
e

h
s1
.8
x
la
rg
e

cr
1
.8
x
la
rg
e

P
ri
c
e
(L

in
u
x
)

$
2
p
er

h
o
u
r

$
3
.1
0
p
er

h
o
u
r

$
4
.6
0
p
er

h
o
u
r

$
3
.5
0
p
er

h
o
u
r

C
P
U

M
o
d
e
l

In
te
l

X
eo
n

E
5
-2
6
7
0

S
a
n
d
y
B
ri
d
g
e

In
te
l

X
eo
n

E
5
6
2
0

W
es
tm

er
e

In
te
l

X
eo
n

E
5
-2
6
5
0

S
a
n
d
y
B
ri
d
g
e

In
te
l

X
eo
n

E
5
-2
6
7
0

S
a
n
d
y
B
ri
d
g
e

#
C
P
U
s

2
(E

ig
h
t-
C
o
re
)

2
(Q

u
a
d
-C

o
re
)

1
(E

ig
h
t-
C
o
re
)

2
(E

ig
h
t-
C
o
re
)

C
P
U

S
p
e
e
d

(T
u
rb

o
)

2
.6

G
H
z
(3
.3

G
H
z)

2
.4

G
H
z
(2
.6
6
G
H
z)

2
G
H
z
(2
.8

G
H
z)

2
.6

G
H
z
(3
.3

G
H
z)

#
C
o
re

s/
T
h
re

a
d
s

1
6
/
3
2
(H

T
2
en

a
b
le
d
)

8
/
1
6
(H

T
en

a
b
le
d
)

8
/
1
6
(H

T
en

a
b
le
d
)

1
6
/
3
2
(H

T
en

a
b
le
d
)

A
m
a
z
o
n

E
C
U
s

8
8

3
5

3
5

8
8

E
C
U
s
p
e
r
C
o
re

5
.5

4
.4

4
.4

5
.5

E
C
U
s
p
e
r
U
S
$

4
4

1
1
.2
9

7
.6
1

2
5
.1
4

L
3
C
a
ch

e
si
z
e

2
0
M
B

1
2
M
B

2
0
M
B

2
0
M
B

M
e
m
o
ry

6
0
.5

G
B

6
0
.5

G
B

1
1
7
G
B

2
4
4
G
B

#
M

e
m
o
ry

C
h
a
n
n
e
ls

4
(D

D
R
3
-1
6
0
0
)

3
(D

D
R
3
-1
0
6
6
)

4
(D

D
R
3
-1
6
0
0
)

4
(D

D
R
3
-1
6
0
0
)

M
e
m
o
ry

B
a
n
d
w
id
th

5
1
.2

G
B
/
s

2
5
.6

G
B
/
s

5
1
.2

G
B
/
s

5
1
.2

G
B
/
s

#
Q
P
I
L
in
k
s

2
(4
0
0
0
M
H
z)

2
(2
9
3
3
M
H
z)

2
(4
0
0
0
M
H
z)

2
(4
0
0
0
M
H
z)

Q
P
I
S
p
e
e
d

8
G
T
/
s

5
.8
6
G
T
/
s

8
G
T
/
s

8
G
T
/
s

E
p
h
e
m
e
ra

l
D
is
k
s

4
×

8
4
5
G
B

(H
D
D
)

2
×

1
T
B

(S
S
D
)

2
4
×

2
T
B

(H
D
D
)

2
×

1
2
0
G
B

(S
S
D
)

S
to

ra
g
e
C
a
p
a
c
it
y

3
.4

T
B

2
T
B

4
8
T
B

2
4
0
G
B

S
to

ra
g
e
p
e
r
U
S
$

1
.7

T
B

0
.6
5
T
B

1
0
.4
3
T
B

0
.0
7
T
B

In
te

rc
o
n
n
e
c
t

1
0
G
ig
a
b
it

E
th
er
n
et

(F
u
ll
-b
is
ec
ti
o
n
b
a
n
d
w
id
th

u
si
n
g
P
la
ce
m
en

t
G
ro
u
p
s)

2
T
h
e
In
te
l
H
y
p
er
-T

h
re
a
d
in
g
(H

T
)
te
ch

n
o
lo
g
y
is

en
a
b
le
d
fo
r
a
ll
in
st
a
n
ce

ty
p
es
.
H
en

ce
,
A
m
a
zo
n
a
n
n
o
u
n
ce
s
th
a
t
th
es
e
in
st
a
n
ce
s
h
av

e
a
n
u
m
b
er

o
f
av
a
il
a
b
le

v
ir
tu
a
l
co
re
s
th
a
t
ta
k
es

in
to

a
cc
o
u
n
t
h
y
p
er
-t
h
re
a
d
ed

co
re
s
(i
.e
.,
A
m
a
zo
n
st
a
te
s
th
a
t
C
C
2
in
st
a
n
ce
s
p
ro
v
id
e
3
2
v
ir
tu
a
l
co
re
s)
.
H
ow

ev
er
,
th
e
p
er
fo
rm

a
n
ce

in
cr
ea
se

o
f
u
si
n
g
th
is

te
ch

n
o
lo
g
y
is

h
ig
h
ly

w
o
rk
lo
a
d
-d
ep

en
d
en

t,
a
n
d
m
ay

b
e
ev
en

h
a
rm

fu
l
in

so
m
e
sc
en

a
ri
o
s.

P
a
rt
ic
u
la
rl
y,

w
e
h
av

e
n
o
t
se
en

a
n
y
im

p
ro
v
em

en
ts

u
si
n
g
a
ll
th
e
av
a
il
a
b
le

v
ir
tu
a
l
co
re
s
in

o
u
r
ex

p
er
im

en
ts

o
n
A
m
a
zo
n
E
C
2
.
T
h
er
ef
o
re
,
a
ll
th
e

co
n
fi
g
u
ra
ti
o
n
s
sh

ow
n
in

th
is

p
a
p
er

h
av

e
u
se
d
o
n
ly

o
n
e
v
ir
tu
a
l
co
re

p
er

p
h
y
si
ca
l
co
re
.

The Computer Journal, Vol. ??, No. ??, ????

201



Performance evaluation of data-intensive computing applications 7

4.3. Software Settings

The Linux distribution selected for the performance
evaluation was Amazon 2012.09.1, as it is a supported
and maintained Linux provided by Amazon for its
specific usage on EC2 instances. This Linux flavour
comes with kernel 3.2.38 and has been tailored for
the performance evaluation with the incorporation of
the previously described benchmarks: IOzone 3.414,
IOR 2.10.3 and HiBench 2.2. For the parallel file
system evaluation, OrangeFS version 2.8.7 was used,
whereas the selected MPI library was MPICH [66]
version 3.0.2, which includes MPI-IO support. In
addition, the MPI implementation of the NASA
Advanced Supercomputing (NAS) Parallel Benchmarks
suite (NPB) [67] version 3.3 was installed for the
BT-IO kernel evaluation, whereas the HDF5 data
library version 1.8.10 was used for the FLASH-IO
code. Regarding the Hadoop experiments, the versions
used were Hadoop 1.0.4 (stable), Mahout 0.7 and Hive
0.9.0. The Java Virtual Machine (JVM) was OpenJDK
version 1.7.0 19.
Finally, the performance results presented in this

paper are averages of a minimum of five measurements
for each evaluated configuration. Furthermore, all
the experiments have been carried out in the US
East EC2 region (i.e., us-east-1), corresponding to
North Virginia, the main data center, which has
the highest availability of the evaluated instance
types. The selected availability zone was us-east-1d,
where, according to previous works [84] and our own
experience, there is usually the lowest variability.

5. EVALUATION OF AMAZON EC2 FOR
DATA-INTENSIVE COMPUTING

This section presents an in-depth performance and cost
analysis of data-intensive computing applications on the
selected public IaaS cloud, Amazon EC2, using the
representative micro-benchmarks, cluster file systems
and kernels/applications described in the previous
section.

5.1. Single-Instance Storage Micro-
benchmarking

Figure 3 presents the sequential write and read
bandwidth (left graphs) using the IOzone benchmark
on a single ephemeral disk (two top rows of graphs) and
on multiple ephemeral disks combined into a software
RAID array (two bottom rows of graphs). The right
graphs of the figure show the performance/cost ratio
on these scenarios, a productivity metric defined as the
bandwidth obtained per invoiced US$. As mentioned
before, the underlying local file system is xfs, whereas
the default chunk size3 (512 KB) has been used in
RAID configurations. Furthermore, the evaluation of

3Chunk size is defined as the smallest “atomic” amount of data
that is written to the storage devices.

CC2, CR1 and HI1 instances has only considered the
RAID 0 level (data striping) owing to the low number
of available ephemeral disks on these instances (i.e., 2
disks in CR1 and HI1 and 4 disks in CC2). However,
HS1 provides up to 24 ephemeral disks and so the RAID
0 level might not be the most reliable solution. Hence,
HS1 has been evaluated using two additional RAID
levels: RAID 6 and 10. These experiments basically
write and read a single data file of 8 GB on xfs, and the
performance results are shown for a certain block size
(i.e., the transfer size of each underlying I/O operation
at the file system level) varying from 16 KB up to
16 MB, which is the maximum value supported by
IOzone. Finally, the Linux buffer cache was bypassed
using direct I/O (O DIRECT flag) in order to get the
real performance (without buffering that might distort
the results) of the underlying storage devices.
The results using a single ephemeral disk show that

the SSD-based device of the HI1 instance significantly
outperforms the rest of instances, especially from 64 KB
on, obtaining up to 3 times (for writing, achieving 545
MB/s) and up to 4 times (for reading, achieving 960
MB/s) higher performance and productivity. However,
CR1, which also provides SSD-based disks, obtains poor
results compared to HI1, and only slightly better than
HS1 for the read operation. The CC2 instance type
gets the worst results in terms of performance, but it
can be a competitive option, at least compared to CR1
and HS1, when taking into account the incurred costs,
especially for the write operation.
Regarding software RAID results, HI1 almost doubles

the performance of a single ephemeral disk obtaining
up to 1060 and 1620 MB/s for writing and reading,
respectively. However, HS1 now obtains the maximum
bandwidth results achieving up to 2200 MB/s for both
operations when using the RAID 0 level and a block
size larger than 1 MB, thus taking full advantage of the
24 available disks. In terms of write productivity, HS1
using RAID 0 and the largest block sizes (≥ 4 MB) is
again the best option, despite the fact that it is the most
expensive instance ($4.6 per hour), whereas its read
productivity is slightly lower than HI1. Nevertheless,
the RAID 6 level imposes a high performance penalty
for the write operation as only 200 MB/s are achieved.
Therefore, the RAID 10 level is the midpoint between
performance and reliability for HS1, obtaining write
bandwidth results very similar to those of HI1, but
up to 30% lower productivity. Finally, CC2 and CR1,
which cannot rival previous instances for large block
sizes, obtain very similar results, which allows CC2 to
be more productive than CR1 due to its lower price ($2
vs $3.5 per hour).
As main conclusions, these results have revealed that:

(1) HI1 instances clearly provide the best performance
and productivity when using a single ephemeral disk.
(2) Using RAID 0, the HS1 instance is clearly the
best performer thanks to the availability of up to 24
ephemeral disks. However, if the storage reliability is
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TABLE 2. Selected benchmarks, kernels and applications
Name Type Description

IOzone [60] I/O Benchmark

IOzone is a popular open-source file system benchmarking tool used
in several works [68, 69, 70] that generates and measures a variety
of file system operations. It has been ported to many machines and
operating systems.

IOR [61]
Parallel I/O
Benchmark

IOR is a widely extended benchmarking tool for evaluating parallel
I/O performance, as done in [40, 41, 70, 71, 72, 73, 74, 75]. It is
highly parameterized and allows to mimic a wide variety of I/O
patterns, supporting different APIs (e.g., MPI-IO, HDF5).

Intel HiBench [62]
Benchmark /
Application
Suite

HiBench is a representative benchmark suite for Hadoop, used for
instance in [76, 77, 78]. It consists of a set of typical Hadoop
workloads (e.g., Sort, WordCount), HDFS micro-benchmarks (e.g.,
DFSIO) as well as web search (PageRank), machine learning (K-
means) and data analytics (e.g., Hive queries such as Aggregation)
real-world applications.

NPB BT-IO [63]
Parallel I/O
Benchmark

The NPB suite [67] is the de-facto standard to evaluate the
performance of parallel computers, as done in [70, 74, 79, 80, 81]
for I/O. BT-IO extends the NPB BT kernel by adding support for
periodic solution checkpointing using the MPI-IO interface.

FLASH-IO [64]
Parallel I/O
Benchmark

FLASH-IO is a widely used benchmark, e.g. in [50, 75, 81, 82], that
mimics the I/O pattern of FLASH [83], a parallel hydrodynamics
application. It recreates the primary data structures in FLASH and
produces a checkpoint file using the parallel HDF5 library.

critical it will be more reasonable to use the RAID 10
level, which provides comparable performance to HI1
but lower productivity. (3) Although CC2 performance
is usually among the worst ones, it achieves competitive
productivity results using RAID 0 and a block size ≤ 1
MB, as it is the cheapest instance under evaluation.
And (4) the poor performance results obtained by
CR1, together with its high price, low productivity and
reduced storage capacity (240 GB) points out that it is
not a good choice for data-intensive applications, which
has led us to discard its evaluation in the remainder of
the paper for clarity purposes.

5.2. Performance Analysis at the Cluster File
System Level

Two representative file systems have been selected for
this analysis: (1) OrangeFS, a parallel file system
widely extended in HPC clusters (Section 5.2.1),
and (2) HDFS, which is the distributed file system
especifically designed for the Hadoop MapReduce
computing framework (Section 5.2.2).

5.2.1. Parallel File System Performance
Figures 4 and 5 present the aggregated bandwidth of
OrangeFS (top graphs) for write and read operations,
respectively, using the MPI-IO interface. These results
have been obtained using the IOR benchmark with
a baseline cluster configuration that consists of 4
instances acting as I/O servers (i.e., storage nodes of
instance type CC2, HI1 or HS1) and multiple instances
acting as clients (i.e., compute nodes of instance type
only CC2 or HI1), which access the server data through

the 10 Gigabit Ethernet network. In these experiments,
the number of cores in the cluster has been set to 128,
which determines the number of compute nodes being
used depending on the client instance type. Hence,
each client instance runs 8 (on HI1) or 16 (on CC2)
parallel processes (i.e., one MPI process per core),
writing and reading collectively a single shared file of
32 GB under different block sizes (from 64 KB to 16
MB), thus simulating the aforementioned N-1 access
pattern. For clarity purposes, the graphs only present
experimental results using RAID configurations on the
storage instances, as they maximize their performance.
Furthermore, the usage of RAID in HPC environments
is the common rule as it allows to increase performance
and/or redundancy. Therefore, the RAID 0 level for
CC2 and HI1 storage instances and RAID 10 for HS1
have been selected for this benchmarking.

As shown in Table 3, four different cluster
configurations have been evaluated: (1) using 4 CC2
servers and 8 CC2 clients (labeled as CC2-CC2); (2)
4 HI1 servers and 8 CC2 clients (HI1-CC2); (3) 4
HI1 servers and 16 HI1 clients (HI1-HI1); and (4)
4 HS1 servers and 8 CC2 clients (HS1-CC2). Note
that the HS1-HS1 configuration (i.e., 4 HS1 servers
and 16 HS1 clients) has not been included for clarity
purposes, as it provides similar performance than HI1-
HI1 but incurring significantly higher costs. The
use of CC2 instances as clients in the heterogeneous
cluster deployments (i.e., HI1-CC2 and HS1-CC2)
has been motivated for their higher number of cores
and computational power compared to HI1 and HS1
instances: 16 vs 8 cores and 88 vs 35 ECUs. In addition,
their lower price significantly reduces the overall cost of
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FIGURE 3. Sequential performance and productivity (performance/cost ratio) of ephemeral disks using an 8 GB file
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FIGURE 4. OrangeFS write performance, efficiency and productivity using 4 I/O servers and 128 cores
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FIGURE 5. OrangeFS read performance, efficiency and productivity using 4 I/O servers and 128 cores
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TABLE 3. Hourly cost using on-demand instances of the EC2-based HPC clusters
HPC Cluster #I/O Server Instances #Client Instances #Compute Cores Hourly Cost

CC2-CC2 4 × CC2 8 × CC2 128 $24

HI1-CC2 4 × HI1 8 × CC2 128 $28.4

HI1-HI1 4 × HI1 16 × HI1 128 $62

HS1-CC2 4 × HS1 8 × CC2 128 $34.4

the cluster deployment on Amazon EC2, which favors
their popularity for HPC applications.
Furthermore, the use of storage-optimized instances

as clients does not take advantage of the locally
attached ephemeral disks. However, the heterogeneous
cluster deployments (e.g., HI1-CC2) cannot benefit
from being located in the same placement group, which
can cause a loss in network performance. In order
to analyze the impact of locating nodes outside the
same placement group, the “null-aio” TroveMethod4

available in OrangeFS has been used. This method
consists of an implementation that does no disk I/O,
and is useful to test the performance of the underlying
interconnection network. Hence, the top right graphs
in Figures 4 and 5 show the aggregated network
bandwidth using the “null-aio” method (labeled as
“no I/O”), whereas the top left graphs have been
obtained with the default method (“alt-aio”, which
uses an asynchronous I/O implementation). The
“null-aio” method also allows to analyze each cluster
configuration in terms of the efficiency metric, shown
in the bottom left graphs, which has been defined
as the aggregated network bandwidth divided by the
aggregated bandwidth when doing I/O. Finally, the
bottom right graphs show the productivity results
in terms of aggregated bandwidth per invoiced US$,
taking into account the hourly cost of the different EC2-
based HPC clusters (see the last column of Table 3).
Regarding write performance results (see the top

left graph in Figure 4), it can be clearly observed
that the use of the largest block size (16 MB) is
key to achieve high-performance parallel I/O, mainly
using HI1 instances. HI1 server-based configurations
achieve the best results, around 1600 and 1000 MB/s
for HI1-HI1 and HI1-CC2, respectively, whereas CC2-
CC2 obtains only 800 MB/s, although it outperforms
the HS1-CC2 configuration (600 MB/s). These results
can be explained by the top right graph, where
HI1-CC2 and HS1-CC2 obtain the poorest network
bandwidths, which significantly limit their overall
storage performance. As mentioned before, it is not
possible to locate different instance types in the same
placement group, so when using CC2 clients together
with HI1 and HS1 servers the network performance
drops severely. However, the HI1-CC2 cluster achieves
slightly higher network bandwidth than HS1-CC2,
which can suggest that the physical location of the HI1

4The TroveMethod parameter specifies how both metadata
and data are stored and managed by the OrangeFS servers.

and HS1 instances with respect to the clients (CC2)
could be different inside the same EC2 region (us-east-
1 in these experiments). Here, the CC2-CC2 cluster
achieves the highest network bandwidth (up to 2650
MB/s), but very poor efficiency (around 30%) when
using the largest block sizes, as shown in the bottom
left graph, because of its limited underlying storage
performance. However, the remaining configurations
achieve above 65%, being HS1-CC2 the most effective
configuration. Taking costs into account (see the
bottom right graph), HI1-CC2 becomes the best
configuration from 256 KB on, owing to its relatively
high performance and the use of client instances that
are cheaper than the HI1-HI1 configuration. Even CC2-
CC2 seems to be a good choice instead of HI1-HI1, as
it is the cheapest cluster under evaluation. Finally,
HS1-CC2 is obviously the worst option in terms of
productivity due to its high price and low performance,
especially when using block sizes > 1 MB.

Regarding read performance (see the top left graph
in Figure 5), HI1-HI1 is again the best performer,
up to 3000 MB/s of aggregated bandwidth using the
largest block size. In this case, HI1-CC2 and HS1-
CC2 achieve similar results from 1 MB on, around 1000
MB/s, clearly limited by the interconnection network,
as shown in the top right graph. Here, HS1-CC2
requires a large block size (≥ 4 MB) to exploit the
underlying network bandwidth, whereas HI1-CC2 does
not. The CC2-CC2 configuration presents the worst
performance with 625 MB/s, although it obtains up to
3400 MB/s of network bandwidth, showing again very
poor efficiencies (below 25%, see the bottom left graph).
HI1-HI1 achieves between 70 and 85% of the available
network bandwidth, although the maximum efficiency
is obtained by HI1-CC2 and HS1-CC2, especially when
using block sizes > 1 MB (nearly 98%). This fact allows
HI1-CC2 to obtain the best productivity up to a block
size of 1 MB (see the bottom right graph). From 4 MB
on the highest-performance and most expensive HI1-
HI1 configuration offsets its price. CC2-CC2 gets the
worst productivity from 1 MB on, even below HS1-CC2.

To sum up, these results have shown that: (1)
the HI1-HI1 configuration is the best performer for
both write and read operations using any block size;
(2) the overall performance of heterogeneous cluster
deployments (i.e., HI1-CC2 and HS1-CC2) is severely
limited by the network bandwidth, as their instances
cannot be located in the same placement group; and (3)
taking costs into account, the HI1-CC2 configuration
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achieves the best productivity, except when reading
block sizes > 1 MB, a scenario where HI1-HI1 is the
best configuration.

5.2.2. Distributed File System Performance
Figure 6 shows the aggregated bandwidth of HDFS
(left graphs) for write and read operations using a
baseline cluster that consists of one instance acting
as master node (running JobTracker/NameNode) and
multiple instances acting as slave nodes (running
TaskTrackers/DataNodes), all connected to the 10
Gigabit Ethernet network. As mentioned in Section 4.2,
these results have been obtained using the Enhanced
DFSIO benchmark included in the Intel HiBench suite,
writing and reading 512 files of 512 MB (i.e., 256 GB
in total). In these experiments, two different cluster
sizes have been evaluated using 8 and 16 slave instances,
together with the master node of the same instance
type. Therefore, all the instances are located in the
same placement group, thus relying on homogeneous
cluster deployments. In addition, the right graphs
show the productivity results in terms of the aggregated
bandwidth per US$, according to the hourly cost of the
different EC2-based Hadoop clusters considered in this
analysis (shown in the last column of Table 4).
Moreover, each DataNode instance (i.e., slave node)

uses all the available locally attached ephemeral disks
(e.g., 24 disks for HS1 instances) to store HDFS data.
The ephemeral disks have been configured as a Just
a Bunch Of Disks (JBOD) (i.e., each disk is accessed
directly as an independent drive 5). This is the most
recommended setting for Hadoop clusters, as HDFS
does not benefit from using RAID for the DataNode
storage. The redundancy provided by RAID is not
needed since HDFS handles it by replication between
nodes. Furthermore, the RAID 0 level, which is
commonly used to increase performance, turns out to
be slower than the JBOD configuration, as HDFS uses
round-robin allocation of blocks and data across all the
available disks.
Regarding Hadoop settings, several configurations

have been tested in order to choose the one with
the best observed performance. However, the main
goal of these experiments focuses on the comparison
between different instance types for running Hadoop-
based clusters on Amazon EC2 under common setting
rules. Therefore, our setup is not intended as a guide
to optimize the overall Hadoop performance, which is
usually highly workload-dependent. Taking this into
account, our main Hadoop settings are as follows:
(1) the block size of HDFS is set to 128 MB. (2)
The replication factor of HDFS is set to 2. (3) The
I/O buffer size is set to 64 KB. (4) The number of
map/reduce tasks that are allowed to run in each
TaskTracker instance (i.e., slave node) is configured

5We have specified a storage directory for each ephemeral disk
using the dfs.data.dir property of Hadoop.

as shown in Table 4. This configuration follows the
widespread rule saying that the number of map and
reduce tasks should be set to the number of available
physical cores in the TaskTracker instance, considering
that the DataNode and TaskTracker processes would
use 2 hyper-threaded cores. (5) The ratio of
map/reduce tasks is 3:1. (6) The available memory
to use while sorting files is set to 200 MB. And (7)
the compression of the intermediate output data during
the map phase is enabled using the Snappy codec [85].
This reduces the network overhead as the map output
is compressed before being transferred to the reducers.
Concerning write performance results (see the top left

graph in Figure 6), the use of 8-slave clusters shows
similar HDFS bandwidths, around 1400 MB/s, and
thus the CC2-based cluster is clearly the most cost-
effective in terms of productivity, as shown in the top
right graph. However, storage-optimized instances (i.e.,
HI1 and HS1) obtain 34% and 44% more aggregated
bandwidth, respectively, than CC2 instances when
using 16-slave clusters. Nevertheless, CC2 remains as
the most productive choice, although followed closely
by HI1, whereas the HS1-based cluster, which is the
most expensive, remains as the least competitive. Note
that while the storage-optimized instances have slightly
increased their productivity when doubling the number
of slaves, CC2 has decreased 27%. Regarding read
results (see the bottom left graph), HS1 obtains the
highest bandwidth both for 8 and 16 slaves, around
2920 and 5630 MB/s, respectively. These results are
9% and 70% higher than HI1 and CC2 bandwidths
using 8 slaves and 7% and 80% higher using 16 slaves,
respectively. Nevertheless, the high performance of the
HS1 cluster is not enough to be the best option in
terms of productivity due to its high price, even being
outperformed by CC2 (see the bottom right graph), the
worst cluster in terms of read performance. Here, HI1
is clearly the best choice when taking into account the
incurred costs, achieving up to 13% higher productivity
than CC2. In this case, all the configurations are able
to maintain (or even to increase in the case of HI1) their
productivity when doubling the number of slaves.
Another interesting comparison can be conducted

taking into account the number of map and reduce
tasks. Hence, an 8-slave CC2-based cluster provides
the same capacity in terms of map/reduce tasks (i.e.,
96/32) as a 16-slave cluster using storage-optimized
instances, as can be seen in Table 4. This fact
is due to the different number of physical cores
provided by each instance type (16 vs 8 cores for CC2
and storage-optimized instances, respectively). For
the write operation, the 16-slave HS1-based cluster
doubles the performance of the 8-slave CC2-based
cluster, but significantly incurring higher costs (the
same would apply to HI1). For the read operation,
the storage-optimized instances obtain up to 3 times
higher bandwidth than CC2, which allows the HI1-
based cluster to be the most productive in this case.
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FIGURE 6. HDFS performance and productivity using 8 and 16 slave instances

TABLE 4. Number of map/reduce tasks and hourly cost using on-demand instances of the EC2-based Hadoop clusters

Hadoop Cluster #Map/Reduce tasks per slave node (8 - 16 slaves) Hourly Cost (8 - 16 slaves)

CC2-based 12/4 (96/32 - 192/64) $18 - $34

HI1-based 6/2 (48/16 - 96/32) $27.9 - $52.7

HS1-based 6/2 (48/16 - 96/32) $41.4 - $78.2

The main conclusions that can be drawn from these
results are: (1) the HS1-based cluster is the best option
in terms of HDFS performance, especially when using
16 slaves, but followed closely by HI1; (2) the high price
of the HS1 instance discourages its use, favoring HI1
instances as the preferred choice when costs are taken
into account without trading off much performance; and
(3) comparing clusters in terms of the same map/reduce
capacity, the storage-optimized instances provide up
to 2 and 3 times higher write and read bandwidths,
respectively, than CC2 instances.

5.3. Data-intensive Parallel Application Per-
formance

The performance of two I/O-intensive HPC applications
(Section 5.3.1) and four real-world MapReduce work-
loads (Section 5.3.2) has been analyzed at the applica-
tion level. As mentioned in Section 4.2, the BT-IO ker-

nel from the NPB suite and the FLASH-IO code have
been selected for the HPC software stack evaluation. In
addition, the Sort, WordCount, Mahout PageRank and
Hive Aggregation workloads have been selected for the
Big Data counterpart. Finally, the performance vari-
ability of the evaluated workloads is briefly discussed in
Section 5.3.3.

5.3.1. I/O-Intensive HPC Applications
The NPB BT kernel solves systems of block-tridiagonal
equations in parallel. BT-IO extends the BT kernel
by adding support for periodic solution checkpointing
using the MPI-IO interface. In these experiments,
the NPB class C workload was selected, whereas the
I/O size was the “full” subtype. With these settings,
all the parallel processes append data to a single
file through 40 collective MPI-IO write operations,
resulting in an output data file sized around 6.8 GB.
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FIGURE 7. NPB BT-IO and FLASH-IO results using OrangeFS with 4 I/O servers

The default I/O frequency, which consists of appending
data to the shared output file every 5 computation
time steps, was used. Note that this kernel requires
that the number of client processes be square numbers.
The FLASH-IO kernel simulates the I/O pattern of
FLASH [83], a parallel hydrodynamics application that
simulates astrophysical thermonuclear flashes in two
or three dimensions. The parallel I/O routines of
the FLASH-IO code are identical to those used by
FLASH, so their performance closely reflects the full
parallel I/O performance of the application. This kernel
recreates the primary data structures in the FLASH
application and produces a checkpoint file sized around
7.6 GB (for 128 clients) using PHDF5, together with
smaller plotfiles for visualization and analysis. Finally,
the experiments have been conducted under the same
cluster configurations previously used in the parallel file
system evaluation (see Table 3 in Section 5.2.1).

Figure 7 presents NPB BT-IO (top graphs) and
FLASH-IO (bottom graphs) performance and produc-
tivity results (left and right graphs, respectively). Re-
garding BT-IO results, HI1- and HS1-server based con-
figurations achieve the highest bandwidths from 36 pro-
cesses on, being the HI1-HI1 cluster the best performer
in accordance with the previous parallel file system eval-

uation for the write operation (see the top left graph
in Figure 4), obtaining up to 30% higher bandwidth
than the CC2-CC2 cluster (460 MB/s vs 350 MB/s
for 121 processes). Nevertheless, HI1-CC2 is the con-
figuration with the highest productivity from 36 pro-
cesses on, as happened before (see the bottom right
graph in Figure 4). Here, the performance advantage
obtained by HI1-HI1 is not enough to be an interest-
ing cost-effective option, even being outperformed by
HS1-CC2. Note that this code is also a computation-
and communication-intensive application that performs
lots of MPI communication calls, increasing the com-
munication overhead with the number of processes.
Hence, MPI communications across client instances
share the interconnection network with MPI-IO com-
munications (i.e., I/O operations) between client and
server instances. This sharing reduces the available
network bandwidth, which limits parallel I/O perfor-
mance. This limitation becomes more noticeable for
CC2-client based configurations, which run 16 parallel
processes per instance, due to the poorer ratio between
CPU power and network bandwidth. Furthermore, the
computation phase of this kernel allows to overlap I/O
with computation. This fact boosts the slowest storage
configuration for writing, which was HS1-CC2 accord-
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ing to the parallel file system evaluation (see the top
left graph in Figure 4), now obtaining more competi-
tive performance results.
Regarding FLASH-IO results, HI1-HI1 shows again

the best performance, obtaining more than 830 MB/s
for 64 and 128 processes, up to 23% and 30% higher
aggregated bandwidth than HI1-CC2 and CC2-CC2
clusters, respectively. The HS1-CC2 cluster gets
stucked at 455 MB/s from 32 processes on, being the
worst performer as occurred before in the parallel file
system evaluation for the write operation. Thus, the
underlying network bandwidth significantly limits its
overall I/O performance. Note that the FLASH-IO
code simply creates the checkpoint file using PHDF5,
which is implemented on top of MPI-IO. This means
that, unlike the BT-IO kernel, this code is neither
computation-intensive nor makes an extensive use of
MPI communication routines. Therefore, the FLASH-
IO results are more in tune with the write performance
at the parallel file system level than the BT-IO results,
but using a high-level library (PHDF5) instead of using
directly the MPI-IO interface. In terms of productivity,
CC2-CC2 becomes the best option, but closely followed
by the HI1-CC2 cluster when 64 or more processes are
used. HI1-HI1 shows again poor productivity, especially
from 32 processes on, which makes it a bad choice when
costs are taken into account.
The main conclusions of this evaluation are: (1)

in terms of performance, HI1-HI1 remains as the
best option for I/O-intensive HPC applications, in
accordance with the previous evaluation at the parallel
file system level; and (2) in terms of productivity, it is
generally advisable to use CC2 instances as clients in
order to save costs when using a high number of cores,
and combine them with HI1 or CC2 as storage servers
to maximize performance.

5.3.2. MapReduce-based Workloads
Figure 8 shows performance (left graphs) and cost re-
sults (right graphs) of the selected Hadoop applications
from the Intel HiBench suite (see details in Section 4.2).
In this case, these workloads do not report any aggre-
gated bandwidth metric as output. Hence, the perfor-
mance metric reported is the time (in hours) required
to run 1,000 executions of each evaluated application.
Consequently, the productivity metric reported is the
total execution cost in US$, which represents the cost
of having each Hadoop cluster running during the num-
ber of hours required to complete the 1,000 executions
for each experiment. The experiments have been con-
ducted under the same Hadoop settings and cluster con-
figurations previously used in the distributed file system
evaluation (see Table 4 in Section 5.2.2). The specific
workloads for these applications have been configured as
summarized in Table 5. This table shows the total data
that are read and written from and to HDFS, which
represents the job/map input and job/reduce output,

respectively. The last column of the table shows the
total data that are transferred during the shuffle phase
(i.e., data from output mappers that are read by reduc-
ers). As mentioned in Section 5.2.2, these intermediate
data are compressed before being transferred, thus re-
ducing the network overhead.
Since the Sort workload transforms data from one

representation to another, the job output has the same
size as the job input (102 GB), as can be seen in Table 5.
Although this workload is I/O bound in nature, it also
presents moderate CPU utilization during the map and
shuffle phases, especially due to the intermediate data
compression, and low CPU utilization and heavy disk
I/O during the reduce phase. In addition, considering
the large amount of shuffle data (53 GB), even though
compressed, it is expected to be the most network-
intensive workload under evaluation. Results using 8-
slave clusters show that CC2 is able to outperform HI1
and HS1 configurations by 20%, thanks to the higher
map/reduce capacity of the CC2 cluster due to the
availability of more CPU resources, which seem to be of
great importance, especially during data compression.
However, CC2 only reduces its execution time by 22%
when doubling the number of slaves, whereas HI1 and
HS1 reduce it by 40% and 42%, respectively, but far
from linear scalability due to the intensive use of the
network. This allows storage-optimized instances to
slightly outperform CC2 when using 16 slaves, due
to their higher HDFS bandwidth, even taking into
account that they have half the map/reduce capacity
of CC2 (see Table 4). Nevertheless, the cost of the
CC2 cluster continues to be the lowest, a pattern
that is maintained in the remaining workloads. If
the comparison is done using the same map/reduce
capacity, the 16-slave clusters using HI1 and HS1
instances outperform the 8-slave CC2 cluster by 24%
and 27%, respectively. However, these performance
improvements are not enough to turn optimized-storage
instances into interesting options when considering the
associated costs.
The shuffle data (12.7 MB) and job output (25.5

KB) of WordCount are much smaller than the job
input (102 GB), as this application extracts a small
amount of information from a large input data set.
Consequently, the WordCount workload is mostly CPU
bound, especially during the map phase, having very
high CPU utilization and light disk/network I/O.
Therefore, the CC2 instance type, which provides the
largest CPU resources, shows the best performance and
productivity results both for 8- and 16-slave clusters.
For instance, the 8-slave CC2 cluster achieves up to
1.9 and 2.1 times higher performance than HI1 and
HS1 clusters, respectively. These numbers are reduced
to 1.7 and 1.8 times when 16-slave clusters are used.
Therefore, CC2 obtains again lower execution time
reduction (42%) when doubling the number of slaves
compared to HI1 (46%) and HS1 (50%, i.e. linear
scalability). In this case, the use of 16-slave storage-
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FIGURE 8. Hadoop performance and cost results using 8 and 16 slave instances
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TABLE 5. Data size for map, reduce and shuffle phases
Workload Job/Map Input (HDFS Read) Job/Reduce Output (HDFS Write) Shuffle Data

Sort 102 GB 102 GB 53 GB

WordCount 102 GB 25.5 KB 12.7 MB

PageRank 89.8 GB 49.6 GB 4.6 GB

Aggregation 75 GB 14.3 GB 7.5 GB

optimized clusters does not outperform the 8-slave CC2
cluster, as occurred for Sort. In fact, the performance
of CC2 using 8 slaves is similar to that of HI1 and HS1
clusters using 16 slaves, but having 2.8 and 4.3 times
lower costs, respectively.
The Mahout PageRank and Hive Aggregation

workloads share similar characteristics. They are more
CPU bound during the map phase and more disk I/O
bound during the reduce phase, mostly due to the
output to HDFS (49.6 GB and 14.3 GB, respectively).
They also present low to medium network I/O, as the
amount of shuffle data is relatively small (4.6 GB and
7.5 GB, respectively). Hence, both workloads show
very similar results, also similar to those of WordCount.
Consequently, the CC2-based cluster is again the best
option, both in terms of performance and cost. For
instance, CC2 obtains 2.1 times higher performance and
4.6 times lower cost than HS1 when using 8 slaves for
the PageRank workload. Furthermore, it is not worth
using 16-slave storage-optimized clusters, which provide
the same map/reduce capacity than the 8-slave CC2
cluster, as similar or even lower performance is obtained
but incurring significantly higher costs.
These results have shown that: (1) storage-optimized

instances do not seem to be the most suitable choice
for the evaluated MapReduce workloads. As explained
before, the main reason is that these instances provide
poorer CPU resources than CC2, both in terms of
number of physical cores (8 vs 16) and computational
power per core (4.4 vs 5.5 ECUs), as shown in Table 1.
(2) This fact encourages the use of the CC2-based
cluster which, using the same number of slaves, provides
twice the map/reduce capacity of clusters based on
storage-optimized instances. (3) The CC2-based cluster
usually achieves significantly higher performance and
lower cost, which offsets the fact that the CC2 instance
type provides lower underlying I/O performance, as
shown in Section 5.1. And (4) if the instance types
are compared using the same map/reduce capacity
(i.e., 8-slave CC2 cluster vs 16-slave HI1 and HS1
clusters), only Sort, the most I/O-intensive workload
under evaluation, experiences some performance benefit
when using storage-optimized instances, but incurring
more costs.

5.3.3. Analysis of Performance Variability
Performance unpredictability in the cloud can be an
important issue for researchers because of repeatability
of results. In this paper, the main guidelines and

hints suggested by Schad et al. [84] have been followed
in order to minimize the variance and maximize the
repeatability of our experiments in Amazon EC2.
Examples of these guidelines are always specifying one
availability zone when launching the instances (us-east-
1d, as mentioned in Section 4.3) and reporting the
underlying system hardware of the evaluated instances
(see Table 1). In this section, a brief analysis of
the performance variability at the application level is
presented, as it takes into account the likely variability
of all the lower levels (i.e., storage infrastructure,
interconnection network, cluster file system, I/O
middleware and MapReduce frameworks, and high-level
I/O libraries and tools), showing its impact on the
performance of real applications.

Figure 9 presents the performance variability for the
data-intensive applications evaluated in Sections 5.3.1
(left graph) and 5.3.2 (right graph). These graphs show
the measure of the mean value and include error bars to
indicate the measure of the minimum sample (bottom
arrow) and the maximum sample (top arrow). The
results are shown using the largest cluster configuration
for each corresponding application (i.e., a 128-core
cluster for I/O-intensive HPC applications and a 16-
slave Hadoop cluster for MapReduce workloads).

As main conclusion, the evaluated MapReduce
workloads generally present negligible variance in their
performance (see the right graph), except for the
Sort application executed on the CC2 cluster. This
variability is significantly lower than the one observed
for HPC applications, as shown in the left graph.
This is motivated by the fact that these MapReduce
workloads are more computationally intensive than the
BT-IO and FLASH-IO applications, especially due to
the intermediate data compression and map/reduce
phases. In fact, as mentioned in Section 5.3.1,
BT-IO also presents higher computation intensiveness
than FLASH-IO and thus its variability is also lower.
Among the evaluated instances, HI1 shows the highest
variability, particularly for the BT-IO and FLASH-
IO codes, which present a write-only access pattern.
This fact can be due to the varying overhead of the
background tasks associated with the SSD internal
architecture. Hence, the inherent variable write
performance of SSD disks, especially when using RAID,
is due to the internal garbage collection process that can
block incoming requests that are mapped to the flash
chips currently performing erase operations [86].

The Computer Journal, Vol. ??, No. ??, ????

212 Chapter 9. Performance Evaluation of Data-Intensive Applications



18 R.R. Expósito et al.

 0

 200

 400

 600

 800

 1000

NPB BT-IO

FLASH-IO

A
g

g
re

g
a
te

d
 B

a
n

d
w

id
th

 [
M

B
/s

]

Performance Variability (128-core HPC clusters)

 CC2-CC2
 HI1-CC2
 HI1-HI1
 HS1-CC2

 0

 100

 200

 300

 400

 500

 600

Sort
WordCount

PageRank

Aggregation

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

Performance Variability (16-slave Hadoop clusters)

 CC2
 HI1
 HS1

FIGURE 9. Performance variability of data-intensive computing applications

6. CONCLUSIONS

Cloud computing platforms are becoming widely
available and are gaining significant popularity in
many domains, as a convenient way to virtualize
data centers and increase the flexibility in the use
of computational resources. Amazon Web Services is
the leading commercial public cloud provider, whose
EC2 IaaS cloud service provides end users with reliable
access to on-demand resources to run their applications.
At the same time, scientific research is increasingly
reliant on the processing of very large amounts of data.
In fact, current data-intensive applications generally
demand significant computational resources together
with scalable cluster file systems. Public IaaS clouds
can satisfy the increasing processing requirements of
these applications while offering high flexibility and
promising cost savings.
The main contributions of this paper are: (1)

extensive assessment of the suitability of using the
Amazon EC2 IaaS cloud platform for running data-
intensive computing applications; (2) a thorough
performance study of the storage-optimized family of
EC2 instances, which provide direct-attached storage
devices intended to be well suited for applications
with specific disk I/O requirements; and (3) a detailed
performance, cost and variability analysis of four
EC2 instance types that provide 10 Gigabit Ethernet,
conducting multiple experiments at several layers and
using a representative suite of benchmarking tools
(IOzone, IOR, Intel HiBench), cluster file systems
(OrangeFS, HDFS), I/O middleware (MPI-IO, HDF5),
distributed computing frameworks (Apache Hadoop),
I/O-intensive parallel codes for HPC (NPB BT-IO and
FLASH-IO) and MapReduce workloads for Big Data
analysis (Sort, WordCount, PageRank, Aggregation).
The analysis of the experimental results points

out that the unique configurability and flexibility
advantage offered by Amazon EC2, almost impossible
to achieve in traditional platforms, is critical for
increasing performance and/or reduce costs. Hence,

this paper has revealed that the suitability of using
EC2 resources for running data-intensive applications
is highly workload-dependent. Furthermore, the most
suitable configuration for a given application heavily
depends on whether the main aim is to obtain the
maximum performance or, instead, minimize the cost
(or maximize the productivity). Therefore, one of
the key contributions of this work is an in-depth
and exhaustive study that provides guidelines for
scientists and researchers to increase significantly the
performance (or reduce the cost) of their applications in
Amazon EC2. Finally, our main outcomes indicate that
current data-intensive applications can benefit from
tailored EC2-based virtual clusters, enabling end users
to obtain the highest performance and cost-effectiveness
in the cloud.
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SUMMARY

Cloud computing is offering new approaches for High Performance Computing (HPC) as it provides 
dynamically scalable resources as a service over the Internet. In addition, General-Purpose computation 
on Graphical Processing Units (GPGPU) has gained much attention from scientific computing in multiple 
domains, thus becoming an important programming model in HPC. Compute Unified D evice Architec-
ture (CUDA) has been established as a popular programming model for GPGPUs, removing the need for 
using the graphics APIs for computing applications. Open Computing Language (OpenCL) is an emerging 
alternative not only for GPGPU but also for any parallel architecture. GPU clusters, usually programmed 
with a hybrid parallel paradigm mixing Message Passing Interface (MPI) with CUDA/OpenCL, are cur-
rently gaining high popularity. Therefore, cloud providers are deploying clusters with multiple GPUs per 
node and high-speed network interconnects in order to make them a feasible option for HPC as a Service 
(HPCaaS). This paper evaluates GPGPU for high performance cloud computing on a public cloud com-
puting infrastructure, Amazon EC2 Cluster GPU Instances (CGI), equipped with NVIDIA Tesla GPUs 
and a 10 Gigabit Ethernet network. The analysis of the results, obtained using up to 64 GPUs and 
256-processor cores, has shown that GPGPU is a viable option for high performance cloud computing 
despite the significant impact that virtualized environments still have on network overhead, which still 
hampers the adoption of GPGPU communication-intensive applications.

KEY WORDS: Cloud Computing; General-Purporse computation on GPU (GPGPU); High Performance
Computing (HPC); 10 Gigabit Ethernet; CUDA; OpenCL; MPI

1. INTRODUCTION

Cloud computing [1] is an Internet-based computing model that enables convenient, on-demand
network access to a shared pool of configurable and virtualized computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with min-
imal management effort. Public clouds offer access to external users who are typically billed on
a pay-as-you-use basis. With the cloud, and the availability of multiple cloud service providers,
organizations are no longer forced to invest in additional technology infrastructure. They can just
leverage the infrastructure provided by the cloud service provider or move their own applications to
this infrastructure. Customers can derive significant economies of use by leveraging the pay-by-use
model, instead of upgrading their infrastructure, dimensioned to handle peak requests.
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Elviña s/n, 15071, A Coruña, Spain.
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Cloud computing has been driven from the start predominantly by the industry through Amazon,
Google, and Microsoft, but because of its potential benefits, this model has also been adopted by
academia, as it is well suited for handling peak demands in resource-intensive applications in science
and engineering. Thus, cloud computing is an option for High Performance Computing (HPC),
where the use of cloud infrastructures for HPC applications has generated considerable interest in
the scientific community [2–6], which has coined the term HPC as a Service (HPCaaS), an extension
of the provision of Infrastructure as a Service (IaaS).

HPC workloads typically require low latency and high bandwidth interprocessor communication
to provide scalable performance. However, the widely extended use of commodity interconnect
technologies (Ethernet and TCP/IP) and the overhead of the virtualized access to the network
limit severely the scalability of HPC applications in public cloud infrastructures. To overcome
these constraints, cloud infrastructure providers are increasingly deploying high-speed networks
(e.g., 10 Gigabit Ethernet and InfiniBand), widely extended in HPC environments, where message-
passing middleware is the preferred choice for communications. MPI [7] is the de facto standard in
message-passing interface as it generally provides HPC applications with high scalability on clusters
with high-speed networks.

The advent of many-core accelerators, such as Graphical Processing Units (GPUs), to HPC is
already consolidated thanks to the outbreak of General-Purpose computing on GPUs (GPGPU)
[8, 9]. The massively parallel GPU architecture, together with its high floating point performance
and memory bandwidth, is well suited for many workloads in science and engineering, even outper-
forming multicore processors, which has motivated the incorporation of GPUs as HPC accelerators
[10]. As a result, new parallel programming models such as Compute Unified Device Architecture
(CUDA) [11] and Open Computing Language (OpenCL) [12] have emerged to expose the paral-
lel capabilities of GPUs to GPGPU programmers in a productive way [13]. These models can be
combined with well-established HPC programming models such as MPI [14].

Amazon Elastic Compute Cloud (Amazon EC2) [15] is an IaaS that provides users with
access to on-demand computational resources to run their applications. Amazon EC2 supports
the management of the resources through a Web service or an API that is able, among other
tasks, to boot straightforwardly an Amazon Machine Image (AMI) into a custom virtual machine
(a VM or ‘instance’). Amazon EC2 Cluster Compute Instances (CCIs) [16], a resource available
since July 2010, provide a significant CPU power (two quad-core processors), together with a high
performance 10 Gigabit Ethernet network, thus targeting HPC applications. In November 2010,
Amazon EC2 introduced Cluster GPU Instances (CGIs), which have the same configuration as
CCI plus two NVIDIA Tesla GPUs. HPC applications running on CGI are expected to benefit
significantly from the massive parallel processing power the GPUs provide, as well as from their
full-bisection high bandwidth network (10 Gigabit Ethernet). This is particularly valuable for appli-
cations that rely on messaging middleware such as MPI for communications while taking advantage
of GPGPU, such as hybrid MPI/CUDA or MPI/OpenCL codes. This paper evaluates GPGPU for
high performance cloud computing on Amazon EC2 cloud infrastructure, the largest public cloud
in production, by using up to 32 CGIs, demonstrating the viability of providing HPC as a service
taking advantage of GPGPU in a cluster of CGIs.

The structure of this paper is as follows. Section 2 presents the related work. Section 3 introduces
the experimental configuration, both hardware and software, and the methodology of the evalua-
tion conducted in this work. Section 4 analyzes the performance results obtained by representative
benchmarks on the experimental test bed on Amazon EC2 public cloud. Section 5 summarizes our
concluding remarks.

2. RELATED WORK

There has been a spur of research activity in assessing the performance of virtualized resources
in cloud computing environments [17–19]. The suitability of these resources for HPC increases as
their performance improves, which has motivated lately several projects on the adoption of cloud
computing for HPC applications. Among them, a popular topic is the feasibility of Amazon EC2 for
HPC applications, which has been discussed in several papers since 2008, next presented.
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Deelman et al. [20] explored the application of cloud computing for science, examining the
trade-offs of different workflow execution modes and provisioning plans for cloud resources. In
[2], Evangelinos and Hill analyzed the performance of HPC benchmarks on EC2 cloud infras-
tructure. These authors revealed an important drawback in network performance, as messaging
middleware obtains latencies and bandwidths around one and two orders of magnitude inferior to
supercomputers. In [3], Walker evaluated the performance of Amazon EC2 High-CPU instances for
high performance scientific applications, reporting significantly lower performance than traditional
HPC clusters. His work also presented the comparative performance evaluation between Amazon
EC2 High-CPU instances and an InfiniBand cluster with similar hardware configuration, reporting
40–1000% runtime increase on EC2 resources.

Buyya et al. [4] discussed the potential opportunities of high performance scientific appli-
cations on public clouds through some practical examples on Amazon EC2, assessing that the
trade-offs between cost and performance have to be considered. Ekanayake and Fox [21] com-
pared applications with different communication and computation complexities and observed that
latency-sensitive applications experience higher performance degradation than bandwidth-sensitive
applications. Ostermann et al. [22] presented an evaluation of the feasibility of Amazon EC2 cloud
computing services for scientific computing. They analyzed the performance of the Amazon EC2
standard and High-CPU instances using representative microbenchmarks and kernels. The main
conclusion of their work is that Amazon EC2 required, in 2009, an order of magnitude higher perfor-
mance in their instances to be feasible for use by the scientific community. Napper and Bientinesi [5]
examined the performance of the Linpack benchmark on several EC2 instance types (standard and
High-CPU instances). They concluded that clouds cannot compete with conventional HPC clusters
(supercomputers and high-speed clusters) on the basis of the metric GFLOPS/$, because memory
and network performance is insufficient to compete with existing scalable HPC systems.

Jackson et al. [6] performed a comprehensive evaluation, comparing conventional HPC platforms
with Amazon EC2 standard instances, by using real applications representative of the workload at
a typical supercomputing center. Their main conclusion is that the interconnection network of the
evaluated instances (Gigabit Ethernet at that time) severely limits performance and causes signif-
icant runtime variability. Wang and Eugene [23] studied the impact of virtualization on network
performance. They presented a quantitative study of the network performance among Amazon
EC2 High-CPU instances, detecting unstable TCP/UDP throughput caused by virtualization and
processor sharing. Rehr et al. [24] confirmed that Amazon EC2, using standard and High-CPU
instance types, is a feasible platform for applications that do not demand high performance network.
He et al. [25] extended previous research to three public clouds (including Amazon) by running
a real application in addition to classical benchmarks to compare the cloud results with those
from dedicated HPC systems. Their main conclusion is that public clouds are not designed for
running scientific applications primarily because of their poor network performance. Iosup et al.
[26] investigated the presence of a Many Task Computing (MTC) component in existing scientific
computing workloads, and then they performed an empirical performance evaluation of this MTC
component on four public computing clouds, including Amazon EC2 using standard and High-CPU
instance types. Their main conclusion is that the computational performance of the evaluated clouds
is low, which is insufficient for scientific computing at large, but cloud computing can be a good
solution for instant and temporal resource needs.

The main drawback detected by most of these previous works since 2005 up to 2010,
is the high network overhead due to the use of commodity interconnection technologies
(e.g., Ethernet and TCP/IP) that are not suitable for HPC. In order to overcome this drawback,
Amazon EC2 introduced 10 Gigabit Ethernet as interconnection technology together with the launch
of its CCI and CGI instance types, in June and November 2010, respectively. These instances target
HPC applications thanks to its high computational power and the adoption of a high performance
network. The CCI instance type has been evaluated in recent related work. Thus, Regola and Ducom
[27] evaluated the suitability of several virtualization technologies for HPC, showing that Operat-
ing System (OS) virtualization was the only solution that offers near native CPU and Input/Output
(I/O) performance. They included in their test bed four Amazon EC2 CCIs, although they focused
more on the overall performance of the several evaluated hypervisors instead of the network
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performance and the scalability of HPC applications. Carlyle et al. [28] reported that it is much
more effective in academia operating a community cluster program than providing HPC resources
with nodes using Amazon EC2 CCIs. Sun et al. [29] relied on Amazon EC2 CCIs for run-
ning the Lattice optimization and some additional performance benchmarks, concluding that these
instances suffer from performance degradation for large-scale parallel MPI applications, especially
network-bound or memory-bound applications. Ramakrishnan et al. [30] analyzed the performance
of a number of different interconnect technologies, including 10 Gigabit Ethernet network from
Amazon EC2 CCIs, showing that virtualization can have a significant impact on performance.
Zhai et al. [31] conducted a comprehensive evaluation of MPI applications on Amazon EC2 CCIs,
revealing a significant performance increase compared with previous evaluations on standard and
High-CPU instances. However, the interconnection network overhead, especially the high startup
latency (poor small message performance), remains as the main MPI scalability limitation.

Additionally, some works have evaluated the performance of other public cloud computing
services, such as a seminal study at Amazon S3 by Palankar et al. [32], which also includes an
evaluation of file transfer between Amazon EC2 and S3.

This exhaustive review of the related works on evaluating Amazon for HPC applications has
revealed the lack, to the best of our knowledge in December 2011, of assessments of Amazon EC2
CGIs performance, as well as analyses on the viability of providing HPC as a service in a public
cloud taking advantage of message-passing and GPGPU.

3. EXPERIMENTAL CONFIGURATION AND EVALUATION METHODOLOGY

The evaluation of GPGPU for high performance cloud computing has been carried out on a public
cloud computing infrastructure, Amazon EC2, using the Cluster GPU Instances (CGIs), which tar-
get HPC applications. This section presents the description of the CGI-based platform used in the
evaluation (Section 3.1), an overview of the virtualization technologies available in Amazon EC2
(Section 3.2), the description of the GPGPU codes used in the evaluation (Section 3.3), and finally,
this section concludes with the methodology followed in this evaluation (Section 3.4).

3.1. Amazon EC2 CGI platform

The evaluation of GPGPU on Amazon EC2 has been carried out on a cluster of 32 CGIs, whose
main characteristics are presented in Tables I (CGI) and II (cluster of CGIs). A CGI node has eight
cores, each of them capable of executing four floating point operations per clock cycle in double
precision (DP), hence 46.88 Giga Floating Point Operations per Second (GFLOPS) per processor,
93.76 GFLOPS per node, and 3000 GFLOPS in the 32-node (256-core) cluster. Moreover, each
GPU comes with 3 GB GDDR5 of memory and has a peak performance of 515 GFLOPS in DP,

Table I. Description of the Amazon EC2 Cluster GPU Instance.

CPU 2 � Intel(R) Xeon quad-core X5570 @2.93 GHz (46.88 GFLOPS DP each CPU)
EC2 compute units 33.5
GPU 2 � NVIDIA Tesla ‘Fermi’ M2050 (515 GFLOPS DP each GPU)
Memory 22 GB DDR3
Storage 1690 GB
Virtualization Xen HVM 64-bit platform (PV drivers for I/O)
API name cg1.4xlarge

Table II. Characteristics of the CGI-based cluster.

Number of CGI nodes 32
Interconnection network 10 Gigabit Ethernet
Total EC2 compute units 1072
Total CPU cores 256 (3 TFLOPS DP)
Total GPUs 64 (32.96 TFLOPS DP)
Total FLOPS 35.96 TFLOPS DP
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hence 1030 GFLOPS per node and 32,960 GFLOPS in the 32-node (64-GPU) cluster. Aggregating
CPU and GPU theoretical peak performances, each node provides 1124 GFLOPS; hence, the entire
cluster provides 35,960 GFLOPS.

The instances of this GPU cluster have been allocated simultaneously in a single placement group
in order to obtain nearby instances, with full-bisection 10 Gbps bandwidth connectivity among them.
The interconnection technology, 10 Gigabit Ethernet, is a differential characteristic of the Amazon
EC2 cluster instances. Additionally, Amazon EC2 guarantees that the hardware infrastructure of the
cluster instances, both CGI and CCI, is not shared with any other Amazon EC2 instances and at any
given time each node runs a single VM.

The CentOS 5.5 GPU Hardware Virtual Machine (HVM) AMI (ami-aa30c7c3) is provided by
Amazon Web Services (AWS) for preparing the software configuration of EC2 GPU-based clus-
ters. However, this AMI comes with CUDA toolkit version 3.1, so it is required to be upgraded to
CUDA version 4.0, mainly because it comes with some extra features such as the ability to share
GPUs across multiple threads and the control from a single host thread of all GPUs in the system
concurrently. The GNU C/Fortran 4.1.2 compiler was used with �O3 flag to compile all the bench-
marks and applications, except NAMD, which is distributed in binary form. The Intel compiler
version 12.1 and the Intel Math Kernel Library (MKL) 10.3 have been used for building the High
Performance Linpack (HPL) benchmark. The message-passing library used for NAMD, MC-GPU,
and HPL is OpenMPI [33], version 1.4.4.

3.2. Amazon EC2 virtualization technologies overview

The Virtualization Machine Monitor (VMM), also called hypervisor, used by all Amazon EC2
instances is Xen [34], a high performance VMM quite popular among cloud providers. Xen sys-
tems have the hypervisor at the lowest and most privileged layer. The hypervisor schedules one or
more guest OSs across the physical CPUs. The first guest OS, called in Xen terminology domain 0
(dom0), boots automatically when the hypervisor boots and receives special management privileges
and direct access to all physical hardware by default. The system administrator can log into dom0
in order to manage any further guest OSs, known as domain U (domU) in Xen terminology.

Xen supports two virtualization technologies, full virtualization (HVM) and paravirtualization
(PV). On one hand, HVM allows the virtualization of proprietary OSs, because the guest system’s
kernel does not require modification, but guests require CPU virtualization extensions from the host
CPU (Intel VT [35] and AMD-V [36]). In order to boost performance, fully virtualized HVM guests
can use special paravirtual device drivers to bypass the emulation for disk and network I/O. On the
other hand, PV requires changes to the virtualized OS to be hypervisor aware. This allows the VM to
coordinate with the hypervisor, reducing the use of privileged instructions that are typically respon-
sible for the major performance penalties in full virtualization. This technology does not require
virtualization extensions from the host CPU.

Amazon EC2 CCI and CGI use Xen HVM virtualization technology with paravirtual drivers
for improving network performance, whereas the rest of Amazon EC2 instance types are Xen PV
guests. Therefore, the access to the Network Interface Card (NIC) in Amazon EC2 instances is
paravirtualized. However, a direct access to the underlying NIC (and other PCI cards) is also pos-
sible in virtualized environments using PCI passthrough [37]. This technique consists of isolating a
device in order to be used exclusively by a guest OS, which eventually achieves near-native perfor-
mance from the device. Xen supports PCI passthrough [38] for PV and HVM guests, but dom0 OS
must support it, typically available as a kernel build-time option. Additionally, the latest processor
architectures by Intel and AMD also support PCI passthrough (in addition to new instructions that
assist the hypervisor). Intel calls its approach Virtualization Technology for Directed I/O (VT-d)
[39], whereas AMD refers to it as I/O Memory Management Unit (IOMMU) [40]. In both cases, the
CPU is able to map PCI physical addresses to guest virtual addresses and take care of access (and
protection) to the mapped device, so that the guest OS can use and to take advantage of the device
like in a nonvirtualized system. In addition to this mapping of virtual guest addresses to physical
memory, isolation is provided in such a way that other guests (or even the hypervisor) are precluded
from accessing it.
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Amazon EC2 CGI relies on Xen PCI passthrough for accessing the GPUs using Intel VT-d tech-
nology, so domU OS and applications do direct I/O with the GPUs. Unfortunately, as we have
mentioned previously, the NIC is not available via PCI passthrough, so the access to the network is
virtualized in Amazon EC2 instances. This lack of efficient virtualized network support in Amazon
EC2 explains why previous works using CCIs on Amazon EC2 concluded that the communications
performance remains as the main issue for the scalability of MPI applications in the cloud.

3.3. GPGPU kernels and applications

The evaluation of GPGPU on Amazon EC2 has been carried out using representative GPGPU bench-
marks and applications, several synthetic kernels, two real-world applications, and the widely used
HPL implementation [41] of the Linpack [42] benchmark.

3.3.1. Synthetic kernels. They are code snippets that implement operations that can either take
full advantage of the hardware (e.g., a bus speed characterization code) or provide with widely
extended basic building blocks in HPC applications (e.g., a matrix multiplication kernel). The syn-
thetic kernels used for the evaluation of GPGPU on Amazon EC2 have been selected from two
representative benchmark suites, Scalable HeterOgeneus Computing (SHOC) [43] and Rodinia
benchmark suite [44]. On one hand, the SHOC suite assesses low-level architectural features through
microbenchmarking, as well as determines the computational performance of the system with the
aid of application kernels. Table III presents the 10 SHOC synthetic kernels selected. Furthermore,
these kernels have OpenCL and CUDA implementations, which allows the comparative analysis
of their performance. On the other hand, the Rodinia suite targets the performance analysis of
heterogeneous systems, providing application kernels implemented with OpenMP, OpenCL, and
CUDA for both GPUs and multicore CPUs. Table III also includes two synthetic kernels from the
Rodinia suite.

3.3.2. Applications in science and engineering. Two distributed real-world applications that sup-
port the use of multiple GPUs per node in CUDA, NAMD [45, 46] and MC-GPU [47, 48], have
been selected. Both applications can be executed either by using only CPUs or by mixing CPUs
and GPUs. On one hand, NAMD is a parallel molecular dynamics code, based on Charm++ paral-
lel objects, designed for high performance simulation of large biomolecular systems. The NAMD
suite includes ApoA1, one of the most used data sets for benchmarking NAMD, which models a
bloodstream lipoprotein particle with 92K atoms of lipid, protein, and water on 500 steps, with 12A
cutoff. NAMD is a communication-intensive iterative application. On the other hand, MC-GPU is an

Table III. Selected synthetic kernels.

Kernel Suite Performance unit Description

BusSpeedDownload SHOC GB/s PCIe bus bandwidth (host to device)
BusSpeedReadback SHOC GB/s PCIe bus bandwidth (device to host)
MaxFlops SHOC GFLOPS Peak floating point operations per second
Device Memory SHOC GB/s Device memory bandwidth
SPMV SHOC GFLOPS Multiplication of sparse matrix and vector
GEMM SHOC GFLOPS Matrix multiplication
FFT SHOC GFLOPS Fast Fourier transform
MD SHOC GFLOPS Molecular dynamics
Stencil2D SHOC Time(s) A two-dimensional nine point stencil calculation
S3D SHOC GFLOPS Computes the rate of various chemical reactions

across a regular three-dimensional grid.
CFD Rodinia Time(s) Grid finite volume solver for the three-dimensional

Euler equations for compressible flow
Hotspot Rodinia Time(s) Estimate processor temperature on the basis of an

architectural floor plan and simulated power
measurements
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X-ray transport simulation code that can generate clinically realistic radiographic projection images
and computed tomography scans of the human anatomy. It uses an MPI library to address multiple
nodes in parallel during the computed tomography simulations. It is a computation-intensive code
with little communication.

3.3.3. High Performance Linpack (HPL) benchmark. The HPL benchmark [42] solves a random
dense system of linear equations. The solution is computed by an LU decomposition with partial
pivoting followed by backsubstitution. Dense linear algebra workloads are pervasive in scientific
applications, especially in compute-intensive algorithms, so HPL provides a good upper bound on
the expected performance of scientific workloads. In addition, TOP500 [49] list is based on HPL.
The HPL implementation used in this work is the hybrid MPI/CUDA [50], not publicly available
but provided to academia, research centers, and registered CUDA developers by NVIDIA.

3.4. Evaluation methodology

The 15 codes selected for the GPGPU evaluation, the 12 synthetic kernels (10 from SHOC and 2
from Rodinia), the 2 applications (NAMD and MC-GPU), and the HPL have been initially executed
both in a single CPU core and in a single GPU of an Amazon EC2 CGI VM. Additionally, the
synthetic kernels have also been executed both in a single CPU core and in a single GPU of a non-
virtualized node with the same CPU and GPU in order to assess the overhead of the virtualization
on the CPU and GPU computational power. This physical node from our cluster has been denoted
from now on as Computer Architecture Group (CAG) test bed.

Once the performance of a single core and GPU has been measured, the evaluated codes have
been executed from 1 up to 32 CGI VMs, using all the available CPU cores (eight) and the available
GPUs (two) per node. This is the most efficient configuration as the virtualized network imposes a
significant overhead on communications performance, which motivates the minimization of the use
of the network. Except special notice, all the codes use DP floating point arithmetic.

Furthermore, both the CPU and the GPU speedups have been computed taking as baseline the per-
formance of a single CPU core. Thus, the performance of the GPUs is significantly higher than the
performance of a single CPU core for the evaluated codes. For example, NAMD is able to achieve
a speedup of 34 using the two GPUs of a VM, whereas the speedup achieved with the eight CPU
cores is 8.

Finally, both the GNU and the Intel compilers have been considered for the CPU code used in
this performance evaluation, showing little performance differences between them, never exceeding
4%. As the Intel compiler was generally the best performer, the reported results have been obtained
from binaries compiled with this compiler.

4. ASSESSMENT OF GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING

This section assesses the performance of GPGPU for high performance cloud computing on a pub-
lic cloud infrastructure, Amazon EC2, using the selected benchmarks/applications presented in the
previous section. Two features of the CGI VMs used are key for the analysis of the obtained per-
formance results, the high penalty of the virtualized access to the high-speed 10 Gigabit Ethernet
network and the low overhead of the direct access to the GPUs through Xen PCI passthrough using
Intel VT-d hardware.

4.1. Synthetic kernels’ performance with CUDA and OpenCL

Figures 1 and 2 present the performance results obtained by the selected synthetic kernels listed
in Table III using their CUDA and OpenCL implementations on a single NVIDIA Tesla ‘Fermi’
M2050, both on Amazon EC2 and on CAG test beds.

Regarding Figure 1, analyzing the results from left to right and from top to bottom, the PCIe bus
bandwidth benchmark shows similar results for CUDA and OpenCL, both from host to device as
well as from device to host. Moreover, the results reported on Amazon EC2 are similar to those
obtained on CAG.
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Figure 1. SHOC synthetic benchmarks’ performance on Amazon EC2 and CAG test beds.

The peak floating point benchmark presents a similar behavior, with insignificant differences
between Amazon and CAG for both single precision (SP) and DP tests. Here, CUDA and OpenCL
also achieve a similar peak performance (to be more precise, OpenCL outperforms CUDA slightly),
which supports the conclusion that OpenCL has the same potential as CUDA to take full advantage
of the underlying hardware. In fact, the observed performance results are very close to the theoreti-
cal peak performance on its GPU (NVIDIA Tesla C2050), 1030 GFLOPS for SP and 515 GFLOPS
for DP.

Next two graphs in Figure 1 present the device memory bandwidth tests, for both read and write
operations. On one hand, the left graph shows the device global memory bandwidth, measured by
accessing global memory in a coalesced manner, where CUDA and OpenCL obtain similar results.
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Figure 2. SHOC and Rodinia kernels’ performance on Amazon EC2 and CAG test beds.

However, for these tests the difference between Amazon EC2 and CAG performance is significant,
especially for read operations. The main reason for this performance gap is the Error-Correcting
Code (ECC) memory error protection which is enabled in Amazon EC2, whereas it is disabled in
CAG. With ECC memory error protection activated, a portion of the GPU memory is used for ECC
bits, so the available user memory is reduced by 12.5% (3-GB total memory yields 2.625 GB of
user available memory). The overhead associated with the handling of these ECC bits represents an
important performance penalty. On the other hand, the right graph shows the device local memory
bandwidth, where OpenCL outperforms CUDA, especially for read operations with up to 8% more
bandwidth. In this case, there are no significant performance differences between Amazon EC2 and
CAG test beds.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1628–1642
DOI: 10.1002/cpe

228 Chapter 10. General-Purpose Computation on GPUs for Cloud Computing



GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 1637

The last two graphs at the bottom in Figure 1 present the results for two widely used Basic Linear
Algebra Subprograms (BLAS) subroutines: the level 2 operation Sparse Matrix–Vector Multiplica-
tion (SpMV) and the level 3 operation General Matrix Multiplication (GEMM), for both SP and DP.
Regarding the test bed, these routines obtain practically the same performance results in Amazon
and CAG. However, CUDA significantly outperforms OpenCL, even doubling its performance in
some cases (SpMV in SP and DP).

Regarding Figure 2, analyzing the results from left to right and from top to bottom, CUDA outper-
forms significantly OpenCL for the Fast Fourier Transform (FFT) and Molecular Dynamics (MD)
kernels. This confirms that the OpenCL SHOC kernels are less optimized for this GPU architecture
(Tesla ‘Fermi’) than the CUDA kernels. Moreover, these CUDA codes achieve the highest perfor-
mance on CAG, mainly because of its superior memory performance thanks to having deactivated
the ECC memory correction.

Next graph in Figure 2 presents the Stencil2D kernel, whose OpenCL implementation shows quite
poor performance on Amazon EC2 but has a runtime slightly higher than CUDA on CAG. Next
graph corresponds to S3D kernel, where OpenCL is the best performer in CAG with SP, whereas
OpenCL and CUDA results are similar in Amazon EC2.

The last two graphs at the bottom in Figure 2 present the results for the two selected kernels from
Rodinia suite, the Computational Fluid Dynamics (CFD) and the Hotspot kernels. These kernels
have an OpenMP version, in addition to the OpenCL and CUDA versions, which has been executed
using the eight CPU cores available in the Amazon EC2 VM and in the CAG node. The CFD results
show that the GPUs are able to speed up around 5.2–8.6 times the CPU performance, thanks to
the implementation in CFD of an algorithm that is suitable for its execution on a GPU. The GPU
runtime of the Hotspot kernel also outperforms the CPU runtime, achieving around 6.4–9.3 times
higher performance. Finally, there are no significant differences in the performance of the CUDA
and OpenCL versions.

4.2. Distributed CUDA applications scalability

Figure 3 presents the performance of the ApoA1 benchmark executed with NAMD 2.8 and
up to 32 Amazon EC2 CGIs. The left graph shows the achieved simulation rate measured in
days/nanosecond, whereas the right graph presents their corresponding speedups. This bench-
mark has been executed using the two implementations of NAMD, the only-CPU version and
the CPU+GPU (CUDA) implementation. Regarding the results obtained, using a single VM, the
CPU+GPU version outperforms clearly the only-CPU version, achieving around four times higher
performance. However, the CPU+GPU version cannot take advantage of running on two or more
VMs; in fact, it obtains lower performance, especially using eight or more VMs than using a single
VM. This behavior contrasts with the only-CPU version, which is able to scale moderately using up
to 16 VMs, almost reaching the performance results achieved by the CPU+GPU version.

This poor scalability of the NAMD ApoA1 Benchmark on Amazon EC2 is explained by
the moderately communication-intensive nature of this benchmark, which suffers a significant
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Figure 3. Performance of NAMD ApoA1 benchmark on Amazon EC2 CGIs.
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performance penalty caused by the overhead of the virtualized access to the network. This
performance bottleneck is especially important for the CPU+GPU implementation as it com-
putes faster than the only-CPU version; therefore, its communication requirements are higher. In
fact, NAMD developers recommend the use of low-latency interconnects (e.g., InfiniBand) for
CUDA-accelerated NAMD executions across multiple nodes [46].

Figure 4 presents the performance of MC-GPU using up to 32 Amazon EC2 CGIs. The left
graph shows the runtime measured in seconds, whereas the right graph depicts their correspond-
ing speedups. This code is a massively MPI Monte Carlo simulation that has been executed with
OpenMPI using only-CPU computation as well as CPU+GPU computation with CUDA. Unlike
NAMD, this is a computation-intensive code with little communication, which eventually is able
to achieve almost linear speedups using up to 32 instances. Thus, a speedup of almost 220 over
256 cores is achieved by the only-CPU version, whereas a speedup of around 1700, almost eight
times the speedup of the only-CPU version, is achieved by the CPU+GPU version thanks to the use
of 64 GPUs.

4.3. HPL benchmark performance

Figure 5 depicts the performance achieved by the HPL benchmark using up to 32 Amazon EC2
CGIs. The left graph shows the GFLOPS obtained by the resolution of the dense system of linear
equations, whereas the right graph presents their corresponding speedups. This MPI application has
been executed with the OpenMPI implementation using only-CPU computation as well as using
CPU+GPU computation with CUDA. The analysis of the breakdown of the runtime has revealed
that most of the HPL runtime is spent in matrix–matrix multiplications in the update of trailing
matrices. The bigger the problem size N is, the more time is spent in this routine, so optimization
of DGEMM is critical to achieve a high score. Thus, the performance of HPL depends on two main
factors, basically not only on the GEMM subroutine performance in DP (DGEMM) but also on
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network performance, especially as the number of nodes increases. We ran many different configu-
rations to find the best HPL settings (problem size, number of rows and columns, partitioning block
size, panel factorization algorithm, and broadcast algorithm among others) and reported the peak
for each number of instances used.

The measured HPL performance results show a moderate scalability limited severely by the poor
virtualized network support in CGI VMs. Thus, the ratio between the achieved HPL performance
and the theoretical peak performance decreases significantly as the number of instances increases,
limiting the scalability of Amazon EC2 CGIs. Regarding the CPU+GPU (CUDA) implementa-
tion of HPL, with the use of one CGI VM, a 59% efficiency is obtained (655 GFLOPS out of
1124 peak GFLOPS are achieved), but when using 32 CGI VMs, the efficiency drops below 40%
(14.23 TFLOPS out of 35.96 peak TFLOPS are achieved). Although 14.23 TFLOPS represents a
speedup of 1290 with respect to the baseline HPL execution on a single CPU core, an efficiency of
the CPU+GPU version below 40% with only 32 instances is quite poor.

The only-CPU version presents a similar scalability behavior although the efficiencies are higher.
Thus, running HPL on one instance, the efficiency obtained is relatively 88% high (82.39 GFLOPS
out of 93.76 peak GFLOPS are achieved), whereas the efficiency on 32 instances drops below 68%
(2.035 TFLOPS out of 3 peak TFLOPS are achieved). The speedup obtained, 185 on 256 cores,
represents a moderate scalability.

Figure 6 and Table IV show the achieved efficiency in terms of percentage of the theoretical peak
performance in GFLOPS for each number of instances considered. To the best of our knowledge,
this is the first time that HPL performance results on Amazon EC2 CGIs are reported, obtaining
more than 14 TFLOPS. Amazon EC2 cluster instances have been reported to obtain 240 TFLOPS
Rmax (354 TFLOPS Rpeak), ranked #42 in the last TOP500 list (November 2011), with 17,024
cores (1064 nodes, each with 16 cores), showing an efficiency of 67.80%, a performance that could
only be obtained by running HPL on a nonvirtualized infrastructure. The previous appearance of
Amazon EC2 on TOP500 list was on November 2010, with a cluster ranked #233, which obtained
41.8 TFLOPS Rmax (82.5 TFLOPS Rpeak) with 7040 cores (880 nodes, each comprising eight
cores), reporting an efficiency of 51%, in tune with our measured results. As the last system (ranked
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Figure 6. HPL (Linpack) efficiency as percentage of peak GFLOPS on Amazon EC2 CGIs.

Table IV. HPL (Linpack) efficiency on Amazon EC2 CGIs.

CPU GFLOPS CPU GFLOPS CPUCGPU CPUCGPU
# instances # cores # GPUs (Rpeak) (Rmax) TFLOPS (Rpeak) TFLOPS (Rmax)

1 8 2 93.76 82.39 (87.87%) 1.124 0.655 (59.27%)
2 16 4 187.52 152.2 (81.16%) 2.248 1.233 (54.85%)
4 32 8 375.04 295.5 (78.71%) 4.496 2.120 (47.15%)
8 64 16 750.08 594.2 (79.21%) 8.992 4.096 (45.55%)
16 128 32 1500.16 1144 (76.26%) 17.984 7.661 (42.60%)
32 256 64 3000.32 2035 (67.83%) 35.968 14.23 (39.66%)
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#500) in the current TOP500 list has 51 TFLOPS Rmax, it would be expected that a system with
around 150 CGIs could have entered in the last TOP500 list. The cost of the access to such an
infrastructure would be barely $300 per hour ($2.10 per CGI).

The performance evaluation presented in this section has shown that computationally intensive
applications with algorithms that can be efficiently exploited in GPGPU can take full advantage of
their execution in CGI VMs from Amazon EC2 cloud. In fact, the applications can benefit from
the use of GPUs without any significant performance penalty, except when accessing memory
intensively, where a small penalty can be observed as Amazon EC2 CGIs have ECC memory
error protection enabled, which slightly limits the memory access bandwidth. Communication-
intensive applications suffer from the overhead of the virtualized network access, which can reduce
scalability significantly.

5. CONCLUSIONS

General-Purpose computation on GPU is attracting a considerable interest, especially in the scien-
tific community, because of its massive parallel processing power. Another technology that is receiv-
ing an increasing attention is cloud computing, especially in enterprise environments, for which
cloud services represent a flexible, reliable, powerful, convenient, and cost-effective alternative to
owning and managing their own computing infrastructure. Regarding HPC area, cloud providers,
such as Amazon public cloud, are already providing HPC resources, such as high-speed networks
and GPUs.

This paper has evaluated GPGPU for high performance cloud computing on a public cloud com-
puting infrastructure, using 32 Amazon EC2 Cluster GPU Instances, equipped with 10 Gigabit
Ethernet and two NVIDIA Tesla GPUs each instance. The analysis of the performance results con-
firms that GPGPU is a feasible option in a public cloud because of its efficient access to the GPU
accelerator in virtualized environments. However, our research has also detected that the virtual-
ized network overhead limits severely the scalability of the applications, especially those sensitive
to communication start-up latency. Therefore, more efficient communication middleware support is
required to get over current cloud network limitations, with appropriate optimizations on commu-
nication libraries and OS virtualization layers. Thus, a direct access to the NIC through a device
assignment to the VM is the key to reduce the network overhead in cloud environments and make
HPC on demand as a widespread option for GPGPU.
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Conclusions and Future Work

Next, we summarize the main contributions of the work done in the Thesis and

provide some insights on future research directions.

Conclusions

This PhD Thesis, “Design and Evaluation of Low-Latency Communication Mid-

dleware on High Performance Computing Systems”, has been conducted to accom-

plish successfully a twofold purpose. On the one hand, it has presented the design,

implementation and optimization of scalable Java communication solutions for HPC

on top of high-speed networks. Hence, one of the main outcomes of the Thesis is the

development and evaluation of Java message-passing communication middleware for

parallel computing, named FastMPJ, which allows to increase significantly the per-

formance of parallel Java applications on current clusters and supercomputers, the

most widespread HPC deployments. FastMPJ implements the mpiJava 1.2 API,

the most widely extended MPI-like Java bindings, for a highly productive devel-

opment of parallel MPJ applications. This middleware integrates the collection of

the low-level Java communication devices developed in this Thesis, thus enabling

low-latency (1 µs) and high-bandwidth (up to 49 Gbps) point-to-point commun-

ciations for a more efficient high-speed network support in Java. Therefore, a key

contribution of this Thesis is the design and implementation of the following commu-

nication devices: (1) ibvdev, for InfiniBand, RoCE and iWARP adapters in general

terms; (2) mxdev, for Myrinet and both high-speed and generic Ethernet hardware;

(3) psmdev, for Intel/QLogic-based InfiniBand adapters; (4) mxmdev, for Mellanox-

based InfiniBand/RoCE adapters; (5) ugnidev, for Gemini/Aries adapters, used by
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current Cray supercomputers; and (6) mpidev, to be used on top of an MPI library.

The integration of these devices into FastMPJ has allowed MPJ applications to

take advantage of the use of a high number of cores (up to 4096) while exploiting

efficiently the underlying RDMA hardware. In fact, the development of this middle-

ware, which is even competitive with MPI point-to-point data transfers, is definitely

bridging the gap between Java and natively compiled languages in HPC applica-

tions. Furthermore, the Thesis has also provided an up-to-date review of Java for

HPC, which includes a thorough evaluation of the performance of current projects.

As main conclusion, the reported advances in the efficiency of Java communications

have shown that the use of Java in HPC is feasible, as it is able to achieve high-

performance results. All these efforts have served to increase definitely the benefits

of the adoption of Java for HPC, in order to achieve higher parallel programming

productivity.

On the other hand, this Thesis has analyzed the feasibility of using a public cloud

infrastructure for HPC and scientific computing. Hence, it has evaluated several

HPC-aimed cloud resources offered by Amazon EC2, the leading commercial IaaS

cloud provider, which specifically target HPC environments. Among these resources,

cluster instances that provide powerful multi-core CPUs and are interconnected via

a high-speed network (10 Gigabit Ethernet) have been assessed. Therefore, another

key contribution of this Thesis is an extensive study of Amazon EC2 resources for

HPC, which ranges from the identification of the main causes of communication in-

efficiency on this cloud computing environment up to the proposal and evaluation of

techniques for reducing their impact on the scalability of communication-intensive

HPC codes, both for Java and natively compiled languages. Furthermore, this study

includes not only a comparative evaluation of our Java communication middleware in

the cloud, but also considers other important aspects of Amazon EC2 to be a viable

alternative in the HPC area. Therefore, further assessments that take into account

the performance of the I/O storage subsystem, the characterization of parallel/dis-

tributed file systems for data-intensive computing (e.g., Big Data workloads) and

the feasibility of using heterogeneous architectures with many-core GPU accelerators

have been carried out. Through a performance and cost analysis of HPC applications

and comparison on private virtualized and non-virtualized testbeds, we have shown

that different applications exhibit different characteristics that make them more or

less suitable to be run on a cloud environment. As main conclusion, this Thesis
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has shown the significant impact that virtualized environments still have on com-

munications performance, which hampers the adoption of communication-intensive

parallel applications in the cloud. Although it is possible to increase significantly

their scalability following the guidelines for performance optimization suggested in

this Thesis, such as reducing the number of processes per instance or using the

combination of message passing with multithreading, the network remains as the

major performance penalty, especially for GPGPU communication-intensive codes

and I/O-intensive parallel applications. This fact demands appropriate optimiza-

tions on the virtualization layer, such as the direct access to the network hardware,

to get over current cloud network limitations and enable efficient HPC in the cloud.

Therefore, the release of enhanced cloud network resources that overcome these

constraints is the way to go as current virtualized resources showed high scalability

when the communications throughput was not the main performance bottleneck.

Future Work

In terms of future research work, the development of a new FastMPJ commu-

nication device optimized for shared/distributed memory environments would be

of great interest. Thus, in this hybrid device, intra-node communications would

be performed through some shared memory operation, either an inter-process (e.g.,

mmap, SysV) or intra-process (e.g., Java threads) mechanism, whereas inter-node

transfers would take advantage of the efficient communication devices presented in

this Thesis. Regarding this point, FastMPJ devices could be further extended by

including their own implementation of collective operations at the xxdev layer, even

without relying on point-to-point primitives. The use of these algorithms would

allow to perform only one call to the device per collective, thus reducing the calling

overhead. Furthemore, the features of the underlying network could be exploited

more efficiently by using hardware-based collective acceleration, which would offload

the collective operations onto the fabric switches and adapters. The extension of the

mpiJava 1.2 API to conform with the MPI 3.0 specification and its corresponding

reference implementation in FastMPJ would also be interesting.

Regarding HPC in the cloud, further assessments of the new HPC-aimed re-

sources recently released by Amazon (e.g., C3 cluster instances, which according
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to Amazon support enhanced networking for higher packet per second performance

and lower latencies) are required in order to determine if the network bottleneck

has been reduced. Another major issue that discourages HPC users to move their

applications to the cloud are security concerns, such as lack of trust on the provider

or loss of data control. Hence, future research is required in order to address this

important topic and enable secure HPC in the cloud. Further benchmarking, both

in terms of performance and cost, that compare traditional HPC systems and public

clouds, also taking into account other IaaS providers (e.g., Microsoft Azure, Google

Compute Engine), would help to determine more accurately the performance/cost

gap among those platforms.

Finally, a future direction is to further evaluate and characterize Big Data appli-

cations, particularly those that use the MapReduce programming model [25], where

the Java-based Hadoop project [86] has become the preferred choice for their devel-

opment. Nowadays, these applications are increasingly generating data sets so large

that the use of HPC infrastructures (i.e., clusters, supercomputers and clouds) for

efficient Big Data processing is becoming more and more frequent. As the Hadoop

framework relies on Java sockets to implement its communication support, it can not

take full advantage of the underlying high-speed networks used in HPC platforms.

Therefore, some of the ideas and projects discussed in this Thesis could be of great

interest for the implementation of a Java-based Hadoop-like framework optimized

for HPC environments.
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Jacobs, T. Kielmann, and H. E. Bal. Ibis: a flexible and efficient Java-based

grid programming environment. Concurrency and Computation: Practice and

Experience, 17(7-8):1079–1107, 2005. pages 23

[66] Orange File System (OrangeFS). http://www.orangefs.org/. [Last visited:

July 2014]. pages 39

[67] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema.

A performance analysis of EC2 cloud computing services for scientific comput-

ing. In Proceedings of the 1st International Conference on Cloud Computing

(CLOUDCOMP’09), pages 115–131, Munich, Germany, 2009. pages 7

[68] M. Philippsen, B. Haumacher, and C. Nester. More efficient serialization and

RMI for Java. Concurrency: Practice and Experience, 12(7):495–518, 1999.

pages 23

[69] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
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Appendix A

Summary in Spanish

Este resumen se compone de una introducción, que explica la motivación y con-

texto de la Tesis, seguida de una sección sobre su organización en partes y caṕıtulos.

Después, sigue una enumeración de los medios que han sido necesarios para lle-

varla a cabo, para finalizar con las conclusiones, trabajo futuro y las principales

contribuciones recogidas en ella.

Introducción

La computación de altas prestaciones (High Performance Computing, HPC) se

ha convertido durante las últimas décadas en una disciplina cada vez más importante

como herramienta esencial para la investigación cient́ıfica y la industria. De hecho,

HPC es actualmente una de las disciplinas de vanguardia en el ámbito de las tec-

noloǵıas de la información, con una amplia gama de aplicaciones paralelas que tienen

una necesidad de potencia de cómputo creciente en diversos campos de la economı́a,

la ciencia y la ingenieŕıa. Estas aplicaciones, por lo general, consisten en la cons-

trucción de modelos matemáticos y técnicas de solución numérica que a menudo

requieren una gran cantidad de recursos computacionales para realizar experimen-

tos a gran escala o reducir la complejidad computacional en un plazo de tiempo

razonable. Estas necesidades computacionales han sido satisfechas t́ıpicamente por

supercomputadores instalados en laboratorios nacionales, grandes grupos de investi-
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gación o grandes empresas. A pesar de la importancia del HPC para la investigación

cient́ıfica y el crecimiento industrial, sólo los proyectos de investigación más impor-

tantes son capaces de afrontar el coste de un supercomputador. Además, el acceso a

estos sistemas es por lo general muy restringido y habitualmente se realiza a través

de convocatorias competitivas. Por lo tanto, para usuarios con pequeñas o medianas

demandas de HPC, la opción convencional ha sido la instalación de su propio clúster

privado.

El rendimiento y eficiencia de las comunicaciones inter-nodo son aspectos clave

para la ejecución escalable de aplicaciones paralelas del ámbito HPC. De hecho, las

arquitecturas de computación actuales, desde clusters multinúcleo a grandes super-

computadores, están agregando un número significativo de núcleos de procesamiento

interconectados mediante una red de altas prestaciones o de baja latencia como In-

finiBand, RoCE o Ethernet de alta velocidad (10/40 Gigabit). Por otra parte, el

auge de la computación en la nube, o cloud computing [15, 72], ha generado un

considerable interés en la comunidad HPC debido a la alta disponibilidad y fácil

acceso a recursos computacionales a gran escala. Por lo tanto, proveedores de cloud

públicos que ofrecen la infraestructura como servicio (Infrastructure as a Service,

IaaS), como por ejemplo Amazon, están desplegando cada vez más recursos virtua-

lizados espećıficos para aplicaciones HPC, los cuales permiten a los usuarios crear

un clúster virtual en la nube sin excesivo esfuerzo y obtener aśı una gran potencia

computacional. En este contexto, las plataformas de computación en la nube se

han convertido en una alternativa interesante para desplegar un sistema HPC en la

nube sin ningún conocimiento de la infraestructura subyacente, especialmente para

aquellos usuarios con una demanda limitada y/o esporádica de recursos computa-

cionales, o bien aquellos que no pueden permitirse el coste de adquirir un clúster

para HPC.

El aumento progresivo y significativo en el número de núcleos disponibles en

los procesadores actuales enfatiza la necesidad de disponer de soluciones paralelas

escalables en las que la eficiencia del middleware de comunicación subyacente es

fundamental. En este contexto, es vital poder aprovechar al máximo la potencia

de los abundantes recursos computacionales de los sistemas HPC actuales al mismo

tiempo que se hace un uso eficiente de las interesantes caracteŕısticas que ofrecen las

redes de altas prestaciones, como las operaciones de acceso directo a memoria re-
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mota (Remote Direct Memory Access, RDMA), y para ello resulta esencial continuar

utilizando modelos de programación de fácil aprendizaje y uso. La interfaz de paso

de mensajes (Message-Passing Interface, MPI) [61] sigue siendo el estándar de facto

en el área de la computación paralela debido a su flexibilidad y portabilidad, y por

ser capaz de lograr un alto rendimiento en sistemas muy diferentes. Por lo tanto,

MPI constituye el modelo de programación más ampliamente extendido para apli-

caciones paralelas en sistemas HPC, usando tradicionalmente lenguajes compilados

a código nativo de cada plataforma (p.e., C/C++, Fortran).

Java es actualmente uno de los lenguajes de programación más populares, tanto

en el mundo de la web e Internet como en computación distribuida. Además, Java

se ha convertido en una alternativa interesante para computación paralela [73, 79].

El interés en Java para HPC está motivado por sus atractivas caracteŕısticas que

pueden ser especialmente beneficiosas para la programación paralela, tales como

su inherente soporte multithreading y para aplicaciones en red, orientación a ob-

jetos, gestión automática de la memoria, portabilidad, facilidad de aprendizaje y,

por tanto, alta productividad. Además, la mejora significativa en su rendimiento

computacional ha reducido la tradicional diferencia de rendimiento entre Java y los

lenguajes compilados a código nativo de cada plataforma. Esto ha sido gracias al

uso de eficientes compiladores Just-In-Time (JIT), la técnica de compilación de la

máquina virtual de Java (Java Virtual Machine, JVM) que proporciona al bytecode

de Java rendimientos comparables al del código nativo. Sin embargo, aunque esta

diferencia de rendimiento es normalmente pequeña en códigos secuenciales, obte-

niendo rendimientos similares a los lenguajes compilados, en aplicaciones paralelas

puede ser particularmente grande, ya que la escalabilidad de estas aplicaciones de-

pende en gran medida de la eficiencia de las comunicaciones. La razón principal

es que las aplicaciones paralelas en Java carecen generalmente de un middleware

de comunicación eficiente, incapaz de obtener el máximo rendimiento en presencia

de redes de altas prestaciones [44]. La inexistencia de un soporte de comunicación

eficiente en las bibliotecas de paso de mensajes en Java (Message-Passing in Java,

MPJ) [18] conlleva por lo general un rendimiento sensiblemente inferior al de las

bibliotecas MPI, lo que ha obstaculizado enormemente el uso de Java en HPC.

La presente Tesis Doctoral, “Design and Evaluation of Low-Latency Commu-

nication Middleware on High Performance Computing Systems”, nace del intento
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de abordar un doble propósito. Por un lado, se centra en impulsar la utilización de

Java en HPC mediante el desarrollo de un middleware de comunicación eficiente para

computación paralela que supere las limitaciones discutidas anteriormente. Aśı, este

middleware debe sacar el máximo provecho posible del hardware de red subyacente

para proporcionar a las aplicaciones paralelas en Java comunicaciones inter-nodo

de baja latencia y gran ancho de banda. Este primer objetivo se ha abordado es-

pećıficamente en la primera parte de la Tesis, en particular para sistemas clúster y

supercomputadores, por ser las arquitecturas para HPC más extendidas en la ac-

tualidad. Por otro lado, el segundo objetivo principal de esta Tesis (recogido en la

segunda parte de la misma) se centra en el uso de infraestructuras de nube pública

para HPC y computación cient́ıfica. Por lo tanto, la escalabilidad del middleware de

comunicación en Java desarrollado en la primera parte se ha analizado en el provee-

dor público de IaaS más popular: Amazon EC2 [2]. Además, se ha llevado a cabo un

estudio de viabilidad del uso de los recursos de Amazon EC2 espećıficos para apli-

caciones HPC. Este extenso análisis abarca desde la identificación de las principales

causas de ineficiencia en las comunicaciones en un entorno de computación en la

nube hasta la propuesta y evaluación de técnicas para la reducción de su impacto en

la escalabilidad de códigos HPC intensivos en comunicaciones, tanto para Java como

para lenguajes compilados a código nativo. Además, este estudio también considera

otros aspectos importantes de Amazon EC2 para poder convertirse en una alterna-

tiva viable en el ámbito del HPC, tales como proporcionar un alto rendimiento de

E/S a través del uso de discos de estado sólido (Solid State Drive, SSD), la caracte-

rización del rendimiento de sistemas de ficheros paralelos/distribuidos para códigos

intensivos en datos (p.e., aplicaciones Big Data) o la utilización de coprocesadores,

tales como las unidades de procesamiento gráfico (Graphics Processing Units, GPU),

como aceleradores many-core en códigos HPC [56].

Organización de la Tesis

De acuerdo con la normativa vigente de la Universidade da Coruña, la presente

Tesis Doctoral se ha estructurado como una Tesis por compendio de publicaciones

de investigación. Concretamente, se compone de 9 art́ıculos publicados en revistas

indexadas en el Journal Citation Reports (JCR), y que se han agrupado en dos partes
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diferenciadas. La Tesis comienza con un caṕıtulo introductorio, destinado a ofrecer

al lector un breve resumen de la investigación realizada en dichos art́ıculos. En

primer lugar, este caṕıtulo presenta el alcance y la motivación de la Tesis y propor-

ciona una descripción clara de los principales objetivos a alcanzar. Seguidamente, se

incluye una discusión general de los principales resultados de investigación de cada

una de las partes con el fin de proporcionar una visión vertebradora y coherente de

los diferentes trabajos.

A continuación, la Tesis se divide en dos partes. En la primera parte (“Design

of Low-Latency Java Communication Middleware on High-Speed Networks”) se pre-

senta el diseño, implementación y evaluación de un middleware de comunicaciones

eficiente en Java para computación paralela. Este middleware implementa el soporte

de sus comunicaciones sobre varios dispositivos a bajo nivel para paso de mensajes

en Java, los cuales son capaces de obtener un gran rendimiento sobre diferentes re-

des de altas prestaciones. Además, se ha realizado un análisis del estado del arte

de Java para HPC, incluyendo una extensa evaluación del rendimiento del middle-

ware de comunicaciones desarrollado. Los art́ıculos de revista que se incluyen en la

primera parte de la Tesis, cada uno de ellos presentado en un caṕıtulo independiente

(Caṕıtulos 2-5), son:

R. R. Expósito, G. L. Taboada, J. Touriño, and R. Doallo. Design of scalable

Java message-passing communications over InfiniBand. Journal of Supercom-

puting, 61(1):141–165, 2012.

R. R. Expósito, S. Ramos, G. L. Taboada, J. Touriño, and R. Doallo. FastMPJ:

a scalable and efficient Java message-passing library. Cluster Computing, 2014.

(en prensa, http://dx.doi.org/10.1007/s10586-014-0345-4).

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Low-

latency Java communication devices on RDMA-enabled networks. 2014. (En-

viado para publicar en revista).

G. L. Taboada, S. Ramos, R. R. Expósito, J. Touriño, and R. Doallo. Java

in the high performance computing arena: research, practice and experience.

Science of Computer Programming, 78(5):425–444, 2013.

http://dx.doi.org/10.1007/s10586-014-0345-4
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La segunda parte de la Tesis (“Evaluation of Communication Middleware for

HPC on a Public Cloud Infrastructure”) presenta un estudio detallado de la viabili-

dad del uso de una plataforma pública de computación en la nube para la ejecución

eficiente de aplicaciones HPC. Amazon EC2, el principal proveedor público de IaaS,

permite a los usuarios configurar clusters virtuales bajo demanda a través de varios

recursos cloud destinados espećıficamente para HPC: instancias de tipo clúster con

potentes procesadores multinúcleo, redes de altas prestaciones (10 Gigabit Ether-

net), instancias clúster multi-GPU e instancias que proporcionan discos basados en

tecnoloǵıa SSD. Los art́ıculos de revista que se incluyen en la segunda parte, cada

uno de ellos también presentado en un caṕıtulo independiente (Caṕıtulos 6-10), son:

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Evalua-

tion of messaging middleware for high-performance cloud computing. Personal

and Ubiquitous Computing, 17(8):1709–1719, 2013.

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Perfor-

mance analysis of HPC applications in the cloud. Future Generation Computer

Systems, 29(1):218–229, 2013.

R. R. Expósito, G. L. Taboada, S. Ramos, J. González-Domı́nguez, J. Touriño,

and R. Doallo. Analysis of I/O performance on an Amazon EC2 cluster

compute and high I/O platform. Journal of Grid Computing, 11(4):613–631,

2013.

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. Perfor-

mance evaluation of data-intensive computing applications on a public IaaS

cloud. 2014. (Enviado para publicar en revista).

R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo. General-

purpose computation on GPUs for high performance cloud computing. Con-

currency and Computation: Practice and Experience, 25(12):1628–1642, 2013.

Finalmente, en el último caṕıtulo, de conclusiones y trabajo futuro, se resumen

las principales contribuciones de la Tesis y se esbozan las principales ĺıneas de in-

vestigación que se pueden derivar de este trabajo.
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Medios

Los medios necesarios para realizar esta Tesis Doctoral han sido los siguientes:

Material de trabajo, recursos humanos y financiación económica proporciona-

dos fundamentalmente por el Grupo de Arquitectura de Computadores de

la Universidade da Coruña, junto con el Ministerio de Educación, Cultura y

Deporte (a través de la beca FPU AP2010-4348).

Acceso a material bibliográfico, a través de la biblioteca de la Universidade da

Coruña.

Además, esta Tesis se ha financiado a través de los siguientes proyectos de

investigación:

• Con financiación europea a través del proyecto “Open European Network

for High Performance Computing on Complex Environments” (Com-

plexHPC, Acción COST ref. IC0805).

• Con financiación estatal por parte del Ministerio de Economı́a y Compe-

titividad a través del proyecto “Arquitecturas, Sistemas y Herramientas

para Computación de Altas Prestaciones” (TIN2010-16735).

• Con financiación autonómica por parte de la Xunta de Galicia a través

del Programa de Consolidación y Estructuración de Unidades de Investi-

gación Competitivas, en la modalidad de Grupos de Referencia Compe-

titiva (Grupo de Arquitectura de Computadores, refs. GRC2013/055 y

2010/6), y en la modalidad de Redes de Investigación (Red Gallega de

Computación de Altas Prestaciones, ref. 2010/53).

• Con financiación privada a través de los proyectos “High Performance

Computing for High Performance Trading (HPC4HPT)” financiado por

la Fundación Barrié, y “F-MPJ-Cloud (Fast Message-Passing in Java on

the Cloud)” financiado por una Research Grant de Amazon Web Services

(AWS) LLC.

Acceso a diversos clusters, supercomputadores y plataformas de computación

en la nube:
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• Clúster Pluton (Grupo de Arquitectura de Computadores, Universidade

da Coruña). Compuesto inicialmente por 16 nodos con 2 procesadores

Intel Xeon Nehalem-EP de 4 núcleos y hasta 16 GB de RAM, interconec-

tados mediante InfiniBand DDR, y adicionalmente dos nodos mediante

10 Gigabit Ethernet. Además, 2 nodos con procesador Intel Xeon Sandy

Bridge-EP de 4 núcleos y 32 GB de RAM, interconectados mediante In-

finiBand FDR, RoCE e iWARP, y 4 nodos con procesador Intel Xeon

Westmere-EP de 6 núcleos, 12 GB de RAM y 2 GPUs NVIDIA Tesla

“Fermi” 2050 por nodo, interconectados mediante InfiniBand QDR. Pos-

teriormente se han incorporado 16 nodos con 2 procesadores Intel Xeon

Sandy Bridge-EP de 8 núcleos, 64 GB de RAM y 2 GPUs NVIDIA Tesla

“Kepler” K20m por nodo, interconectados mediante InfiniBand FDR.

• Clúster DAS-4 (Advanced School for Computing and Imaging, ASCI,

Vrije University Amsterdam, Holanda). Para los experimentos de la Tesis

se utilizaron hasta 64 nodos con 2 procesadores Intel Xeon Westmere-EP

de 4 núcleos y 24 GB de RAM, interconectados mediante InfiniBand

QDR. Adicionalmente se utilizó un nodo de memoria compartida con 4

procesadores AMD Opteron Magny-Cours de 12 núcleos y 128 GB de

RAM.

• Clúster XB5 (Grupo de Filogenómica, Universidad de Vigo). Se utilizó un

nodo de memoria compartida con 4 procesadores Intel Xeon Westmere-

EX de 10 núcleos y 512 GB de RAM.

• Supercomputador Finis Terrae (Centro de Supercomputación de Galicia,

CESGA): 144 nodos con 8 procesadores Intel Itanium-2 Montvale de 2

núcleos y 128 GB de RAM, interconectados mediante InfiniBand DDR.

Adicionalmente se utilizó un sistema Superdome de memoria compartida

con 64 procesadores Intel Itanium-2 Montvale de 2 núcleos y 1 TB de

RAM.

• Supercomputador MareNostrum (Barcelona Supercomputing Center, BSC):

2560 nodos con 2 procesadores IBM PowerPC 970MP de 2 núcleos y 8

GB de RAM, interconectados mediante Myrinet 2000.

• Supercomputador Hermit (High Performance Computing Center Stuttgart,

HLRS, Alemania): 3552 nodos con 2 procesadores AMD Opteron Inter-
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lagos de 16 núcleos y hasta 64 GB de RAM, interconectados mediante

Gemini, una red propietaria de Cray con una topoloǵıa de toro 3D.

• Plataforma de computación en la nube Amazon EC2 (Amazon Web Ser-

vices, AWS). Se han utilizado diversos tipos de instancias: (1) CC1, 2

procesadores Intel Xeon Nehalem-EP de 4 núcleos, 23 GB de RAM y 2

discos de almacenamiento local por instancia; (2) CC2, 2 procesadores

Intel Xeon Sandy Bridge-EP de 8 núcleos, 60.5 GB de RAM y 4 dis-

cos por instancia; (3) CG1, 2 procesadores Intel Xeon Nehalem-EP de

4 núcleos, 22 GB de RAM, 2 GPUs NVIDIA Tesla “Fermi” 2050 y 2

discos por instancia; (4) HI1, 2 procesadores Intel Xeon Westmere-EP de

4 núcleos, 60.5 GB de RAM y 2 discos con tecnoloǵıa SSD por instancia;

(5) CR1, 2 procesadores Intel Xeon Sandy Bridge-EP de 8 núcleos, 244

GB de RAM y 2 discos con tecnoloǵıa SSD por instancia; y (6) HS1, 1

procesador Intel Xeon Sandy Bridge-EP de 8 núcleos, 117 GB de RAM

y 24 discos por instancia. Todas estas instancias están interconectadas

mediante una red 10 Gigabit Ethernet.

Estancia de investigación de 3 meses de duración en el Rechenzentrum Uni-

versität Mannheim, Alemania, la cual permitió el acceso al supercomputa-

dor Hermit instalado en el High Performance Computing Center Stuttgart

(HLRS). En esta estancia se desarrolló el dispositivo de comunicaciones de

FastMPJ para el soporte de red de la familia de supercomputadores Cray

XE/XK/XC. La estancia fue financiada por la Universidade da Coruña junto

con la empresa INDITEX S.A. mediante una beca obtenida en concurrencia

competitiva en 2013.

Conclusiones

Esta Tesis Doctoral, “Design and Evaluation of Low-Latency Communication

Middleware on High Performance Computing Systems”, ha llevado a cabo con éxito

un doble propósito. Por un lado, se ha presentado el diseño, implementación y opti-

mización de soluciones de comunicación escalables en Java para un soporte eficiente

de redes de altas prestaciones. Una de las principales contribuciones de la Tesis es
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el desarrollo y evaluación de un middleware de comunicación de paso de mensajes

en Java para computación paralela, denominado FastMPJ, que permite incremen-

tar significativamente el rendimiento de las aplicaciones paralelas en Java sobre

clusters y supercomputadores, las arquitecturas para HPC más extendidas en la ac-

tualidad. FastMPJ implementa el API mpiJava 1.2, la especificación basada en el

estándar MPI más extendida en Java, con el fin de permitir un desarrollo altamente

productivo de aplicaciones paralelas MPJ. Este middleware integra la colección de

dispositivos de comunicación a bajo nivel en Java desarrollados en esta Tesis, los

cuales permiten obtener comunicaciones punto a punto de baja latencia (1 µs) y

alto ancho de banda (hasta 49 Gbps), proporcionando aśı un soporte eficiente para

redes de altas prestaciones en Java. Por lo tanto, contribuciones clave de esta Tesis

son el diseño y la implementación de los siguientes dispositivos de comunicación: (1)

ibvdev, para el soporte de adaptadores InfiniBand, RoCE e iWARP en general; (2)

mxdev, para redes Myrinet y Ethernet de alta velocidad y también hardware Ethernet

genérico; (3) psmdev, para adaptadores InfiniBand del fabricante Intel/QLogic; (4)

mxmdev, para adaptadores InfiniBand/RoCE del fabricante Mellanox; (5) ugnidev,

para las redes Gemini/Aries utilizadas en los supercomputadores Cray XE/XK/XC;

y (6) mpidev, un dispositivo nativo para ser utilizado con una libreŕıa MPI. La in-

tegración de estos dispositivos en FastMPJ ha permitido a las aplicaciones MPJ

hacer uso de un gran número de núcleos (hasta 4096) y aprovechar eficientemente

el hardware RDMA subyacente. De hecho, el desarrollo de este middleware, que

incluso es competitivo con bibliotecas MPI en términos de comunicaciones punto

a punto, permite reducir la diferencia de rendimiento en aplicaciones HPC entre

Java y los lenguajes compilados a ćodigo nativo. La Tesis también proporciona un

análisis actualizado del estado del arte de Java para HPC, incluyendo una evaluación

exhaustiva de proyectos actuales. Como principal conclusión, los avances obtenidos

en la eficiencia de las comunicaciones de Java han servido para demostrar que el uso

de Java en HPC es factible, ya que es capaz de obtener un alto rendimiento.

Por otro lado, esta Tesis también ha analizado la viabilidad de usar una in-

fraestructura pública en la nube para la ejecución de aplicaciones HPC. Se han

evaluado diversos recursos cloud espećıficamente diseñados para HPC del principal

proveedor público de IaaS, Amazon EC2. Entre estos recursos, se han evaluado dis-

tintas instancias de tipo clúster que proporcionan potentes procesadores multinúcleo

y están interconectadas mediante una red de altas prestaciones (10 Gigabit Ether-
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net). Por lo tanto, otra aportación fundamental de esta Tesis ha sido un extenso

estudio de los recursos cloud de Amazon EC2 para HPC, que abarca desde la iden-

tificación de las principales causas de la ineficiencia en las comunicaciones en un

entorno de computación en la nube hasta la propuesta y evaluación de técnicas para

la reducción de su impacto en la escalabilidad de códigos HPC intensivos en comu-

nicaciones, tanto para Java como para lenguajes compilados a código nativo. Este

estudio no sólo incluye una evaluación comparativa en la nube del middleware de

comunicación desarrollado en esta Tesis, sino que también considera otros aspectos

importantes de Amazon EC2 para poder llegar a ser una alternativa viable en el

ámbito del HPC. Por lo tanto, se han realizado evaluaciones adicionales teniendo

en cuenta el rendimiento del subsistema de E/S, la caracterización del rendimiento

de sistemas de ficheros paralelos/distribuidos para códigos intensivos en datos (p.e.,

aplicaciones Big Data) y la viabilidad de utilizar arquitecturas heterogéneas con

aceleradores many-core como las GPUs. A través de un análisis en términos de

rendimiento y coste de aplicaciones HPC y de la comparación con entornos priva-

dos virtualizados y no virtualizados, se ha demostrado que diferentes aplicaciones

exhiben diferentes caracteŕısticas que las pueden hacer más o menos adecuadas para

ejecutarse en la nube. Como principal conclusión, esta Tesis demuestra el impacto

significativo que los entornos virtualizados todav́ıa imponen en el rendimiento de

las comunicaciones, lo que dificulta la adopción de aplicaciones intensivas en co-

municaciones en la nube. Aunque es posible aumentar de manera significativa su

escalabilidad siguiendo las directrices para optimización del rendimiento que se su-

gieren en esta Tesis, tales como reducir el número de procesos por instancia o la

combinación del paradigma de paso de mensajes con el uso de multithreading, la

red de interconexión continúa siendo el principal cuello de botella en el rendimiento,

especialmente para códigos GPGPU intensivos en comunicaciones y aplicaciones pa-

ralelas intensivas en E/S. Esta situación exige optimizaciones adecuadas en la capa

de virtualización, como el acceso directo al hardware de red, para poder superar las

limitaciones actuales.
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Trabajo Futuro

En cuanto al trabajo futuro, el desarrollo de un nuevo dispositivo de comuni-

cación en Java espećıfico para entornos de memoria compartida/distribuida seŕıa

de gran interés. Aśı, en este dispositivo h́ıbrido, las comunicaciones intra-nodo se

realizaŕıan mediante algún mecanismo de memoria compartida, ya sea inter-proceso

(p.e., mmap, SysV) o intra-proceso (p.e., threads de Java), mientras que las trans-

ferencias inter-nodo se aprovechaŕıan de los dispositivos de comunicación eficientes

que se han presentado en esta Tesis. Con respecto a este punto, los dispositivos

de FastMPJ se podŕıan ampliar mediante la inclusión de su propia implementación

de operaciones colectivas en la capa xxdev, incluso sin necesidad de hacer uso de

comunicaciones punto a punto. El uso de estos algoritmos permitiŕıa realizar una

única llamada al dispositivo por cada operación colectiva, lo que reduciŕıa la so-

brecarga. Además, las caracteŕısticas de la red subyacente podŕıan explotarse de

manera más eficiente mediante la aceleración de colectivas basada en hardware, que

descargaŕıa dichas operaciones sobre los adaptadores y conmutadores de la red. Por

otra parte, la extensión de la API mpiJava 1.2 para cumplir con la especificación

de MPI 3.0 y su correspondiente implementación de referencia en FastMPJ también

seŕıa altamente interesante.

En cuanto al tema de HPC en la nube, seŕıan necesarias evaluaciones adicionales

de los nuevos recursos cloud para HPC recientemente ofertados por Amazon (p.e.,

las instancias clúster C3, las cuales, según Amazon, proporcionan mejoras en la red

de interconexión para aumentar el número de paquetes por segundo y reducir la

latencia), con el objetivo de determinar si se ha reducido el cuello de botella de la

red. Otro de los principales problemas que desalientan habitualmente a los usuarios

de HPC a mover sus aplicaciones a la nube son aquellos que tienen que ver con la

seguridad, como pueden ser la falta de confianza en el proveedor o la pérdida de

control de los datos. Por lo tanto, se necesitan nuevas investigaciones que aborden

este importante tópico y que permitan aśı dotar de seguridad al HPC en la nube.

Comparaciones adicionales, tanto en términos de rendimiento como de coste, entre

sistemas HPC tradicionales y plataformas públicas en la nube, teniendo en cuenta

también a otros proveedores de IaaS (p.e., Microsoft Azure, Google Compute En-

gine), ayudaŕıan a determinar con mayor precisión la diferencia de rendimiento/coste

entre dichos entornos.
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Por último, otra ĺınea futura seŕıa profundizar en la evaluación y caracterización

del rendimiento de aplicaciones en el ámbito del procesamiento Big Data, en par-

ticular aquellas que utilizan el modelo de programación MapReduce [25], donde

el proyecto Apache Hadoop [86], basado en Java, se ha convertido en el entorno

preferido para su desarrollo. Hoy en d́ıa estas aplicaciones están generando conjun-

tos de datos tan grandes que el uso de infraestructuras HPC, tanto clusters como

supercomputadores y clouds, se está haciendo cada vez más frecuente para conseguir

un procesamiento Big Data escalable. Como Hadoop implementa el soporte de sus

comunicaciones mediante sockets de Java, no puede explotar el máximo rendimiento

de las redes de interconexión utilizadas en HPC. Por lo tanto, algunas de las ideas

y proyectos que se han discutido en esta Tesis pueden ser de gran interés para la

implementación en Java de un entorno Hadoop optimizado para sistemas HPC.

Principales Contribuciones

Las principales aportaciones de la primera parte de esta Tesis son:

1. El diseño e implementación de un dispositivo de comunicación a bajo nivel para

paso de mensajes en Java, ibvdev, desarrollado sobre la interfaz Verbs y que

proporciona comunicaciones escalables en sistemas interconectados mediante

la red InfiniBand [38].

2. El diseño, implementación y evaluación de una biblioteca eficiente para paso de

mensajes en Java: FastMPJ. Este middleware de comunicación en Java no sólo

se beneficia de la integración de ibvdev, sino también de la implementación de

dos nuevos dispositivos de comunicación a bajo nivel: (1) mxdev, implementado

sobre MX/Open-MX para el soporte de redes Myrinet y hardware Ethernet

genérico; y (2) psmdev, implementado sobre InfiniPath PSM para el soporte

nativo de la familia de adaptadores InfiniBand del fabricante Intel/QLogic [31].

3. El diseño, implementación y optimización de dispositivos de comunicación en

Java para el soporte de redes RDMA. Este trabajo incluye el diseño e imple-

mentación de dos nuevos dispositivos de comunicación a bajo nivel, ugnidev

y mxmdev, que también se han integrado en FastMPJ. El primer dispositivo
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proporciona un soporte eficiente de las redes RDMA utilizadas en los super-

computadores Cray actuales. El segundo incluye el soporte para la biblioteca

de comunicaciones basada en paso de mensajes recientemente desarrollada por

Mellanox para sus adaptadores RDMA. Además, se presenta una versión mejo-

rada del dispositivo ibvdev, la cual soporta redes RDMA adicionales e incluye

un protocolo optimizado para el env́ıo de mensajes de pequeño tamaño [36].

4. Un análisis actual del estado del arte de Java para computación de altas presta-

ciones, incluyendo una extensa evaluación del rendimiento de soluciones de

paso de mensajes debido a su escalabilidad y uso extendido en HPC. En con-

secuencia, FastMPJ ha sido evaluado de forma comparativa con bibiliotecas

MPI y MPJ representativas. Este análisis también incluye una revisión de

soluciones en Java para programación paralela tanto en memoria compartida

como distribuida, mostrando un número importante de proyectos pasados y

actuales que son el resultado del interés continuo en el uso de Java en HPC [79].

Las principales aportaciones de la segunda parte de la Tesis son:

1. Un estudio detallado del impacto de la sobrecarga de la virtualización de red

en la escalabilidad de aplicaciones HPC en el proveedor de cloud público de

IaaS más popular: Amazon EC2. Este trabajo compara la primera generación

de instancias de EC2 de tipo clúster espećıficas para HPC, cuyo acceso a su

red de altas prestaciones (10 Gigabit Ethernet) está paravirtualizado, con el

rendimiento de un cloud privado similar que soporta el acceso directo a la

misma tecnoloǵıa de red utilizando la técnica PCI passthrough y con el mismo

sistema ejecutándose de forma nativa en un entorno no virtualizado [33].

2. Un análisis exhaustivo de los principales cuellos de botella en la escalabilidad

de aplicaciones HPC en Amazon EC2, junto con la propuesta y evaluación de

técnicas para reducir el impacto de la sobrecarga que produce la virtualización

de red. Este trabajo proporciona una visión más amplia sobre el rendimiento

de las aplicaciones HPC en Amazon EC2, utilizando para ello un importante

número de núcleos (hasta 512) y comparando la primera y segunda generación

de instancias de tipo clúster para HPC, tanto en términos de rendimiento,

escalabilidad y relación coste-eficiencia como teniendo en cuenta modelos de

programación h́ıbridos (p.e., MPI+OpenMP) [35].
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3. Una evaluación del subsistema de E/S en Amazon EC2. En este trabajo se

evalúan las dos generaciones de instancias clúster para HPC junto con ins-

tancias de almacenamiento optimizado que proporcionan discos basados en

tecnoloǵıa SSD, con el objetivo de determinar su idoneidad para aplicaciones

intensivas en E/S. La evaluación se ha realizado a diferentes niveles, que abar-

can desde los dispositivos de almacenamiento en la nube a bajo nivel (p.e.,

discos ef́ımeros) e interfaces de E/S (p.e., MPI-IO, HDF5), hasta el nivel de

aplicación, incluyendo también un análisis en términos de coste. Además,

se ha caracterizado el rendimiento del sistema de archivos de red (Network

File System, NFS), mostrando el impacto en el rendimiento de sus principales

parámetros de configuración en un entorno cloud virtualizado [32].

4. Un análisis del rendimiento de aplicaciones intensivas en datos en Amazon

EC2. Este trabajo analiza al detalle la pila software de E/S para códigos inten-

sivos en datos, tanto en el ámbito HPC como para el procesamiento Big Data.

Concretamente, se ha caracterizado el rendimiento y el coste de cuatro tipos de

instancias que proporcionan una red 10 Gigabit Ethernet. Para ello se han re-

alizado experimentos a diferentes niveles utilizando un conjunto representativo

de benchmarks (p.e., IOR, Intel Hibench), sistemas de ficheros paralelos/dis-

tribuidos (OrangeFS, HDFS), entornos para computación distribuida (Apache

Hadoop), aplicaciones HPC intensivas en E/S (p.e., FLASH-IO) y códigos

representativos basados en el paradigma MapReduce para procesamiento Big

Data (p.e., Sort, PageRank) [37].

5. Un estudio de viabilidad del uso de arquitecturas heterogéneas con acele-

radores many-core en Amazon EC2. La familia de instancias clúster para

GPGPU se ha evaluado mediante kernels sintéticos y benchmarks represen-

tativos, utilizando códigos basados tanto en CUDA (Compute Unified Device

Architecture) como en OpenCL (Open Computing Language), y sus resultados

se han comparado con un entorno GPU no virtualizado con el objetivo de

analizar la sobrecarga de virtualización para códigos GPGPU. Por otra parte,

a nivel de aplicación se han tenido en cuenta códigos paralelos h́ıbridos (p.e.,

MPI+CUDA), utilizando para ello dos aplicaciones paralelas y el benchmark

HPL (High Performance Linpack) [34].
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